CN117720670B - Recombinant protein IIIAIIB-IIIAIIB with self-assembly performancerQTYApplication and application thereof - Google Patents
Recombinant protein IIIAIIB-IIIAIIB with self-assembly performancerQTYApplication and application thereof Download PDFInfo
- Publication number
- CN117720670B CN117720670B CN202410130630.4A CN202410130630A CN117720670B CN 117720670 B CN117720670 B CN 117720670B CN 202410130630 A CN202410130630 A CN 202410130630A CN 117720670 B CN117720670 B CN 117720670B
- Authority
- CN
- China
- Prior art keywords
- iiiaiib
- rqty
- recombinant protein
- drug
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 title claims abstract description 84
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 title claims abstract description 84
- 238000001338 self-assembly Methods 0.000 title abstract description 7
- 239000003814 drug Substances 0.000 claims abstract description 65
- 229940079593 drug Drugs 0.000 claims abstract description 61
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 23
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 2
- 108090000623 proteins and genes Proteins 0.000 claims description 44
- 102000004169 proteins and genes Human genes 0.000 claims description 30
- 238000002360 preparation method Methods 0.000 claims description 8
- 238000012377 drug delivery Methods 0.000 claims description 5
- 239000013604 expression vector Substances 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 229920001184 polypeptide Polymers 0.000 claims description 4
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 4
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 4
- 239000002246 antineoplastic agent Substances 0.000 claims description 3
- 230000003115 biocidal effect Effects 0.000 claims description 3
- 241000894006 Bacteria Species 0.000 claims description 2
- 229940041181 antineoplastic drug Drugs 0.000 claims description 2
- 238000003259 recombinant expression Methods 0.000 claims description 2
- 102000008100 Human Serum Albumin Human genes 0.000 abstract description 14
- 108091006905 Human Serum Albumin Proteins 0.000 abstract description 14
- 150000001413 amino acids Chemical class 0.000 abstract description 10
- 230000035772 mutation Effects 0.000 abstract description 9
- 239000012634 fragment Substances 0.000 abstract description 7
- 239000000693 micelle Substances 0.000 description 29
- 239000000243 solution Substances 0.000 description 28
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 23
- 238000000034 method Methods 0.000 description 19
- 239000003153 chemical reaction reagent Substances 0.000 description 17
- 239000002105 nanoparticle Substances 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 14
- 238000011068 loading method Methods 0.000 description 14
- 239000002609 medium Substances 0.000 description 14
- 239000007788 liquid Substances 0.000 description 13
- 238000002835 absorbance Methods 0.000 description 11
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 10
- 229960004679 doxorubicin Drugs 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 102400000888 Cholecystokinin-8 Human genes 0.000 description 8
- 101800005151 Cholecystokinin-8 Proteins 0.000 description 8
- 239000003937 drug carrier Substances 0.000 description 8
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 8
- 239000006228 supernatant Substances 0.000 description 8
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 7
- 229960000723 ampicillin Drugs 0.000 description 7
- 239000001963 growth medium Substances 0.000 description 7
- 241000588724 Escherichia coli Species 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000005538 encapsulation Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 5
- 239000004202 carbamide Substances 0.000 description 5
- 230000003833 cell viability Effects 0.000 description 5
- 238000000502 dialysis Methods 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 210000003292 kidney cell Anatomy 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 108091008146 restriction endonucleases Proteins 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000004153 renaturation Methods 0.000 description 4
- 230000009182 swimming Effects 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 230000003013 cytotoxicity Effects 0.000 description 3
- 231100000135 cytotoxicity Toxicity 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000003000 inclusion body Anatomy 0.000 description 3
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 238000001742 protein purification Methods 0.000 description 3
- 239000012460 protein solution Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000001132 ultrasonic dispersion Methods 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 229940009456 adriamycin Drugs 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000008055 phosphate buffer solution Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 239000012137 tryptone Substances 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- COQLPRJCUIATTQ-UHFFFAOYSA-N Uranyl acetate Chemical compound O.O.O=[U]=O.CC(O)=O.CC(O)=O COQLPRJCUIATTQ-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000012296 anti-solvent Substances 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- -1 biochemistry Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Peptides Or Proteins (AREA)
Abstract
The invention belongs to the technical field of biological medicines, and particularly relates to a recombinant protein III A III B-III A III B rQTY with self-assembly performance and application thereof. The recombinant protein comprises a IIIAIIB repeating structural fragment in a type III structural domain of 2 human serum albumin, wherein the amino acid in the type 2 IIIAIIB structural fragment has mutation, specifically, the hydrophilic amino acid at positions 132, 139, 143, 144, 160, 183 and 197 is mutated to be hydrophobic.
Description
Technical Field
The invention belongs to the technical field of biological medicines, and particularly relates to a recombinant protein III A III B-III A III B rQTY with self-assembly performance and application thereof.
Background
The drug carrier material plays an important role in the research of improving the water solubility of the hydrophobic drug, the bioavailability of the drug, the controlled release and the slow release of the drug, the targeted delivery of the drug, the penetration of the drug through biological barriers (such as endothelial cell barriers, blood brain barriers and the like) and the like. The drug carrier constructed based on protein can effectively improve the bioavailability, water solubility, safety and the like of the drug, and can also effectively reduce the administration frequency, thereby reducing the pain of patients caused by frequent administration. In the preparation process of the traditional protein drug carrier, the aim of self-assembling into a stable drug carrier is achieved by adding a chemical induction reagent, adjusting the pH of a solution or modifying self-assembled polypeptide and the like. However, the self-assembled drug carrier constructed based on protein is easy to denature and inactivate after contacting with factors such as organic chemical reagent, pH change, high temperature and high pressure due to the nature of the protein, so that the protein loses the original biological activity, and the prepared protein self-assembled drug carrier has larger immunogenicity. When the protein self-assembled drug carrier enters the body in the modes of injection and the like, stronger immune response can be caused, and the safety of the drug is affected.
Human Serum Albumin (HSA) is the most abundant protein in human plasma and consists of 585 amino acid residues with a molecular weight of about 67KDa, and a single molecule conformation is in a "heart-shaped" structure, and is mainly divided into three domains i, ii, iii, each of which is in turn divided into two subdomains i.e. ia and ib, iia and iib, iiia and iiib. Because HSA sources are wide and have the characteristics of good biocompatibility and the like, the HSA is widely applied to the fields of medicine, biochemistry, drug carrier development and the like.
Chinese patent publication No. CN114249814A (20220329), entitled "albumin HSA-Hydrophoboic-IIIB with self-assembly properties" discloses a hydrophobic recombinant HSA protein with partial IIIB subdomain fragment. The average particle diameter of the nanoparticle formed by self-assembly of the recombinant protein is 86.7nm, and the drug loading rate reaches 19.26%. However, the pursuit of higher drug loading and stability in complex body fluid environments is a continuing goal of those skilled in the art.
In view of the foregoing, there is a need for new methods and strategies that complement the deficiencies of the prior art.
Disclosure of Invention
In view of the above, the present invention aims to provide a recombinant protein having a repeated structural unit of IIIAIIB-IIIAIIB rQTY and its application, and the specific technical scheme is as follows.
A recombinant protein IIIAIIB-IIIAIIB rQTY with repeated structural units is provided, and the amino acid sequence of the recombinant protein IIIAIIB-IIIAIIB rQTY is shown as SEQ ID NO. 1.
Further, the nucleotide sequence is shown as SEQ ID NO. 2.
Further, the recombinant protein IIIAIIB-IIIAIIB rQTY comprises a IIIAIIB repeat structural fragment in the 2 human serum albumin type III domain, wherein the amino acid in the 2 nd IIIAIIB structural fragment is mutated.
Further, the mutation is a mutation of hydrophilic amino acids 132, 139, 143, 144, 160, 183 and 197 in the 2 nd IIIA IIIB structural fragment to hydrophobic, specifically a mutation of threonine (T), glutamine (Q), threonine (T) and glutamine (Q) to valine (V), leucine (L), valine (V) and leucine (L), respectively.
A recombinant expression vector comprising the gene of the recombinant protein iiiaib-iiiaiib rQTY.
Preferably, the expression vector is a plasmid vector.
A recombinant bacterium expressing the recombinant protein IIIAIIB-IIIAIIB rQTY.
A nano micelle for delivering hydrophobic drugs is prepared from the recombinant protein IIIAIIB-IIIAIIB rQTY.
The application of the nano micelle in preparing a drug delivery carrier.
Further, the nanomicelle is used for carrying a hydrophobic drug, wherein the hydrophobic drug comprises a hydrophobic antitumor drug, a hydrophobic antibiotic, a hydrophobic polypeptide or a protein.
Further, the drug delivery carrier is in the form of injection.
Beneficial technical effects
1. Compared with the prior art, the recombinant protein IIIAIIB-IIIAIIB rQTY provided by the invention has smaller particle size and higher drug loading capacity.
2. The recombinant protein IIIAIIB-IIIAIIB rQTY provided by the invention is an amphiphilic protein, namely, one end of the protein presents hydrophilic characteristic and the other end presents hydrophobic characteristic, and can be self-assembled into nano particles with a certain size under the condition that neutral pH solution is not denatured and no induction reagent is relied on, and a hydrophobic core structure formed in the middle of the nano particles can carry hydrophobic drugs through hydrophobic interaction. And the recombinant protein IIIAIIB-IIIAIIB which is not subjected to key site amino acid mutation cannot realize self-assembly.
3. The recombinant protein IIIAIIB-IIIAIIB rQTY provided by the invention is taken as a carrier to carry the medicine, so that the sustained-release time is longer, the accumulated release amount of the medicine reaches more than 90% after 168 hours, and the accumulated release amount of the medicine carried by natural Human Serum Albumin (HSA) nano-micelle reaches 90% after 96 hours.
4. The recombinant protein IIIAIIB-IIIAIIB rQTY provided by the invention has the advantages of low cytotoxicity, high safety and good biocompatibility.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below. Like elements or portions are generally identified by like reference numerals throughout the several figures. In the drawings, elements or portions thereof are not necessarily drawn to scale. It will be apparent to those of ordinary skill in the art that the drawings in the following description are of some embodiments of the invention and that other drawings may be derived from these drawings without inventive faculty.
FIG. 1 is a diagram of the crystal structure of recombinant protein IIIAIIB-IIIAIIB rQTY predicted by Alphafold;
FIG. 2 is a SDS-PAGE of recombinant proteins IIIAIIB-IIIAIIB rQTY and recombinant proteins IIIAIIB-IIIAIIB purified in the examples (A is IIIAIIB-IIIAIIB rQTY, B is unmutated IIIAIIB-IIIAIIB);
FIG. 3 is a transmission electron microscope image (scale: 100 nm) of a self-assembled nanomicelle of recombinant proteins IIIAIIB-IIIAIIB rQTY after lyophilization;
FIG. 4 is a transmission electron microscope image (scale: 100 nm) of a recombinant protein IIIAIIB-IIIAIIB nano-micelle after lyophilization;
FIG. 5 is a graph showing the effect of self-assembled nanoparticles of recombinant proteins IIIAIIB-IIIAIIB rQTY on human embryonic kidney (293T) viability;
FIG. 6 is a graph showing the drug release rate of recombinant protein IIIAIIB-IIIAIIB rQTY self-assembled drug-loaded nanomicelles and natural human serum albumin drug-loaded nanomicelles prepared by an anti-solvent precipitation method.
Detailed Description
In order to make the objects, technical solutions and advantages of the embodiments of the present invention more clear, the technical solutions of the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. It will be apparent that the described embodiments are some, but not all, embodiments of the invention. All other embodiments, which can be made by those skilled in the art based on the embodiments of the invention without making any inventive effort, are intended to be within the scope of the invention.
Herein, "and/or" includes any and all combinations of one or more of the associated listed items.
Herein, "plurality" means two or more, i.e., it includes two, three, four, five, etc.
It should be noted that, in this document, the terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Without further limitation, an element defined by the phrase "comprising one … …" does not exclude the presence of other like elements in a process, method, article, or apparatus that comprises the element.
As used in this specification, the term "about" is typically expressed as +/-5% of the value, more typically +/-4% of the value, more typically +/-3% of the value, more typically +/-2% of the value, even more typically +/-1% of the value, and even more typically +/-0.5% of the value.
In this specification, certain embodiments may be disclosed in a format that is within a certain range. It should be appreciated that such a description of "within a certain range" is merely for convenience and brevity and should not be construed as a inflexible limitation on the disclosed ranges. Accordingly, the description of a range should be considered to have specifically disclosed all possible sub-ranges and individual numerical values within that range. For example, a rangeThe description of (c) should be taken as having specifically disclosed sub-ranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6, etc., as well as individual numbers within such ranges, e.g., 1,2,3,4,5, and 6. The above rule applies regardless of the breadth of the range.
Noun interpretation
The invention relates to a recombinant protein III (IIIAIIB) -IIIAIIB rQTY which is obtained by connecting a structural region III (IIIAIIB) of human serum albumin with a mutated structural region III (IIIAIIB rQTY) through flexibility linker (GGGGSGGGGSGGGGS). Wherein rQTY represents a protein design method to convert a specific hydrophilic alpha helix into a hydrophobic alpha helix.
Materials and reagents
Human embryonic kidney cells 293T were purchased from the China academy of sciences typical culture Collection, catalog number SCSP-502, cell name: human embryonic kidney cells, animal species: human, tissue origin: fetal, embryonic kidney.
Coli BL21 (DE 3) competent cells were purchased from Beijing Soy Bao technology Co.
The pET-22b (+) plasmid is a commercially available E.coli expression vector, purchased from Beijing, biotech Co., ltd. The vector tags were N-pelB and C-His, and the vector resistance was AMPICILLIN (ampicillin).
Restriction enzymes NdeI and XhoI were purchased from NEB (Beijing) Inc. His-tag protein purification resin (Nickel column), purchased from Shanghai-Haimai bioengineering Co., ltd., cat# LM-616.IPTG, ampicillin, DMSO (dimethyl sulfoxide) were all purchased from beijing solebao technologies. DMEM medium was purchased from GIBCO. CCK8 reagent is purchased from Chongqing Bao optical technology Co., ltd and is used according to the operation of the reagent instruction. Doxorubicin (english name adriamycin) is an antibiotic of the formula C 27H29NO11, CAS accession number 23214-92-8, purchased from shanghai microphone biochemistry technologies, inc.
Culture medium
Each liter of LB medium contains: 5g of yeast extract, 10g of tryptone and 10g of sodium chloride, and the pH was adjusted to 7.0.
The preparation method comprises the following steps: 5g of yeast extract, 10g of tryptone, 10g of sodium chloride were dissolved in 950ml of double distilled water, the pH was adjusted to 7.0 with sodium hydroxide solution, and the volume was adjusted to 1L with double distilled water. If a solid medium is formulated, agar is added at 1.5g/100 ml. Sterilizing with steam at 121deg.C for 30min.
The experimental reagents not specifically described in the present invention are all conventional reagents in the art and can be formulated according to conventional methods in the art or purchased from related reagent suppliers; the experimental methods not specifically described are all conventional methods in the art, and reference may be made to the relevant experimental manuals, for example, molecular cloning experimental manuals or instructions of the relevant reagent manufacturers.
Example 1
The implementation provides a IIIAIIB-IIIAIIB rQTY gene design and a protein expression example
1. Gene design
Designing a gene, comprising 2 repeated structural fragments (IIIAIIB-IIIAIIB) of an I type structural domain in an HSA protein, wherein the amino acid sequence of the 2 nd section IIIAIIB comprises a plurality of hydrophilic amino acid mutations (IIIAIIB-IIIAIIB rQTY), and the protein expressed by the gene has 424 amino acids, and the sequence of the protein is shown as SEQ ID NO. 1; the nucleotide sequence of the coded protein is shown as SEQ ID NO.2, and the total length is 1272bp. Further, ndeI restriction enzyme site (CATATG) and XhoI restriction enzyme site (CTCGAG) are respectively added at the 5 'end and the 3' end of the gene, the nucleotide sequence of the gene with the restriction enzyme site is shown as SEQ ID NO.3, and the total length is 1281bp. The sequences involved in this example are shown in Table 1.
TABLE 1
2. Vector construction
PET-22b (+) plasmid was used as an expression vector. The pET-22b (+) plasmid and the target gene (SEQ ID No. 1) were subjected to double digestion reaction with restriction enzymes NdeI and XhoI, respectively, and then the target gene was ligated into the pET-22b (+) vector by ligation reaction, to obtain a ligation product.
3. Transformation
(1) Competent cells of E.coli BL21 (DE 3) were removed from the freezer at-80℃and ice-bathed for 5min.
(2) After glycerol of BL21 (DE 3) competent cells is preserved and melted, the competent cells are added into the connection product, and the gun head is sucked and put for 3-4 times and is uniformly mixed, and the ice bath is kept stand for 30min.
(3) The water on the pipe wall is quickly wiped by the absorbent paper, and then the pipe wall is thermally shocked for 90s at 42 ℃, and the pipe wall is immediately ice-bathed for 2min.
(4) 800. Mu.l of LB liquid medium was added under aseptic conditions, and the culture was continued at 37℃for 45min at 150 rpm.
(5) The cells were collected by centrifugation at 8000rpm for 5min, part of the supernatant was discarded, E.coli was resuspended in about 100. Mu.l of the remaining supernatant, and then uniformly spread on LB solid medium containing 100. Mu.g/ml ampicillin, placed in a 37℃incubator, and cultured upside down for 10-16h.
(6) The monoclonal is selected and inoculated into liquid LB culture medium containing 100 mug/ml ampicillin, and positive clone identification is carried out after the culture for 10 to 16 hours at 37 ℃ so as to obtain positive clone containing target gene plasmid.
4. Protein expression and purification
(1) Inoculating: preparing a liquid LB culture medium, sterilizing, placing the sterilized liquid LB culture medium in a super clean workbench, cooling to room temperature, adding ampicillin into the LB culture medium in the super clean workbench, uniformly mixing to ensure that the final concentration of the ampicillin is 100 mug/mL, inoculating escherichia coli (positive clone) containing target gene plasmid into the LB culture medium according to the amount of 200 mug/L, placing the LB culture medium in a shaking table, and culturing for 8-10h according to the conditions that the rotating speed is 170rpm and the temperature is 37 ℃.
(2) Induction: after shaking culture for 8-10h, 2mL of bacterial liquid is taken out, the OD600 value of the bacterial liquid is measured by a spectrophotometer, when the OD600 value of the bacterial liquid reaches 0.6-0.8, IPTG with the final concentration of 200 mu L/mL is added into the bacterial liquid, and then shaking culture is carried out for 8h according to the conditions of 37 ℃ and 170 rpm.
(3) Purifying: adding IPTG and shake culturing for 8 hr, taking out bacterial liquid, centrifuging at 4deg.C and 8000rpm for 5min, removing supernatant after centrifuging, and retaining precipitate (the precipitate is Escherichia coli).
(4) Ultrasonic crushing: the escherichia coli is ultrasonically crushed and then centrifuged, the sediment obtained by centrifugation contains target protein, the sediment obtained by centrifugation is washed by washing liquid I (50 mmol/L Tris-HCl,1mol/L urea and 10mL/L Triton X-100), then washed by washing liquid II (50 mmol/L Tris-HCl,2mol/L urea and 5mL/L Triton X-100), and then dissolved by inclusion body dissolving liquid (50 mmol/L Tris-HCl,8mol/L urea and 100mmol/L NaCl).
(5) Finally, carrying out gradient renaturation on the inclusion body dissolution liquid, wherein the method comprises the following steps: the inclusion body solution is filled in a dialysis bag, and then the dialysis bag is sequentially placed in urea solutions of 6M, 4M, 2M, 1M and 0.5M for gradient renaturation, and renaturation is carried out at the low temperature of 4 ℃ for 2-4 hours under each urea concentration. Purifying the solution after renaturation by His-tag protein purification resin (nickel column) to obtain novel recombinant protein IIIAIIB-IIIAIIB rQTY (histidine tag is added in the design of the gene sequence of target protein to facilitate protein purification). After purification, it was identified whether the purified target protein was successfully obtained by running polyacrylamide-gel electrophoresis (SDS-PAGE). As a result, as shown in FIG. 2A, a recombinant protein IIIAIIB-IIIAIIB rQTY having a size of about 47.28kDa was obtained. FIG. 2B is an electrophoretogram of recombinant protein IIIAIIB-IIIAIIB (without hydrophilic site mutation) of about 47.35 kDa. In FIG. 2, the left lane is a protein molecular marker, and the right lane is a purified IIIAIIB-IIIAIIB rQTY protein or IIIAIIB-IIIAIIB protein.
The amino acid and nucleotide sequences of the recombinant proteins IIIAIIB-IIIAIIB without hydrophilic site mutations are shown in Table 2. Similarly, ndeI cleavage site (CATATG) and XhoI cleavage site (CTCGAG) were added to the 5 'and 3' ends of the coding gene, respectively.
TABLE 2
5. Preparation of recombinant protein IIIAIIB-IIIAIIB rQTY nano-micelle
(1) And taking phosphate buffer solution dry powder in a beaker, adding deionized water for dilution, and finally obtaining 1 XPBS with pH of 7.4, so as to prepare a dispersion solution for later use.
(2) Weighing 50mg of the novel recombinant protein obtained after purification, and dissolving the novel recombinant protein in 10mL of deionized water under the condition of magnetic stirring to prepare a novel recombinant protein aqueous solution with the mass concentration of 5 mg/mL.
(3) And (3) measuring 10mL of the dispersion solution prepared in the step (1) in a 25mL beaker, performing ultrasonic dispersion with 400W of power under the ice bath condition, simultaneously measuring 10mL of the novel recombinant protein solution prepared in the step (2), instilling the novel recombinant protein solution into the dispersion solution at the rate of 0.4mL/min by a constant flow pump, and stopping ultrasonic treatment after instilling the novel recombinant protein solution to obtain the recombinant protein IIIAIIIB-IIIAIIIB rQTY nano micelle solution.
The preparation method of the recombinant protein IIIAIIB-IIIAIIB protein nano-micelle is consistent with that of the recombinant protein IIIAIIB-IIIAIIB rQTY nano-micelle. The purpose of the recombinant protein IIIAB-IIIAIIB nano-micelles was to verify whether they self-assemble like recombinant protein IIIAIIB-IIIAIIB rQTY to further highlight that IIIAIIB-IIIAIIB rQTY self-assembles without the addition of inducing agents (e.g., ethanol, isopropanol, dimethyl sulfoxide, etc.).
Example 2
This example provides cytotoxicity assessment of recombinant proteins IIIAIIB-IIIAIIB rQTY
Toxicity of recombinant protein IIIAIIB-IIIAIIB rQTY to human embryonic kidney cells 293T (China academy of sciences typical culture Collection Committee cell bank) was studied by CCK8 method to evaluate biosafety of recombinant protein IIIAIIB-IIIAIIB rQTY. In 96-well plates, 5 experimental groups and 1 control group were set with 3 duplicate wells per well, with 1×10 4 human embryonic kidney cells 293T per well inoculated into DMEM medium. After culturing the cells at 37℃for 24 hours, recombinant protein IIIAIIB-IIIAIIB rQTY was added to the wells of the experimental groups (experimental wells) so that the final concentrations of recombinant protein IIIAIIB-IIIAIIB rQTY were 10. Mu.g/ml, 50. Mu.g/ml, 100. Mu.g/ml, 200. Mu.g/ml, 400. Mu.g/ml, respectively, for 5 experimental groups. The control wells (control wells) did not exacerbate the histone IIIAIIB-IIIAIIB rQTY. The incubation was continued for 24h at 37℃and then the number of viable cells was detected using the CCK8 method as follows: mu.l of CCK8 reagent was added to each well and incubated at 37℃for 3h. The absorbance of each well at 450nm was then measured using a microplate reader.
The cell viability was calculated as follows: [ experimental well absorbance (cell-containing medium, CCK8 reagent, protein sample) -blank well absorbance (cell and protein sample-free medium, CCK8 reagent) ]/[ control well absorbance (cell-containing medium, CCK8 reagent, protein sample-free) -blank well absorbance (cell and protein sample-free medium, CCK8 reagent) ]. Times.100%.
The cell viability of each group is the average of the cell viability of the three duplicate wells of the group. The results are plotted with 100% cell viability of the control group, as shown in FIG. 5, where the abscissa is the concentration of IIIAIIB-IIIAIIB rQTY self-assembled nanoparticles in the medium (μg/mL) and the ordinate is the viability (%) of human embryonic kidney cells (293T), with 100% cell viability of the control group without IIIAIIB-IIIAIIB rQTY self-assembled nanoparticles in the medium. FIG. 5 shows that the cells show higher survival rate after the recombinant protein IIIAIIB-IIIAIIB rQTY with the concentration of 10-400 mug/ml is added, and the recombinant protein IIIAIIB-IIIAIIB rQTY is proved to have low cytotoxicity and good biocompatibility.
Example 3
This example provides performance testing of recombinant proteins IIIAIIB-IIIAIIB rQTY
1. Transmission electron microscope observation of recombinant protein IIIAIIB-IIIAIIB rQTY nano-micelle
Sample preparation: 10 μl of the recombinant protein IIIAIIB-IIIAIIB rQTY nano-micelle solution prepared in example 1 was pipetted by a pipette and added dropwise onto a copper mesh (300 mesh), and then 4 μl of uranyl acetate was pipetted by a pipette and added dropwise onto the copper mesh to dye it, and then naturally dried for morphology observation. The preparation of the recombinant protein IIIAIIB-IIIAIIB nano-micelle solution with unmutated hydrophilic sites prepared in example 1 was continued, and a sample was prepared on a copper mesh for electron microscopy observation according to the above procedure.
Sample observation: and respectively observing the morphology of the recombinant protein IIIAIIB-IIIAIIB and the recombinant protein IIIAIIB-IIIAIIB rQTY on the copper net by using a transmission electron microscope. The results show that the recombinant protein IIIAIIB-IIIAIIB rQTY prepared by the method can self-assemble to form nanoparticles under the condition of no addition of an induction reagent (figure 3), while the recombinant protein IIIAIIB-IIIAIIB without mutation of hydrophilic amino acid can not self-assemble to form nanoparticles under the condition of no addition of an induction reagent (figure 4).
2. Determination of particle size, encapsulation efficiency and drug loading capacity of recombinant protein IIIAIIB-IIIAIIB rQTY nano-micelle
Taking doxorubicin as an example, the recombinant protein IIIAIIB-IIIAIIB rQTY was used to encapsulate doxorubicin and the particle size, encapsulation efficiency and drug loading were determined.
Preparation of recombinant protein IIIAIIB-IIIAIIB rQTY drug-loaded nano-micelle: and (3) dissolving the recombinant protein IIIAIIB-IIIAIIB rQTY in deionized water to prepare a protein aqueous solution with the mass concentration of 5 mg/mL. And preparing the doxorubicin-PBS solution with the concentration of 0.4mg/mL (the pH value of the PBS solution is 7.4), wherein the doxorubicin-PBS solution needs to be continuously stirred, otherwise, the doxorubicin can be settled due to the hydrophobicity of the doxorubicin, and cannot be uniformly dispersed in the PBS solution. And finally, under the ice bath condition, instilling an equal volume of recombinant protein IIIAIIB-IIIAIIB rQTY aqueous solution into an doxorubicin-PBS solution with the concentration of 0.4mg/mL at the rate of 0.4mL/min, performing ultrasonic dispersion in the instilling process, and stopping ultrasonic dispersion after instilling is finished to obtain the recombinant protein IIIAIIB-IIIAIIB rQTY drug-loaded nano micelle solution.
The particle size, the encapsulation efficiency and the drug loading capacity of the prepared recombinant protein IIIAIIB-IIIAIIB rQTY drug loading nano-micelle are measured according to the following method.
1) Particle size measurement method:
2mL of the prepared recombinant protein IIIAIIB-IIIAIIB rQTY drug-loaded Nano-micelle solution is sucked by a pipetting gun, placed in a 4.5mL transparent cuvette, the transparent cuvette containing the drug-loaded Nano-micelle solution is placed in a sample analysis hole of a Nano-particle size and ZETA potential analyzer (British Markov company, model: nano ZS 90), and the particle size of the Nano-particles is measured according to the Nano-particle size of Nano ZS90 and the use instruction of the ZETA potential analyzer.
2) The method for measuring the encapsulation efficiency comprises the following steps:
Centrifuging the prepared recombinant protein IIIAIIB-IIIAIIB rQTY drug-loaded nano micelle solution for 15min at a rotating speed of 10000r/min, taking supernatant, measuring absorbance of the supernatant at 480nm by an ultraviolet spectrophotometer, and according to the formula: a=0.0184c+0.0216 (a is absorbance and C is doxorubicin concentration) to calculate the free drug content.
Encapsulation efficiency= (W Total (S) -W Swimming device )/W Total (S) x 100%
W Total (S) is the initial dose and W Swimming device is the amount of unencapsulated free drug in the nanoparticle.
3) The method for measuring the drug loading comprises the following steps:
Centrifuging the prepared recombinant protein IIIAIIB-IIIAIIB rQTY drug-loaded nano micelle solution for 15min at a rotating speed of 10000r/min, taking supernatant, measuring absorbance of the supernatant at 480nm by an ultraviolet spectrophotometer, and according to the formula: a=0.0184c+0.0216 (a is absorbance and C is doxorubicin concentration) to calculate the free drug content.
Drug loading= (W Total (S) -W Swimming device )/W Total weight of x 100%
W Total (S) is the initial dosage, W Swimming device is the non-encapsulated free drug amount in the nanoparticle, and W Total weight of is the total weight of the recombinant protein IIIAIIB-IIIAIIB rQTY nanoparticle after drug loading.
Method for measuring W Total weight of : centrifuging the recombinant protein IIIAIIB-IIIAIIB rQTY drug-loaded nano-micelle under the condition of 12000r/min, discarding supernatant after centrifugation, and obtaining the precipitated weight which is the total weight of the drug-loaded recombinant protein IIIAIIB-IIIAIIB rQTY nano-particle. I.e., total weight of recombinant protein iiiaiibb-iiiaiib rQTY nanoparticle after drug loading (W Total weight of ) =total weight of centrifuge tube containing pellet-weight of blank centrifuge tube.
The results are shown in Table 3, the recombinant protein IIIAIIB-IIIAIIB rQTY drug-loaded nano-micelle has smaller and uniform particle size, and the drug-loading rate reaches 25.56%.
TABLE 3 determination of particle size, encapsulation efficiency, drug loading of recombinant proteins IIIAIIB-IIIAIIB rQTY nanomicelle (Adriamycin loading is an example)
3. Drug release experiment of recombinant protein IIIAIIB-IIIAIIB rQTY drug-loaded nano-micelle
And carrying out a drug release experiment on the prepared recombinant protein IIIAIIB-IIIAIIB rQTY drug-loaded nano-micelle.
Drug release experimental method: transferring 5mL of recombinant protein IIIAIIB-IIIAIIB rQTY drug-loaded nano-micelle solution into a dialysis bag, placing the dialysis bag in 20mL of release medium containing phosphate buffer solution (pH 7.4) of 1g/L Tween 80, placing the dialysis bag on a constant temperature shaking table, performing drug release experiments according to the conditions of 37 ℃ and 170r/min, respectively taking out 1mL of solution (supplemented with 1mL of release medium) at 3h, 6h, 12h, 24h, 48h, 72h, 96h, 120h, 144h and 168h, measuring the absorbance of the taken 1mL of solution at 480nm by an ultraviolet spectrophotometer, and according to the formula: a=0.0184c+0.0216 (a is absorbance and C is doxorubicin concentration) the doxorubicin content is calculated, the experiment is repeated 3 times, and the result is averaged. The cumulative drug release (%) for 3h, 6h, 12h, 24h, 48h, 72h, 96h, 120h, 144h and 168h was calculated and a drug release curve was drawn.
Cumulative drug release (%) = weight of drug released/total weight of drug encapsulated.
As shown in FIG. 6, the cumulative drug release of the recombinant protein IIIAIIB-IIIAIIB rQTY drug-loaded nano-micelle reaches more than 90% after 168 hours, and the cumulative drug release of the natural Human Serum Albumin (HSA) drug-loaded nano-micelle reaches 90% after 96 hours. Therefore, the recombinant protein IIIAIIB-IIIAIIB rQTY nano-micelle has obvious drug slow release effect. Preferably, the recombinant protein IIIAIIB-IIIAIIB rQTY drug-loaded nano-micelle is effective by injection into a body.
It will be appreciated that the present embodiment is described by way of example only and not limitation, and that other hydrophobic drugs, including hydrophobic antineoplastic agents or hydrophobic polypeptides and the like, are suitable for use in the present invention.
The embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to the above-described embodiments, which are merely illustrative and not restrictive, and many forms may be made by those having ordinary skill in the art without departing from the spirit of the present invention and the scope of the claims, which are to be protected by the present invention.
Claims (7)
1. The recombinant protein IIIAIIB-IIIAIIB rQTY with the repeated structural units is characterized in that the amino acid sequence of the recombinant protein IIIAIIB-IIIAIIB rQTY is shown as SEQ ID NO. 1.
2. A recombinant expression vector comprising the gene for recombinant protein iiiaiib-iiiaiib rQTY of claim 1.
3. A recombinant bacterium expressing the recombinant protein iiiaiib-iiiaiiib rQTY of claim 1.
4. A nanomicelle for hydrophobic drug delivery prepared from the recombinant protein iiiaiib-iiiaiib rQTY of claim 1.
5. Use of the nanomicelle of claim 4 for the preparation of a drug delivery vehicle.
6. The use according to claim 5, wherein the nanomicelle is for carrying a hydrophobic drug comprising a hydrophobic anti-neoplastic drug, a hydrophobic antibiotic, a hydrophobic polypeptide or protein.
7. The use according to claim 5, wherein the drug delivery vehicle is in the form of an injection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410130630.4A CN117720670B (en) | 2024-01-30 | 2024-01-30 | Recombinant protein IIIAIIB-IIIAIIB with self-assembly performancerQTYApplication and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410130630.4A CN117720670B (en) | 2024-01-30 | 2024-01-30 | Recombinant protein IIIAIIB-IIIAIIB with self-assembly performancerQTYApplication and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117720670A CN117720670A (en) | 2024-03-19 |
CN117720670B true CN117720670B (en) | 2024-06-11 |
Family
ID=90201849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410130630.4A Active CN117720670B (en) | 2024-01-30 | 2024-01-30 | Recombinant protein IIIAIIB-IIIAIIB with self-assembly performancerQTYApplication and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117720670B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104011072A (en) * | 2011-05-05 | 2014-08-27 | 诺维信生物制药丹麦公司 | Albumin variants |
CN114249814A (en) * | 2021-12-23 | 2022-03-29 | 重庆大学 | Albumin HSA-Hydrophobic-IIIB with self-assembly performance and application thereof |
WO2022112865A1 (en) * | 2020-11-30 | 2022-06-02 | Anbition S.R.L. | Multi-specific human albumin nanoparticles decorated with antibody fragments and loaded with cytotoxics |
KR20230000082A (en) * | 2021-06-24 | 2023-01-02 | 부경대학교 산학협력단 | drug carrier composition comprising Albumin variant for delivery of multiple drugs |
-
2024
- 2024-01-30 CN CN202410130630.4A patent/CN117720670B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104011072A (en) * | 2011-05-05 | 2014-08-27 | 诺维信生物制药丹麦公司 | Albumin variants |
WO2022112865A1 (en) * | 2020-11-30 | 2022-06-02 | Anbition S.R.L. | Multi-specific human albumin nanoparticles decorated with antibody fragments and loaded with cytotoxics |
CN117042807A (en) * | 2020-11-30 | 2023-11-10 | 安必圣有限责任公司 | Multispecific human albumin nanoparticles modified with antibody fragments and loaded with cytotoxic drugs |
KR20230000082A (en) * | 2021-06-24 | 2023-01-02 | 부경대학교 산학협력단 | drug carrier composition comprising Albumin variant for delivery of multiple drugs |
CN114249814A (en) * | 2021-12-23 | 2022-03-29 | 重庆大学 | Albumin HSA-Hydrophobic-IIIB with self-assembly performance and application thereof |
Non-Patent Citations (3)
Title |
---|
Preparation of Drug-Loaded Albumin Nanoparticles and Its Application in Cancer Therapy;Run Meng et al.;Journal of Nanomaterials;20221231;全文 * |
Reverse-QTY code design of active human serum albumin self-assembled amphiphilic nanoparticles for effective anti-tumor drug doxorubicin release in mice;Run Meng et al.;PNAS;20230515;第120卷(第21期);全文 * |
Serum albumin: clinical significance of drug binding and development as drug delivery vehicle;Saad Tayyab and Shevin Rizal Feroz;Advances in Protein Chemistry and Structural Biology;20211231;第123卷;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN117720670A (en) | 2024-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106906230B (en) | Recombinant drug carrier protein gene and preparation method and application thereof | |
CN112521491B (en) | Collagen for preparing hydrogel and preparation method thereof | |
Erickson et al. | The self-assembly of papaya mosaic virus | |
WO2018119746A1 (en) | Purification of recombinant ev71 virus-like particle and method for preparing vaccine thereof | |
CN113121704B (en) | Nanoparticle-based coronavirus vaccines | |
CN117720670B (en) | Recombinant protein IIIAIIB-IIIAIIB with self-assembly performancerQTYApplication and application thereof | |
CN114249814B (en) | Albumin HSA-hydrohopbic-IIIB with self-assembly performance and application thereof | |
CN117736344B (en) | Recombinant protein IIAIIB-IIAIIB with self-assembly performancerQTYApplication and application thereof | |
CN117720671B (en) | Recombinant proteins IIB-IIAIB having self-assembling repeat unitsrQTYApplication and application thereof | |
CN114262373B (en) | Albumin HSA-hydrohopbic-IIB with self-assembly performance and application thereof | |
JP2002538198A (en) | Bacterial ghosts as carrier and targeting vehicles | |
CN106729623A (en) | A kind of mPEG PLGA nano particles for containing restructuring anti-tumor protein TmSm and its preparation method and application | |
CN114249813B (en) | Albumin HSA-hydrohopbic-IB with self-assembly performance and application thereof | |
CN116102640A (en) | Recombinant lactoferrin derived peptides and their use in enhancing immunity | |
CN115969810A (en) | Preparation method and application of pellicle drug-loaded nanoparticles of targeted neutrophils | |
CN110759986B (en) | Efficient preparation method of reversible self-assembled protein | |
CN110897998B (en) | Genetic engineering polypeptide nano hydrogel simultaneously loaded with hydrophobic drug and hydrophilic drug and preparation method thereof | |
CN118772261A (en) | Recombinant ovalbumin with self-assembly performance and application | |
CN102146416A (en) | Cationic pleurotus eryngii polysaccharide nanoparticle gene transfer system and preparation method thereof | |
CN109134620A (en) | A method of purifying HBc-VLPs or HBc-VLPs derivative | |
CN116162582A (en) | Drug-loaded bacterial ghost displaying acid-triggered rational membrane peptide, and preparation method and application thereof | |
CN112294788A (en) | Multifunctional nano graphene oxide compound for treating osteoarthritis | |
CN101070547B (en) | Recombined protein carrier PEA II-HphA of actively carrying exogenic gene, its preparing method and use | |
CN111110838A (en) | Tilapia streptococcus agalactiae vaccine and preparation method thereof | |
CN115025061B (en) | Brain targeting bionic nano drug delivery system based on outer membrane wrapping of detoxified bacteria capable of penetrating blood brain barrier, and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |