CN117701571A - 一种新颖的d-2-羟基戊二酸核酸适配体及筛选、验证方法 - Google Patents

一种新颖的d-2-羟基戊二酸核酸适配体及筛选、验证方法 Download PDF

Info

Publication number
CN117701571A
CN117701571A CN202311521911.4A CN202311521911A CN117701571A CN 117701571 A CN117701571 A CN 117701571A CN 202311521911 A CN202311521911 A CN 202311521911A CN 117701571 A CN117701571 A CN 117701571A
Authority
CN
China
Prior art keywords
aptamer
nucleic acid
screening
sequence
acid aptamer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311521911.4A
Other languages
English (en)
Inventor
戴志晖
陈莉
王兆寅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Normal University
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN202311521911.4A priority Critical patent/CN117701571A/zh
Publication of CN117701571A publication Critical patent/CN117701571A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种新颖的D‑2‑羟基戊二酸(2‑HG)核酸适配体及筛选、验证方法,核酸适配体的核苷酸截短序列为5′‑GGAATTCGTCGACGGATCC‑3′。本发明设计并构建了适用于小分子2‑HG适配体的筛选方法,通过使用特定的随机寡核苷酸文库(ssDNA)、引物组及链霉亲和素修饰的磁珠(SA‑MB),首次筛选出脑胶质瘤标志物2‑HG的适配体序列。利用FAM荧光标记的引物1与生物素标记的引物2进行PCR扩增ssDNA,双链DNA通过生物素‑链霉亲和素的高结合力与磁珠偶联。加入靶标2‑HG进行孵育,与靶标有高亲和力的序列会被置换下来形成单链,然后磁分离取上清液作为下一轮筛选的初始文库;最后对所获得的适配体及其截短序列进行亲和力及特异性测试。本发明通过正反交替筛选能够极大地提高筛选效率,降低适配体获得的时间成本,具有较高的商业价值。

Description

一种新颖的D-2-羟基戊二酸核酸适配体及筛选、验证方法
技术领域
本发明属于分子生物学技术领域,具体涉及种新颖的2-HG核酸适配体及筛选、验证方法。
背景技术
核酸适配体是通过指数富集的配体系统进化技术(SELEX)筛选分离得到,是能与目标物特异性结合的短单链DNA或RNA寡核苷酸,可以作为传感器的敏感识别元件,与特定靶物质进行结合,构建核酸适配体传感器。2-HG是以脑胶质瘤为首的多种癌症的生物标志物,是由异柠檬酸脱氢酶(IDH1/2)突变所引起的异常积聚,其在正常细胞中含量极低,难以检测。2-HG通过抑制抑癌基因活性、改变细胞表观遗传水平等方式,引起恶性神经胶质瘤、急性髓细胞性白血病等癌症的发生。所以,建立高效、专一性的2-HG检测方法十分重要。
SELEX技术是于1990年,自研究者们第一次提出其可用于多种物质的核酸适配体序列筛选工作后,直至现在,SELEX技术仍是公认的体外适配体筛选技术,是从庞大的随机寡核苷酸库中选择目标结合物种的迭代程序。筛选原理为:在体外化学合成一个单链寡核苷酸库,将其与靶物质混合,形成靶物质-核酸的复合物,洗掉未与靶物质结合的核酸,分离与靶物质结合的核酸,以此核酸分子为模板进行PCR扩增,再进行下轮的循环筛选过程。通过重复的筛选与扩增,最后得到与靶物质具有高亲和力与高特异性的适配体。
目前科研中还尚未有2-HG核酸适配体及其筛选方法报道,且传统SELEX筛选过程耗时耗力,经多轮筛选才能得到特异性较强的适配体,因此迫切需要建立一种能够特异性靶向的2-HG核酸适配体,并需要提供一种简单方便、效果突出的筛选方法。
发明内容
为解决上述问题,本发明公开了一种高亲和力,高特异性地识别2-HG的核酸适配体,本发明提供的2-HG核酸适配体可作为2-HG的小分子靶向探针,为肿瘤靶向诊断与治疗提供了新思路与新工具,弥补了现有技术的空白,具有重要的临床价值。
本发明提供了一种新颖的2-HG核酸适配体,所述2-HG核酸适配体选自以下任意一种或多种:
(a)核酸适配体Ap-2,所述核酸适配体Ap-2的核苷酸序列如SEQ ID NO.1所示;
(b)核酸适配体Ap-8,所述核酸适配体Ap-8的核苷酸序列如SEQ ID NO.2所示;
(c)核酸适配体Ap-10,所述核酸适配体Ap-10的核苷酸序列如SEQ ID NO.3所示;
(d)(c)中所述核酸适配体ap-10的截短序列;
(e)在(a)~(c)任一项核酸适配体的基础上进行修饰得到的序列。
其中所述修饰的方式包括荧光修饰或生物素修饰。
为了验证通过筛选对比得到的最佳适配体在2-HG检测中的实际应用,本实验利用GO为荧光猝灭剂,在最佳适配体的5’端修饰上荧光基团6-FAM,利用GO能够吸附ssDNA并能够猝灭荧光的性质,构建了一种高特异性生且易于检测的荧光生物传感器。
本发明的有益效果:
本发明采用基于固定化DNA文库的磁珠SELEX技术,筛选得到三条分子量小,稳定易修饰,能够高特异性地识别2-HG的核酸适配体。具体核苷酸序列如SEQ ID NO.1~3所示。经实施例验证ap-10核酸适配体与2-HG具有较高的亲和力,不与其它小分子发生特异性结合,便于合成和保存。经截短或修饰处理后的核酸适配体仍能高效结合2-HG。本发明提供的2-HG核酸适配体可作为2-HG的小分子靶向探针,为肿瘤靶向诊断与治疗提供了新思路与新工具,弥补了现有技术的空白,具有重要的临床价值。
附图说明
图1为本发明的适配体筛选原理图。
图2为随着筛选轮数的增加上清液中荧光强度的变化图。
图3为三条适配体亲和力测定图。
图4为ap-10的性能检测图。
图5为ap-10优化截短序列后的二级结构预测。
图6为ap-10截短后各序列的亲和力测定图。
具体实施方式
下面结合附图和具体实施方式,进一步阐明本发明,应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。需要说明的是,下面描述中使用的词语“前”、“后”、“左”、“右”、“上”和“下”指的是附图中的方向,词语“内”和“外”分别指的是朝向或远离特定部件几何中心的方向。
本实施例提供一种新颖的2-HG核酸适配体,所述2-HG核酸适配体选自以下任意一种或多种:
(a)核酸适配体ap-2,所述核酸适配体ap-2的核苷酸序列如SEQ ID NO.1所示;
(b)核酸适配体ap-8,所述核酸适配体ap-8的核苷酸序列如SEQ ID NO.2所示;
(c)核酸适配体ap-10,所述核酸适配体ap-10的核苷酸序列如SEQ ID NO.3所示;
(d)(c)中所述核酸适配体ap-10的截短序列;
(e)在(a)~(c)任一项核酸适配体的基础上进行修饰得到的序列。
所述修饰的方式包括荧光修饰或生物素修饰。
本发明所述核酸适配体ap-2、ap-8和ap-10的核苷酸序列具体如下表:
实施例1:2-HG的核酸适配体筛选及克隆
参阅图1,本发明提供一种基于2-HG适配体筛选的原理及其流程示意图,包括以下步骤
1.文库预处理
初始筛选文库为总长79nt的单链寡核苷酸序列库,两端各为22nt的恒定引物序列,便于序列的扩增,
其中间为35nt的随机核酸文库序列
5'-TAGGGAATTCGTCGACGGATCC-N35-CTGCAGGTCGACGCATGCGCCG-3'。将随机核酸文库粉末溶解,然后进行PCR扩增,扩增后的序列记为预处理后的随机核酸文库,每轮筛选前都需要对文库进行预处理,然后再投入筛选流程中。
2.反筛和正筛
采用基于固定化DNA文库的磁珠SELEX技术筛选2-HG核酸适配体,将预处理后的随机核酸文库按照筛选步骤进行12轮筛选,其中包括前5轮正筛和第6轮-第11轮针对于三种不同反筛物进行的反筛,第12轮再次正筛,每一轮结束后,取其上清液100μL于96孔板中测定其荧光信号强度。当荧光强度达到峰值或有下降趋势时证明筛选可以结束。整个核酸适配体筛选具体步骤如下:
2.1前5轮正筛:
2.1.1将步骤1预处理后的随机核酸文库加入活化后的SA-MB中,将其混匀于摇床中室温震荡1h;之后取出磁分离洗涤3次,然后重悬于200μL Tris-HCl(50mM Tris、0.1MNaC1、5mM KCl、1mM Mg Cl2、pH=7.4)缓冲液中,并加入2μL 100mM的2-HG,混匀后再次置于摇床中室温震荡1h,结束之后磁分离取上清液,并且测定其荧光强度。之后取得到的上清液进行PCR扩增,重复上述过程进行下一轮的筛选。
2.1.2重复筛选:步骤2.1.1得到的次级核酸文库重复上述2.1.1的操作4次,即完成了5轮正筛,得到第五轮次级核酸文库。
2.2第6轮-第11轮针对三种不同的反筛物进行的反筛:
2.2.1第6-7轮反筛:将已预处理的第五轮次级核酸文库加入活化后的SA-MB中,将其混匀于摇床中室温震荡1h;之后取出磁分离洗涤3次,重悬于200μL Tris-HCl缓冲液中,并加入2μL 100mM L-α-羟基-戊二酸二钠盐,混匀后再次置于摇床中室温震荡1h;之后取出磁分离洗涤3次后,重悬于200μL Tris-HCl缓冲液,并加入2μL 100mM的2-HG,混匀后再次置于摇床中室温震荡1h,磁分离取上清,测定其荧光强度。之后取得到的上清液进行PCR扩增,扩增后的产物进行下一轮的筛选。
2.2.2第8-9轮反筛:取上一步骤中的PCR产物加入活化后的SA-MB中,将其混匀于摇床中室温震荡1h;之后取出磁分离洗涤3次,重悬于200μL Tris-HCl缓冲液,并加入2μL100mMα-酮戊二酸,混匀后再次置于摇床中室温震荡1h;之后取出磁分离洗涤3次后,重悬于200μL Tris-HCl缓冲液,并加入2μL 100mM的2-HG,混匀后再次置于摇床中室温震荡1h,磁分离取上清,测定其荧光强度。之后取得到的上清液进行PCR扩增,扩增后的产物进行下一轮的筛选。
2.2.3第10-11轮反筛:取上一步骤中的PCR产物加入活化后的SA-MB中,将其混匀于摇床中室温震荡1h;之后取出磁分离洗涤3次,重悬于200μL Tris-HCl缓冲液,并加入2μL100mM L-谷氨酸,混匀后再次置于摇床中室温震荡1h;之后取出磁分离洗涤3次后,重悬于200μL Tris-HCl缓冲液,并加入2μL 100mM的2-HG,混匀后再次于摇床中室温震荡1h,磁分离取上清,测定其荧光强度。之后取得到的上清液进行PCR扩增,扩增后的产物进行下一轮的筛选。
2.3第12轮(正筛):方法同1-5轮
在这12轮筛选中,下一轮筛选加入的核苷酸文库为上一轮筛选中制备的次级核苷酸文库;重复筛选后,最终得到第12轮富集的随机核苷酸文库。将所得到的核苷酸文库进行PCR扩增,送至上海生物有限公司进行高通量测序,最终确定三条候选适配体进行下一步验证,分别命名为ap-2、ap-8、ap-10。
本实施例中,为了提高核酸适配体亲和力和的特异性,在筛选过程中对其上清液荧光变化情况进行监测,结果如图2所示,当筛选轮数为达7时,荧光强度达到最高,随后几轮筛选中荧光强度逐渐趋于平稳,证明可以结束筛选。
实施例2
1.核酸适配体与靶标的亲和力及其特异性测定
亲和力试验中,将实施例1筛选得到的三条核酸适配体进行FAM荧光基团修饰后,采用梯度浓度分别与Tris-HCl缓冲液混匀成200μL的混合液,90℃热处理10min,4℃放置10min。之后加入氧化石墨烯,在室温条件下置于摇床中孵育30min,再加入2μL 100mM的2-HG。室温震荡孵育1h后,离心12min取其上清液,对获得的上清进行荧光检测。通过Origin2021分析软件进行了非线性数据的拟合,分别获得了3条序列的饱和曲线和解离常数数Kd值。Kd值的大小代表了筛选靶标与适配体的亲和力,Kd值越小,两者的亲和力走越强。如图3所示p-2、ap-8、ap-10三条候选适配Kd值依次为625.01±300.08nM、411.05±220.59nM和270.84±94.48nM。其中ap-10具有最小的Kd值,相比其他两个核酸适配体,ap-10的特异性结合的能力更强。因此,在接下来的实验中,对亲和力最好的ap-10采用氧化石墨烯法进行特异性实验,ap-10添加的终浓度为300nM,2-HG及其他反筛物添加的终浓度为0.5mM。结果如图4所示,2-HG的上清液荧光强度最高,其他三个反筛物荧光强度较低,证明ap-10适配体对2-HG特异性较好。
2.适配体的截短优化
(1)在各类功能研究当中,DNA的长度越长,稳定性相应变差。另外,适配体中有部分碱基序列并不具有结合靶分子的作用,这些多余的碱基序列可能会产生空间位阻,不利于适配体结合靶分子。因此,本研究对ap-10序列进行进一步优化,图5为ap-10优化截短序列后的二级结构预测。
(2)ap-10优化序列的结合能力考察
以ap-10为空白对照,使用氧化石墨烯法对空白对照和ap-10优化后的序列进行结合能力的考察,结果如图6所示;与原序列ap-10相比,ap10-1、ap10-2与2-HG的结合能力有所减弱,而ap10-3与2-HG的结合能力与原序列ap-10基本相同。说明本发明提供的ap-10优化截短序列均能与2-HG结合,ap10-3截短序列的结合效果最好,一定程度上去除了多余的并不发挥特异性结合作用的序列,保留了与靶标结合的关键区域。
尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。

Claims (4)

1.一种新颖的2-HG核酸适配体,特征在于:所述2-HG核酸适配体选自以下任意一种或多种,具体如下:
(a)核酸适配体ap-2,所述核酸适配体ap-2的核苷酸序列如SEQ ID NO.1所示;
(b)核酸适配体ap-8,所述核酸适配体ap-8的核苷酸序列如SEQ ID NO.2所示;
(c)核酸适配体ap-10,所述核酸适配体ap-10的核苷酸序列如SEQ ID NO.3所示;
(d)为(c)中所述核酸适配体ap-10的截短序列;
(e)为在(a)~(c)任一项核酸适配体的基础上进行修饰得到的序列。
2.根据权利要求1所述的一种新颖的2-HG核酸适配体,其特征在于:所述修饰的方式包括荧光修饰或生物素修饰。
3.一种新颖的2-HG核酸适配体的筛选方法,其特征在于:通过使用特定的随机寡核苷酸文库(ssDNA)、引物组及链霉亲和素修饰的磁珠(SA-MB),首次筛选出脑胶质瘤标志物2-HG的适配体序列;用FAM荧光标记的引物1与生物素标记的引物2进行PCR扩增ssDNA,双链DNA通过生物素-链霉亲和素的高结合力与磁珠偶联;加入靶标2-HG进行孵育,与靶标有高亲和力的序列会被置换下来形成单链,然后磁分离取上清液作为下一轮筛选的初始文库;
最后对所获得的适配体及其截短序列进行亲和力及特异性测试。
4.一种新颖的2-HG核酸适配体的验证方法,其特征在于:为了验证通过筛选对比得到的最佳适配体在2-HG检测中的实际应用,本实验利用GO为荧光猝灭剂,在最佳适配体的5’端修饰上荧光基团6-FAM,利用GO能够吸附ssDNA并能够猝灭荧光的性质,构建了一种高特异性生且易于检测的荧光生物传感器。
CN202311521911.4A 2023-11-15 2023-11-15 一种新颖的d-2-羟基戊二酸核酸适配体及筛选、验证方法 Pending CN117701571A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311521911.4A CN117701571A (zh) 2023-11-15 2023-11-15 一种新颖的d-2-羟基戊二酸核酸适配体及筛选、验证方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311521911.4A CN117701571A (zh) 2023-11-15 2023-11-15 一种新颖的d-2-羟基戊二酸核酸适配体及筛选、验证方法

Publications (1)

Publication Number Publication Date
CN117701571A true CN117701571A (zh) 2024-03-15

Family

ID=90155966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311521911.4A Pending CN117701571A (zh) 2023-11-15 2023-11-15 一种新颖的d-2-羟基戊二酸核酸适配体及筛选、验证方法

Country Status (1)

Country Link
CN (1) CN117701571A (zh)

Similar Documents

Publication Publication Date Title
Kohlberger et al. SELEX: Critical factors and optimization strategies for successful aptamer selection
US9404919B2 (en) Multiplexed analyses of test samples
Kim et al. Advances in aptamer screening and small molecule aptasensors
AU2008275917B2 (en) Multiplexed analyses of test samples
US7855054B2 (en) Multiplexed analyses of test samples
Mencin et al. Optimization of SELEX: comparison of different methods for monitoring the progress of in vitro selection of aptamers
CN105400776B (zh) 寡核苷酸接头及其在构建核酸测序单链环状文库中的应用
WO2012002541A1 (ja) 標的分子の検出法
Dausse et al. HAPIscreen, a method for high-throughput aptamer identification
EP3995575A1 (en) Aptamer selection method and immunity analysis method using aptamer
CN110643611B (zh) 一种核酸适配体及其构建方法和其在检测石斑鱼虹彩病毒中的应用
US9353404B2 (en) Capture based nucleic acid detection
CN116829735A (zh) 检测靶核酸序列的方法
CN117487813B (zh) 特异性识别阿奇霉素的单链dna适配体序列及其应用
WO2011105071A1 (en) Method for screening nucleic acid ligand
Fang et al. Rapid screening of aptamers for fluorescent targets by integrated digital PCR and flow cytometry
CN114621958B (zh) 特异性识别atp的单链dna适配体序列及其应用
Zhou et al. Sensitive monitoring of RNA transcription levels using a graphene oxide fluorescence switch
CN117701571A (zh) 一种新颖的d-2-羟基戊二酸核酸适配体及筛选、验证方法
AU2017202493B2 (en) Multiplexed analyses of test samples
CN116769783B (zh) 一种特异性识别志贺毒素ⅱ型b亚基的核酸适配体及其应用
CN113278621B (zh) 一种ssDNA核酸适配体及其在识别、检测哈维氏弧菌中的应用
AU2013203360B2 (en) Multiplexed analyses of test samples
Asai et al. DNA aptamers that recognize fluorophore using on-chip screening in combination with an in silico evolution
CN116536323A (zh) 一种青霉素类抗生素广谱适配体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination