CN117736313A - New coronavirus RBD specific monoclonal antibody and application - Google Patents

New coronavirus RBD specific monoclonal antibody and application Download PDF

Info

Publication number
CN117736313A
CN117736313A CN202311018647.2A CN202311018647A CN117736313A CN 117736313 A CN117736313 A CN 117736313A CN 202311018647 A CN202311018647 A CN 202311018647A CN 117736313 A CN117736313 A CN 117736313A
Authority
CN
China
Prior art keywords
rbd
monoclonal antibody
variable region
pcr
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311018647.2A
Other languages
Chinese (zh)
Inventor
韩晓建
王应明
胡超
李婷婷
王建为
李胜龙
金艾顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Medical University
Original Assignee
Chongqing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Medical University filed Critical Chongqing Medical University
Priority to CN202311018647.2A priority Critical patent/CN117736313A/en
Publication of CN117736313A publication Critical patent/CN117736313A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/577Immunoassay; Biospecific binding assay; Materials therefor involving monoclonal antibodies binding reaction mechanisms characterised by the use of monoclonal antibodies; monoclonal antibodies per se are classified with their corresponding antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/165Coronaviridae, e.g. avian infectious bronchitis virus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2469/00Immunoassays for the detection of microorganisms
    • G01N2469/10Detection of antigens from microorganism in sample from host
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention belongs to the technical field of monoclonal antibodies, and particularly discloses a novel coronavirus RBD specific monoclonal antibody and application thereof. The invention has important scientific significance and application prospect for the prevention, clinical treatment and research and development of diagnostic reagents of diseases caused by novel coronavirus SARS-CoV-2.

Description

New coronavirus RBD specific monoclonal antibody and application
The application is a divisional application of patent with application date 2020.08.19, application number 2022105649661. X and patent name of new coronavirus RBD specific monoclonal antibody and application.
Technical Field
The invention belongs to the technical field of monoclonal antibodies, and particularly relates to a novel coronavirus RBD specific monoclonal antibody and application thereof.
Background
Antibodies are immunoglobulin molecules composed of four polypeptide chains, including two heavy chains (H chains) and two light chains (L chains). The H chain consists of a heavy chain variable region (VH) and a heavy chain constant region consisting of three regions CH1, CH2 and CH 3. The L chain consists of an L chain variable region (VL) and a light chain constant region consisting of a CL region. VH and VL can be further divided into hypervariable regions called Complementarity Determining Regions (CDRs) and conserved regions called Framework Regions (FR) alternating.
The current research finds that: the novel coronavirus (SARS-CoV-2) has four major structural proteins, spike protein (S protein), nucleocapsid protein (N protein), membrane protein (M protein) and envelope protein (E protein), respectively, wherein the S protein has two subunits: s1 and S2, receptor Binding Sites (RBDs) are located on the S1 subunit, whose primary function is to recognize host cell surface receptors, mediating fusion with host cells.
There is no specific drug targeted therapy against the new pathogen covd-19 at present, and vaccine development is still required. The plasma of the recently cured discharged patient contains high-concentration specific antigen neutralizing antibodies, and after the high-concentration specific antigen neutralizing antibodies are input into the patient, the novel coronavirus can be neutralized to mediate effective immune response, so that the recovery-period plasma is expected to provide effective treatment means for curing patients infected with the novel coronavirus, the death rate is reduced, and the life safety of the patient is ensured.
The chinese patent application publication No. CN111303280a discloses a fully human monoclonal antibody against SARS-CoV-2 with high neutralizing activity, which provides a fully human monoclonal antibody with a recognition region of S1 non-RBD region, but since the invasion of a new coronavirus into host cells is bound to ACE2 of the host cells by RBD, the blocking effect of the fully human monoclonal antibody obtained by the above patent against the virus is limited, and the above patent is an antibody cDNA obtained by labeling plasma cells, but the memory B cells react rapidly after activation compared to the plasma cells, so that the memory B cells can elicit a faster and stronger humoral immune response than the primary reaction, and the humoral immune response elicited by the plasma cells is limited.
Disclosure of Invention
The object of the present invention is to provide a novel coronavirus RBD-specific monoclonal antibody and use directed against RBD and capable of eliciting a more intense humoral immune response.
In order to achieve the aim, the invention provides a novel coronavirus RBD specific monoclonal antibody, in particular to a monoclonal antibody with the heavy chain variable region amino acid sequence shown in SEQ ID NO. 1; the amino acid sequence of the light chain variable region can be shown as SEQ ID NO. 2 (monoclonal antibody 11-CQTS 011). The amino acid sequence of the heavy chain variable region can be also shown as SEQ ID NO. 3; the amino acid sequence of the light chain variable region can also be shown as SEQ ID NO. 4 (monoclonal antibody 12-CQTS 012). The amino acid sequence of the heavy chain variable region can be also shown as SEQ ID NO. 5; the amino acid sequence of the light chain variable region can also be shown as SEQ ID NO. 6 (monoclonal antibody 13-CQTS 013). The amino acid sequence of the heavy chain variable region can be also shown as SEQ ID NO. 7; the light chain variable region amino acid sequence is also shown in SEQ ID NO. 8 (mab 14-CQTS 014). The amino acid sequence of the heavy chain variable region can also be shown as SEQ ID NO. 9; the amino acid sequence of the light chain variable region can also be shown as SEQ ID NO. 10 (monoclonal antibody 15-CQTS 015). The amino acid sequence of the heavy chain variable region can be also shown as SEQ ID NO. 11; the amino acid sequence of the light chain variable region can also be shown as SEQ ID NO. 12 (monoclonal antibody 16-CQTS 016). The amino acid sequence of the heavy chain variable region can also be shown as SEQ ID NO. 13; the amino acid sequence of the light chain variable region can also be shown as SEQ ID NO. 14 (monoclonal antibody 17-CQTS 017). The amino acid sequence of the heavy chain variable region can be also shown as SEQ ID NO. 15; the light chain variable region amino acid sequence may also be as shown in SEQ ID NO. 16 (mab 18-CQTS 018). The amino acid sequence of the heavy chain variable region can be also shown as SEQ ID NO. 17; the amino acid sequence of the light chain variable region can also be shown as SEQ ID NO. 18 (mab 19-CQTS 019). The amino acid sequence of the heavy chain variable region can also be shown as SEQ ID NO. 19; the amino acid sequence of the light chain variable region can also be shown as SEQ ID NO. 20 (mab 20-CQTS 020).
The invention also provides the application of the novel coronavirus RBD specific monoclonal antibody in preparing a reagent or vaccine or medicament for detecting or diagnosing SARS-CoV-2, wherein the medicament comprises the novel coronavirus RBD specific monoclonal antibody and pharmaceutically acceptable excipient, diluent or carrier; nucleic acid molecules encoding the novel coronavirus RBD specific monoclonal antibodies are also provided; also provided are expression cassettes, recombinant vectors, recombinant bacteria or transgenic cell lines comprising the above nucleic acid molecules; also provides the application of the expression cassette, the recombinant vector, the recombinant bacterium or the transgenic cell line in preparing products.
The invention also provides a product comprising the novel coronavirus RBD specific monoclonal antibody; the product uses are any one of the following (b 1) - (b 4): (b 1) binding to the novel coronavirus SARS-CoV-2; (b 2) detecting the binding of the novel coronavirus SARS-CoV-2; (b 3) binding to the S protein of the novel coronavirus SARS-CoV-2; (b 4) detecting the S protein of the novel coronavirus SARS-CoV-2.
Preferably, the monoclonal antibodies specific to RBD of the novel coronavirus are prepared by sorting RBD specific memory B cells and obtaining cDNA of the variable region of the antibody by mRNA of the RBD specific memory B cells.
The principle and the beneficial effects of the invention are as follows:
(1) Compared with the monoclonal antibody aiming at the S1 non-RBD region, the monoclonal antibody provided by the invention combines with RBD, and provides wider application value for screening antibody medicines, diagnosing, preventing and treating new coronaries pneumonia.
(2) The monoclonal antibody provided by the invention is obtained by sorting RBD specific memory B cells, and compared with the prior art by sorting plasma cells, the monoclonal antibody prepared by the invention can trigger stronger humoral immune response. In addition, the invention only carries out subsequent RT-PCR, nested PCR and antibody function analysis aiming at RBD specific memory B cells, thereby greatly improving the specific binding capacity of monoclonal antibodies and RBD.
Drawings
FIG. 1 is a diagram of cell sorting using flow cytometry to analyze memory B cells;
FIG. 2 is a diagram of cell sorting using flow cytometry to analyze RBD specific memory B cells;
FIG. 3 is a gel electrophoresis diagram of a single cell antibody gene PCR product;
FIG. 4 is a diagram of agarose gel electrophoresis after PCR amplification of an antibody gene expression cassette comprising a CMV promoter, WPRE-gamma or WPRE-kappa element;
FIG. 5 is a graph of the experimental results of RBD specificity.
Detailed Description
The following description of the embodiments of the present invention will be made clearly and fully with reference to the accompanying drawings, in which it is evident that the embodiments described are only some, but not all embodiments of the invention. All other embodiments, which can be made by those skilled in the art based on the embodiments of the invention without making any inventive effort, are intended to be within the scope of the invention.
Example 1
The embodiment provides a novel coronavirus RBD specific monoclonal antibody, and the amino acid sequence of a heavy chain variable region is shown as SEQ ID NO. 1; the amino acid sequence of the light chain variable region is shown as SEQ ID NO. 2.
The embodiment also provides the application of the novel coronavirus RBD specific monoclonal antibody in preparing reagents or medicines for detecting or diagnosing SARS-CoV-2.
In practice, the RBD-specific monoclonal antibody of the present example can be used to prepare a nucleic acid molecule, or to prepare an expression cassette, recombinant vector, recombinant bacterium or transgenic cell line comprising the nucleic acid molecule, or to prepare a pharmaceutical composition comprising the novel RBD-specific monoclonal antibody of coronavirus described above and a pharmaceutically acceptable excipient, diluent or carrier.
When applied, the relevant product of the RBD-specific monoclonal antibody preparation obtained in this example can have the uses as any one of the following (b 1) to (b 4): (b 1) binding to the novel coronavirus SARS-CoV-2; (b 2) detecting the binding of the novel coronavirus SARS-CoV-2; (b 3) binding to the S protein of the novel coronavirus SARS-CoV-2; (b 4) detecting the S protein of the novel coronavirus SARS-CoV-2.
Examples 2 to 10
Examples 2-10 differ from example 1 in that: the variable region amino acid sequences of the RBD specific monoclonal antibodies are different, and the variable region amino acid sequences of examples 2-10 are shown in the following table:
the RBD-specific monoclonal antibodies provided in examples 1-10 above were all obtained by the following method: firstly, single RBD specific memory B cells are obtained from peripheral blood of a new patient suffering from coronary pneumonia, then mRNA of the RBD specific memory B cells is obtained, then an antibody variable region gene expression cassette is constructed through RT-PCR and nested PCR, then the antibody variable region gene expression cassette is transduced into 293T cells to express antibodies, the supernatant is collected, the RBD specificity of the supernatant is detected by an ELISA method, and the RBD specific monoclonal antibodies are obtained through screening.
The method specifically comprises the following steps:
s1, collecting peripheral blood of a plurality of new patients suffering from coronary pneumonia, separating to obtain PBMC, and freezing in a refrigerator at-80 ℃ for later use.
S2, firstly removing Dead cells of PBMC obtained in the step S1 by adopting a Dead Dye (Dead Dye), and then adopting CD19, mIg-G, mIg-D and S-RBD to Dye and mark the memory B cells with high binding capacity and specificity to the living RBD in the PBMC, so as to screen out the memory B cells specific to the RBD; the specific memory B cells are sorted on a 96-well plate by using a flow cell sorter, and each well is internally provided with one specific memory B cell, and the specific memory B cells are frozen in a refrigerator at the temperature of minus 80 ℃ for standby.
Specifically, the preferred concentration range for the Dye of the present example is 1-2. Mu.g/mL, and the preferred concentration for the Dye of the present example is 1.5. Mu.g/mL; CD19 is a B cell marker produced by Biolegend and is stained at a concentration ranging from 1 to 2. Mu.g/mL, with a concentration of 1.5. Mu.g/mL being preferred for the staining of CD19 in this example. mIg-G is a B cell surface receptor produced by Biolegend and is stained at a concentration ranging from 1 to 2. Mu.g/mL, with mIg-G being preferred in this example at a concentration of 1.5. Mu.g/mL; mIg-D is a B cell surface receptor produced by Biolegend, and the concentration range is 1-2 μg/mL when staining, and the preferred concentration of mIg-D in this example is 1.5 μg/mL when staining; the novel coronavirus produced by S-RBD is a protein receptor domain and is stained at a concentration ranging from 1 to 2. Mu.g/mL, with the preferred concentration for S-RBD staining of this example being 1.5. Mu.g/mL.
Sorting of RBD-specific memory B cells by flow cytometry cell sorting of PBMC by CD19, mIg-G, mIg-D and S-RBD cell sorting charts of B cells with specific memory for S-RBD are shown in FIGS. 1 and 2, wherein Batch ID 0428, 0505, 0522, 0528 in FIG. 2 are screening batches. The principle of screening the memory B cells specific to RBD by adopting CD19, mIg-G, mIg-D and S-RBD in the embodiment is as follows: PBMC were stained with DedDye, B cell marker CD19, memory B cell markers mIg-G positive and mIg-D negative and memory B cells expressing RBD specific IgG, and then CD19 cell populations were divided from the cell populations using a flow cytometer, followed by dividing mIg-G from the CD19 positive cell populations + mIg-D - Cell populations, again from mIg-G + mIg-D - The cell population divides RBD positive memory B cells, and then the RBD positive memory B cells are sorted by a flow cell sorter.
S3, sorting to obtain mRNA of a single RBD specific memory B cell, and amplifying by RT-PCR to obtain the antibody variable region cDNA. Specifically, when the RT-PCR is used for amplifying the cDNA of the antibody variable region, a general Leader (see a primer sequence table I and a primer sequence table II) is designed at the front section of the primer designed in the embodiment, so that the amplification rate of the antibody gene is effectively improved, and the experimental result is shown in figure 3.
S4, amplifying the cDNA of the antibody variable region obtained by the S1-S3 by adopting nested PCR, and constructing an antibody variable region gene expression cassette.
S3 and S4 are performed in total by the following six parts: (1) extracting mRNA of RBD specific memory B cells; (2) single cell mRNA Reverse Transcription (RT); (3) adding a G tail (TDT); (4) first round PCR (1 st PCR); (5) a second round of PCR (2 nd PCR); (6) BCR-ORFPCR amplification construction of a gene expression cassette; (7) CMV, WPRE-gamma/kappa/l fragment amplification and CMV, BCR-V gamma/kappa/l ((6) product), WPRE-gamma/kappa/l overlap PCR (Overlap PCR) pre-ligation; (8) amplification of BCR-gamma ORF, BCR-kappa ORF, and BCR-lPCR.
The preparation and reaction conditions of each part of reaction liquid are as follows:
(1) By Dynabeads TM mRNA DIRECT TM Single-cell mRNA extraction is carried out by using a Purification Kit (Thermo Fisherscientific), and the method specifically comprises the following steps:
(1) and (3) centrifuging: taking out the 96-well plate with single RBD specific memory B cells from the refrigerator at-80 ℃, and centrifuging at 600 Xg for 30s to make the cells centrifuged at the bottom of the well;
(2) cleaning: taking out Dynabeads oligo (dT) 25 microsphere bottles, uniformly vortex and mix, sucking enough microspheres according to 2 μl/hole, placing the microspheres on a magnet block, standing for 30s, discarding the supernatant, and re-suspending with 500 μl of Lysis Buffer;
(3) preparing: adding 9 μl/well of Lysis Buffer into a 50mL centrifuge tube, adding the 500 μl microsphere suspension, and blowing with a gun;
(4) and (5) subpackaging: dispensing the microspheres with eight tubes, then adding them to the cell plate at 9 μl/well using a lance;
(5) and (3) rinsing: pasting a film on a 96-hole plate, and then rinsing the periphery of the pipe wall for 2 cycles;
(6) incubation: standing at room temperature for 5min to make RBD specificitymRNA from memory B cells was fully released and bound to the microspheres, after incubation, the microspheres were centrifuged at 600 Xg transiently and at the bottom of the wells. Place 96-well plates in DynaMag TM -96side Magnet magnetic plates, and removing the supernatant with a gun;
(7) wash A cleaning: adding a Washing Buffer A according to 8 μl/well, removing the plate 7-8 times, washing the microspheres thoroughly, and discarding the supernatant;
(8) wash B cleaning: wash Buffer B was added at 8. Mu.l/well and the plate was run back and forth 7-8 times to allow the microspheres to wash well, the supernatant was discarded, and then a pre-prepared Reverse Transcription (RT) reaction was added at 10. Mu.l/well. Reagent formulation and reaction conditions are described in (2) below.
(2) Reverse Transcription (RT) (10 μl system): the reagents required to be formulated are shown in table 1 below.
Reagent name Volume of
DEPC-H 2 O 4.5μl
5×primerscript Buffer 2.0μl
2.5mM dNTP 2.0μl
RNase Inhibitor 1μl
Sample beads
PrimerScript Ⅱ RTase 0.5μl
Total volume of 10μl
Reaction conditions: 42℃for 60min (mixing every 20 min).
After completion of the reaction, the 96-well plate was subjected to instantaneous centrifugation at 600 Xg, and then the 96-well plate was placed in DynaMag TM The supernatant was pipetted off on a 96side Magnet magnetic plate, and then 10. Mu.l/well of the pre-formulated TDT reaction solution was added, and the reagent formulation and reaction conditions were as described in (3) below.
(3) Add tail G (TDT) (10. Mu.l system): the reagents required to be formulated are shown in table 2 below.
Reagent name Volume of
H 2 O 6.4μl
5×TdT buffer 2.0μl
10mM dGTP 0.5μl
0.1%BSA 1.0μl
Sample beads
TdT 0.1μl
Total volume of 10μl
Reaction conditions: 37℃for 40min (mixing every 20 min).
At the end of the reaction, the 96-well plate was transiently centrifuged at 600 Xg and then placed in DynaMag TM The supernatant was pipetted off on a 96side Magnet magnetic plate, and then 10. Mu.l/well of the pre-formulated first round PCR (1 st PCR) reaction solution was added, and the reagent formulation and reaction conditions were as described in (4) below.
(4) 1st PCR (10. Mu.l system) (primer sequence see primer sequence Listing): the reagents required to be formulated are shown in table 3 below:
reagent name Volume of
H 2 O 1.9μl
2×GC Buffer 5μl
2.5mM dNTP 1μl
FP:AP3-dC(10μM) 0.5μl
RP1:Cg-1st(10μM) 0.5μl
RP2:Ck-1st(10μM) 0.5μl
RP3:CI-RT(10μM) 0.5μl
PrimesTAR 0.1μl
sample beads
Total volume of 10μl
Based on the PCR principle, the experimental reaction conditions of the 1st PCR are as follows: (1) pre-denaturation at 95℃for 3min; (2) denaturation at 95℃for 15sec, annealing at 60℃for 5sec, extension at 72℃for 1min,30-35cycles, 30cycles being preferred in this example; (3) the extension was carried out at 72℃for 5 minutes and stored at 4 ℃.
(5) Second round PCR (2 nd PCR) (10. Mu.l System) (primer sequence see primer sequence Listing first and primer sequence Listing second): the reagents required to be formulated are shown in table 4 below:
reagent name Volume of
H 2 O 1.5μl
2×GC Buffer 5μl
2.5mM dNTP 1μl
FP:MAC-AP3/AP3(10μM) 0.5μl
RP:Cg-nest/K20/CI-nest(10μM) 0.5μl
PrimesTAR 0.5μl
sample 1μl
Total volume of 10μl
Based on the PCR principle, the experimental reaction conditions of 2nd PCR are as follows: (1) pre-denaturation at 95℃for 3min; (2) denaturation at 95℃for 15sec, annealing at 60℃for 5s, extension at 72℃for 1min,30-35cycles, 35cycles being preferred in this example; the extension was carried out at 72℃for 5 minutes and stored at 4 ℃.
After the PCR is finished: mu.l of each well was subjected to 1.5% agarose gel electrophoresis. The cell wells paired with either Kappa or Lamada chains were sequenced.
(6) Amplification and construction of antibody expression cassette (BCR-ORF): PCR amplified promoter region (CMV promoter), WPRE-gamma (antibody gamma chain) and WPRE-kappa (antibody kappa chain), and PCR amplified system is shown in Table 5 below.
The PCR amplification conditions were: (1) pre-denaturation at 95℃for 3min; (2) denaturation at 95℃for 15sec, annealing at 56℃for 15sec, extension at 72℃for 1min,30cycles; (3) the extension was carried out at 72℃for 5 minutes and stored at 12 ℃.
(7) CMV, WPRE-gamma/kappa/l fragment amplifications and pre-ligation of CMV, BCR-V gamma/kappa/l, WPRE-gamma/kappa/l overlap PCR (Overlap PCR), the experimental system is shown in Table 6 below.
The PCR amplification conditions were: pre-denaturation at 95℃for 3min; denaturation at 95℃for 15sec, annealing at 50℃for 15sec, extension at 72℃for 1.5min,10cycles; the extension was carried out at 72℃for 5 minutes and stored at 12 ℃.
(8) BCR-gamma ORF, BCR-kappa ORF, BCR-l PCR amplification: the experimental system is shown in table 7 below.
PCR amplification procedure: pre-denaturation at 95℃for 3min; denaturation at 95℃for 15sec, annealing at 58℃for 15sec, extension at 72℃for 1.5min,30cycles; the extension was carried out at 72℃for 5 minutes and stored at 12 ℃.
After amplification, agarose gel electrophoresis is adopted, gel imaging analysis is carried out to obtain whether the size of the antibody variable region gene is correct, the experimental result is shown in figure 4, the Marker is at the middle position, and the band is at 5000 bp.
BCR-gamma ORF and BCR-kappa/ORF ethanol precipitation: respectively taking 30 mu l of PCR products of the BCR-gamma ORF and the BCR-kappa ORF, placing the PCR products in 8 connecting tubes, adding 120 mu l of absolute ethyl alcohol and 6 mu l of sodium acetate solution, fully and uniformly mixing, and standing at-80 ℃ for 30min;10000rpm, centrifuging for 20min, discarding supernatant, sequentially rinsing with 200 μl of 70% ethanol and absolute ethanol, volatilizing at 56 deg.C, adding 40 μl of sterile water, shaking, dissolving precipitate, and detecting antibody variable region gene concentration.
The Leader primers used in S3 and S4 are shown in the following primer sequence table I:
the J-region primers used in S3 and S4 are described in the following primer sequence Listing II:
primerID sequence
IGHJ_01 GATGGGCCCTTGGTGGAGGGTGAGGAGACGGTGACCAGGGTGCCCTGGCCCCAGT
IGHJ_02 GATGGGCCCTTGGTGGAGGGTGAGGAGACAGTGACCAGGGTGCCACGGCCCCAGA
IGHJ_03 GATGGGCCCTTGGTGGAGGGTGAAGAGACGGTGACCATTGTCCCTTGGCCCCAGA
IGHJ_04 GATGGGCCCTTGGTGGAGGGTGAGGAGACGGTGACCGTGGTCCCTTGCCCCCAGA
IGKJ_01 GATGGTGCAGCCACAGTTCGTTTGATTTCCACCTTGGTCCCTTGGCCGAACGTCC
IGKJ_02 GATGGTGCAGCCACAGTTCGTTTGATTTCCACCTTGGTCCCTTGGCCGAACGTCC
IGKJ_03 GATGGTGCAGCCACAGTTCGTTTGATATCCACTTTGGTCCCAGGGCCGAAAGTGA
IGKJ_04 GATGGTGCAGCCACAGTTCGTTTGATCTCCACCTTGGTCCCTCCGCCGAAAGTGA
IGKJ_05 GATGGTGCAGCCACAGTTCGTTTAATCTCCAGTCGTGTCCCTTGGCCGAAGGTGA
IGLJ_01 GGGGCAGCCTTGGGCTGACCTAGGACGGTGACCTTGGTCCCAGTTCCGAAGACAT
IGLJ_02 GGGGCAGCCTTGGGCTGACCTAGGACGGTCAGCTTGGTCCCTCCGCCGAATACCA
IGLJ_03 GGGGCAGCCTTGGGCTGACCTAAAATGATCAGCTGGGTTCCTCCACCAAATACAA
IGLJ_04 GGGGCAGCCTTGGGCTGACCTAGGACGGTCAGCTCGGTCCCCTCACCAAACACCC
IGLJ_05 GGGGCAGCCTTGGGCTGACCTAGGACGGTCAGCTCCGTCCCCTCACCAAACACCC
IGLJ_06 GGGGCAGCCTTGGGCTGACCGAGGACGGTCACCTTGGTGCCACTGCCGAACACAT
IGLJ_07 GGGGCAGCCTTGGGCTGACCGAGGACGGTCAGCTGGGTGCCTCCTCCGAACACAG
IGLJ_08 GGGGCAGCCTTGGGCTGACCGAGGGCGGTCAGCTGGGTGCCTCCTCCGAACACAG
s5, transferring the antibody variable region gene expression cassette obtained in the S4 into 293T cells for 48 hours to express the antibody, collecting supernatant, detecting RBD specificity of the supernatant by an ELISA method, and screening RBD specific fully human monoclonal antibodies.
(A) Antigen was diluted with PBS (final concentration 2. Mu.g/mL), 10. Mu.l/well, coated 384 well ELISA plates overnight at 4℃or coated for 2h at 37℃in this example, preferably overnight at 4 ℃. NOTE: after the addition, the liquid was kept at the bottom by instantaneous centrifugation.
The experimental system is shown in table 8 below:
reagent name Goods number Original concentration Final concentration Dilution ratio
SARS-COV-2 RBD Cat:40592-V08H 200μg/mL 2μg/mL 1:100
Goat pab to Hu IgG-ALP Cat:ab97221 1mg/mL 2μg/mL 1:500
(B) Formulation of PBST (0.05%Tween 20,Cat#TB220): 1L of PBS was added with 0.5mL of Tween 20;
the PBST machine washed the plates (Thermoscientific wellwash versa) or hand washed (the machine washed plates still had to be manually clapped/centrifuged for 1min using a microplate centrifuge (MPC-P25)) to make the plates invisible with water and air bubbles.
Closing: mu.l of 5% BSA (BioFroxx, cat.NO:4240GR 100) (PBST formulation) was added to the above washed plates and incubated in an incubator at 37℃for 1h. PBST machine washing the plates or hand washing.
(C) And (5) adding samples and standard substances. Wherein, standard substance: the 10. Mu.l/well stock concentration was 1. Mu.g/mL, and the gradient dilutions were 250ng/mL, 125ng/mL, 62.5ng/mL, 31.25ng/mL, 15.63ng/mL, 7.81ng/mL, 3.9ng/mL, and 1.95ng/mL. (blocking fluid dilution); sample: cell supernatants transfected with antibody genes. Negative control/blank wells: blocking solution 10. Mu.l/well.
Incubate at 37℃for 30min. PBST machine washing the plates or hand washing.
(D) The secondary antibody was added at a concentration of 10. Mu.l/well and then incubated at 37℃for 30min.
The experimental system is shown in table 9 below:
second antibody name Goods number Original concentration Final concentration Dilution ratio
goat-anti-human IgG-ALP A18808 1.5mg/ml 0.3μg/ml 1:5000
Goat pab to Hu IgG-ALP Ab98532 0.5mg/ml 0.25μg/ml 1:2000
PBST machine washing the plates or hand washing. PNPP (disodium p-nitrophenylphosphate) at 10. Mu.l/well was used (Thermoscientific Muttiskan GO) to detect OD (450 mm) values of 5min,10 min, 15min, 20min, 25min, 30min, 35min, 40min, 45min, 50min, 55min and 60 min. 50mg PNPP powder (Thermo, prod # 34045) +40mL ddH 2 O+10mL of Diethanol aminesubstrate Buffer (5X), PNPP was stored at 4℃in the dark.
The experimental results are shown in FIG. 5, and the OD value of FIG. 5 is greater than 0.1.
The foregoing description of the preferred embodiments of the present invention is merely illustrative, and not restrictive, of the invention. It will be appreciated by those skilled in the art that many variations, modifications and even equivalent changes may be made thereto within the spirit and scope of the invention as defined in the appended claims, but are still within the scope of the invention.

Claims (2)

1. The novel coronavirus RBD specific monoclonal antibody is characterized in that the amino acid sequence of the heavy chain variable region can be further shown as SEQ ID NO. 17; the amino acid sequence of the light chain variable region can also be shown as SEQ ID NO. 18.
2. The novel coronavirus RBD specific monoclonal antibody is characterized in that the amino acid sequence of the heavy chain variable region can be further shown as SEQ ID NO. 19; the amino acid sequence of the light chain variable region can also be shown as SEQ ID NO. 20.
CN202311018647.2A 2020-08-19 2020-08-19 New coronavirus RBD specific monoclonal antibody and application Pending CN117736313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311018647.2A CN117736313A (en) 2020-08-19 2020-08-19 New coronavirus RBD specific monoclonal antibody and application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010839864.8A CN111909263B (en) 2020-08-19 2020-08-19 New coronavirus RBD specific monoclonal antibody and application
CN202311018647.2A CN117736313A (en) 2020-08-19 2020-08-19 New coronavirus RBD specific monoclonal antibody and application

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202010839864.8A Division CN111909263B (en) 2020-08-19 2020-08-19 New coronavirus RBD specific monoclonal antibody and application

Publications (1)

Publication Number Publication Date
CN117736313A true CN117736313A (en) 2024-03-22

Family

ID=73279100

Family Applications (7)

Application Number Title Priority Date Filing Date
CN202311018641.5A Pending CN118085068A (en) 2020-08-19 2020-08-19 New coronavirus RBD specific monoclonal antibody and application
CN202311018623.7A Active CN116813760B (en) 2020-08-19 2020-08-19 New coronavirus RBD specific monoclonal antibody and application
CN202210564961.XA Active CN114920832B (en) 2020-08-19 2020-08-19 New coronavirus RBD specific monoclonal antibody and application
CN202311018647.2A Pending CN117736313A (en) 2020-08-19 2020-08-19 New coronavirus RBD specific monoclonal antibody and application
CN202210906254.4A Pending CN115925896A (en) 2020-08-19 2020-08-19 Novel coronavirus RBD specific monoclonal antibody and application
CN202010839864.8A Active CN111909263B (en) 2020-08-19 2020-08-19 New coronavirus RBD specific monoclonal antibody and application
CN202311018625.6A Active CN117003862B (en) 2020-08-19 2020-08-19 New coronavirus RBD specific monoclonal antibody and application

Family Applications Before (3)

Application Number Title Priority Date Filing Date
CN202311018641.5A Pending CN118085068A (en) 2020-08-19 2020-08-19 New coronavirus RBD specific monoclonal antibody and application
CN202311018623.7A Active CN116813760B (en) 2020-08-19 2020-08-19 New coronavirus RBD specific monoclonal antibody and application
CN202210564961.XA Active CN114920832B (en) 2020-08-19 2020-08-19 New coronavirus RBD specific monoclonal antibody and application

Family Applications After (3)

Application Number Title Priority Date Filing Date
CN202210906254.4A Pending CN115925896A (en) 2020-08-19 2020-08-19 Novel coronavirus RBD specific monoclonal antibody and application
CN202010839864.8A Active CN111909263B (en) 2020-08-19 2020-08-19 New coronavirus RBD specific monoclonal antibody and application
CN202311018625.6A Active CN117003862B (en) 2020-08-19 2020-08-19 New coronavirus RBD specific monoclonal antibody and application

Country Status (2)

Country Link
CN (7) CN118085068A (en)
WO (1) WO2022037616A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020340881A1 (en) 2020-04-02 2021-10-21 Regeneron Pharmaceuticals, Inc. Anti-SARS-CoV-2-spike glycoprotein antibodies and antigen-binding fragments
CN116057069A (en) 2020-06-03 2023-05-02 瑞泽恩制药公司 Methods of treating or preventing SARS-CoV-2 infection and COVID-19 using anti-SARS-CoV-2 spike glycoprotein antibodies
CN115925897A (en) * 2020-08-19 2023-04-07 重庆医科大学 Novel coronavirus RBD specific monoclonal antibody and application
CN115925898A (en) * 2020-08-19 2023-04-07 重庆医科大学 Novel coronavirus RBD specific monoclonal antibody and application
CN118085068A (en) * 2020-08-19 2024-05-28 重庆医科大学 New coronavirus RBD specific monoclonal antibody and application
WO2022102744A1 (en) * 2020-11-13 2022-05-19 株式会社ハカレル Antibody against spike protein of sars-cov-2
WO2022112392A1 (en) * 2020-11-26 2022-06-02 Memo Therapeutics Ag Anti-sars-cov-2 antibody molecules
WO2022179561A1 (en) * 2021-02-24 2022-09-01 The University Of Hong Kong Neutralizing antibodies against covid-19 and methods of use thereof
CN113512113B (en) * 2021-08-03 2024-07-05 浙江大学医学院附属第一医院 Humanized broad-spectrum high-neutralization activity anti-novel coronavirus monoclonal antibody and application thereof
CN113388030B (en) * 2021-08-17 2021-11-23 上海浙江大学高等研究院 Monoclonal antibody 32C7, and preparation method and application thereof
CN113388031B (en) * 2021-08-17 2021-11-09 上海浙江大学高等研究院 Monoclonal antibody 35B5, and preparation method and application thereof
TW202337497A (en) 2022-02-18 2023-10-01 中國大陸商重慶明道浩悅生物科技有限公司 Intranasal formulations and anti-sars-cov-2-spike protein antibodies

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10729735B1 (en) * 2016-09-14 2020-08-04 Phoenix Biotechnology, Inc. Method and compostitions for treating coronavirus infection
CN111187354B (en) * 2020-02-20 2020-11-27 北京新创生物工程有限公司 Novel coronavirus (SARS-CoV-2) IgM/IgG antibody detection kit
CN111153991A (en) * 2020-02-26 2020-05-15 北京博奥森生物技术有限公司 Human SARS-CoV-2 monoclonal antibody and its preparation method and use
CN113354729B (en) * 2020-03-06 2022-06-07 深圳市第三人民医院 Monoclonal antibody for resisting novel coronavirus and application thereof
GB202003632D0 (en) * 2020-03-12 2020-04-29 Harbour Antibodies Bv SARS-Cov-2 (SARS2, COVID-19) antibodies
CN114163523B (en) * 2020-03-17 2023-07-18 北京凯因科技股份有限公司 Single-domain antibody for novel coronavirus and application thereof
CN111303280B (en) * 2020-03-22 2022-01-07 中国人民解放军军事科学院军事医学研究院 High-neutralization-activity anti-SARS-CoV-2 fully human monoclonal antibody and application
CN111856027B (en) * 2020-04-16 2022-05-10 中国科学院苏州纳米技术与纳米仿生研究所 New coronavirus antibody detection kit suitable for examination of patients without obvious symptoms
CN111505285A (en) * 2020-04-27 2020-08-07 东莞博识生物科技有限公司 SARS-CoV-2 detecting chip and its application
CN112010966B (en) * 2020-05-15 2021-03-19 潍坊医学院 Monoclonal antibody aiming at non-RBD (radial basis function) region of new coronavirus spike protein and application thereof
RU2723008C9 (en) * 2020-05-19 2021-02-09 федеральное государственное бюджетное учреждение «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи» Министерства здравоохранения Российской Федерации Method for producing chinese hamster ovary cell strain, producer of sars-cov-2 virus recombinant rbd protein, chinese hamster ovary cell strain, producer of recombinant rbd protein of sars-cov-2 virus, method of producing recombinant rbd protein of sars-cov-2 virus, a test system for enzyme-linked immunosorbent assay of human blood serum or plasma and its use
WO2022036788A1 (en) * 2020-08-19 2022-02-24 重庆医科大学 Novel coronavirus rbd specific monoclonal antibody and linear epitope and application thereof
CN115925898A (en) * 2020-08-19 2023-04-07 重庆医科大学 Novel coronavirus RBD specific monoclonal antibody and application
CN111925441B (en) * 2020-08-19 2022-10-04 重庆医科大学 New coronavirus RBD specific monoclonal antibody and application
CN118085068A (en) * 2020-08-19 2024-05-28 重庆医科大学 New coronavirus RBD specific monoclonal antibody and application

Also Published As

Publication number Publication date
CN111909263A (en) 2020-11-10
CN117003862A (en) 2023-11-07
CN111909263B (en) 2022-10-11
CN114920832A (en) 2022-08-19
CN116813760B (en) 2024-06-25
CN117003862B (en) 2024-08-20
WO2022037616A1 (en) 2022-02-24
CN116813760A (en) 2023-09-29
CN114920832B (en) 2023-10-13
CN115925896A (en) 2023-04-07
CN118085068A (en) 2024-05-28

Similar Documents

Publication Publication Date Title
CN115304671B (en) New coronavirus RBD specific monoclonal antibody and application thereof
CN116813760B (en) New coronavirus RBD specific monoclonal antibody and application
CN114920833B (en) New coronavirus RBD specific monoclonal antibody and application
CN115340602B (en) New coronavirus RBD specific monoclonal antibody and application
CN111925440B (en) New coronavirus RBD specific monoclonal antibody and application
CN115925900B (en) Novel coronavirus RBD specific monoclonal antibody and application
CN117069832B (en) New coronavirus RBD specific monoclonal antibody and application
CN111925441B (en) New coronavirus RBD specific monoclonal antibody and application
CN111925443B (en) New coronavirus RBD specific monoclonal antibody and application
CN115477698B (en) RBD specific monoclonal antibody and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination