CN117677861A - 用于扫描测量距物体的距离的LiDAR装置 - Google Patents

用于扫描测量距物体的距离的LiDAR装置 Download PDF

Info

Publication number
CN117677861A
CN117677861A CN202280051185.1A CN202280051185A CN117677861A CN 117677861 A CN117677861 A CN 117677861A CN 202280051185 A CN202280051185 A CN 202280051185A CN 117677861 A CN117677861 A CN 117677861A
Authority
CN
China
Prior art keywords
coupler
numerical aperture
microlens
optical system
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280051185.1A
Other languages
English (en)
Inventor
V·布拉尼克
M·佩施卡
H·蒙茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scona Optoelectronics Co ltd
Original Assignee
Scona Optoelectronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scona Optoelectronics Co ltd filed Critical Scona Optoelectronics Co ltd
Publication of CN117677861A publication Critical patent/CN117677861A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种用于扫描测量距物体(12)的距离的LiDAR装置(14)包括光子集成电路(52),所述光子集成电路具有多个光学波导(38)和多个耦合器(40)。每一耦合器(40)将在所述光学波导(38)中引导的光发射到自由空间中和/或将在自由空间中传播的光耦合到所述光学波导(38)中。准直光学系统(44)使所述耦合器(40)发射的光束准直和/或聚焦已准直的光束。微透镜(54;54a,54b)形成相关联的耦合器(40)的实像或虚像,所述像布置在所述准直光学系统(44)的物体场(56)中。所述准直光学系统(44)具有大于耦合器数值孔径中的每一个的准直器数值孔径。每一微透镜(54;54a,54b)具有大于其耦合器侧数值孔径的准直器侧数值孔径。以此方式,由NA不匹配引起的插入损耗减小。

Description

用于扫描测量距物体的距离的LiDAR装置
技术领域
本发明涉及一种用于基于FMCW LiDAR技术来扫描测量距移动或静止物体的距离的装置。此类装置可以例如用于自动驾驶车辆中,且可被实现为不具有移动组件或仅具有非常少移动组件的光子集成电路(PIC)。
背景技术
已经提出一种称为FMCW LiDAR的测量原理,以用于光学测量距离和速度。在FMCWLiDAR装置中,扫描仪在不同方向上将具有时变频率的光学信号(FMCW表示调频连续波)导向到待测量物体上。在物体处的反射之后,光学信号以低强度返回到扫描仪,且与未发射的信号(通常被称作本地振荡器信号)叠加。所得差频由检测器检测到且允许计算扫描仪与物体之间的距离。如果考虑多普勒频移,那么也可以计算扫描仪与物体之间的相对径向速度。
如果要在车辆中使用基于此测量原理的扫描仪,那么所述扫描仪必须非常稳定且可靠。这在自动驾驶车辆的情况下尤其如此,这是由于自动驾驶的安全性很大程度上取决于用于产生环境的三维图像的扫描仪。
实施为光子集成电路的扫描仪不需要旋转扫描镜或其它移动组件,且因此尤其适合于车辆中的应用。US2017/0371227 A1和US2019/0377135 A1中更详细地描述此类扫描仪等等。在这些扫描仪中,包括以树状方式布置的若干光学开关的分布矩阵用于将FMCW信号分布到不同的波导到自由空间耦合器。具有其中布置有耦合器的焦平面的准直光学件使从耦合器发出的光学信号准直,且使其在不同方向上辐射。
在从物体反射之后返回到扫描仪的光学信号的强度非常低。为了在检测这些信号时获得高信噪比,重要的是,当将信号耦合到通向检测器的光学波导中时,不发生额外的光损耗。
高耦合效率的前提条件是用于将光学信号耦合进出波导的波导到自由空间耦合器尽可能精确地位于准直光学件的焦平面中。由于迄今为止,因技术原因,光子集成的波导到自由空间耦合器一直沿着直线或在平面中布置,因此必须使用能够将精确平坦的物体场成像到远场或无穷远的良好校正的准直光学件。因此,这些光学件的物体场是平面的,而不像较简单的光学系统通常的情况那样轻微弯曲。只有使用平面物体场,才可能对所有波导到自由空间耦合器进行最佳定位,且因此获得良好准直的光束以及最小的耦合损耗。
然而,具有精确平坦的物体场的准直光学件具有体积大、沉重且昂贵的缺点。
为了解决此问题,WO 2021/029969 A1提出在波导到自由空间耦合器与准直光学件之间布置微透镜阵列。微透镜将布置在平面中的波导到自由空间耦合器成像到弯曲场中,所述弯曲场与准直光学件的弯曲物体场重合。尽管波导到自由空间耦合器布置在平面中,但可以使用构造简单的准直光学件,其仅具有几个透镜、尺寸小、重量低并且可以以低成本制造。
尽管此现有技术解决方案在准直光学件的大小、重量和成本方面具有显著优势,但事实证明,已在物体处反射并耦合到波导中的光的部分仍然不令人满意。
发明内容
因此,本发明的目标为提供一种对于已经在物体处反射的光具有改进的耦合效率的LiDAR装置。
根据本发明,通过用于扫描测量距物体的距离的LiDAR装置来解决此目标。所述装置包括光子集成电路,所述光子集成电路包括多个光学波导和多个耦合器。每一耦合器与光学波导中的一个相关联,且被配置成将在光学波导中引导的光耦合到自由空间中和/或将在自由空间中传播的光耦合到光学波导中。所述装置进一步包括:准直光学系统,其被配置成使由耦合器发射的光束准直和/或聚集已准直的光束;及多个微透镜。每一微透镜与耦合器中的一个相关联,且形成相关联的耦合器的实像或虚像。耦合器的像布置在准直光学系统的物体场中。每一耦合器具有耦合器数值孔径,且准直光学系统具有大于耦合器数值孔径中的每一个的准直器数值孔径。每一微透镜在指向耦合器的一侧上具有耦合器侧数值孔径,且在指向准直光学系统的一侧上具有大于耦合器侧数值孔径的准直器侧数值孔径。
本发明是基于以下发现:耦合器与准直光学系统之间的数值孔径(NA)的不匹配是对插入损耗的最显著影响。虽然例如光栅耦合器的可用耦合器通常具有较小NA,但事实证明,准直光学系统必须具有相对较大的NA。只有在此相对较大的NA的情况下,才能确保光束具有足够大的直径。如果发射的激光束腰太小,那么光束直径在远场中会扩展到几米。在此类光束的情况下,无法实现所需空间分辨率。
通过提供具有小于准直器侧NA的耦合器侧NA的微透镜,可以减小耦合器和准直光学系统的NA之间的不匹配。这产生改进的耦合效率。因此,在物体处反射的光的较高部分可以耦合到波导中且有助于与本地振荡器信号叠加,进而提高信噪比(SNR)且因此提高距离测量的准确度。
理想地,每一耦合器的耦合器数值孔径至少基本上等于相关联的微透镜的耦合器侧数值孔径,且准直器数值孔径至少基本上等于微透镜的准直器侧数值孔径。在完美的NA匹配的此情况下,耦合效率的益处达到其最大值。
然而,如果容忍一定的NA不匹配,那么也可以实现耦合效率的非常显著的增加。更确切地说,每一耦合器的耦合器数值孔径可以与相关联的微透镜的耦合器侧数值孔径相差小于10%,且准直器数值孔径可以与微透镜的准直器侧数值孔径相差小于10%。举例来说,每一耦合器的耦合器NA可以是0.09且相关联的微透镜的耦合器侧NA可以是0.1,并且准直器NA可以是0.3且微透镜的准直器侧NA可以是0.27。尽管有小的NA不匹配,但将实现耦合效率的显著提高。
为了将较小耦合器NA变换成较大准直器NA,最容易的方法是使用微透镜,所述微透镜包括具有不同的折射能力的两个弯曲表面。在其它实施例中,微透镜不是折射类型,而是由产生所需光学波前修改的衍射光学元件(DOE)形成。
通常,由装置发射的光可以被引导通过第一光学波导,且从物体反射的光可以耦合到不同于第一波导的第二光学波导中。参见例如申请人2020年4月14日提交的DE 102020110 142。在此类配置中,存在仅将光从第一光学波导耦合到自由空间中的耦合器,和仅将光从自由空间耦合到第二光学波导中的其它耦合器。
在其它实施例中,光学波导引导所发射的光和所接收的光两者,使得耦合器也具有双重功能。
在一些实施例中,耦合器布置在光子集成电路的表面中且被配置成发射和/或接收光束,所述光束各自具有与局部表面法线形成角度的质心射线,其中所述角度是在5°与70°之间。微透镜的光轴和相关联的质心射线的方向重合,且平行于准直光学系统的光轴。
此布置背后的基本原理是,大多数常规的光栅耦合器以及边缘耦合器不垂直于耦合器表面而是倾斜地发射或接收光。换句话说,光束的质心射线不平行于局部表面法线,而是与其形成角度。那么通常优选的是微透镜的光轴与相关联的质心射线的方向重合,因为这确保了最佳耦合效率。光子集成电路的所述表面不必为完全平面的,而是可以是阶梯状的或甚至是弯曲的。
然而,通常,所述表面将为平面的。那么优选的是具有带有表面法线的表面,所述表面法线与准直光学系统的光轴形成非零角度。因此,光子集成电路和准直光学系统的总体布置将为不平行的。
在一些实施例中,微透镜具有不同厚度。如果微透镜不仅调适数值孔径而且还修改场,则这尤其有用,如从上文所提及的WO 2021/029969 A1中已知的那样。举例来说,微透镜可以将其中布置有耦合器的平面变换成准直光学系统的(球面或非球面)弯曲物体平面。
每一微透镜可以被配置成将由相关联的耦合器产生的输入角光能分布变换成比输入角光能分布更平坦和/或更宽的输出角光能分布。角光能分布的此变换进一步提高了耦合效率。这是因为从物体反射的光以或多或少的准直平面波的形式返回到所述装置,与来自准直器的输出空间强度分布相比,所述准直平面波在准直器的自由孔径上具有加宽的空间强度分布。如果返回光通过准直光学系统聚焦,那么光束将具有更宽的角光能分布,且通常可以(至少大致)由矩形函数(也被称作顶帽分布(top hat distribution))描述。然而,与耦合器相关联的角光能分布基本上是高斯分布,且因此与顶帽分布相当不同。如果不去除此不匹配,那么耦合损耗是不可避免的。
通过借助于微透镜变换角光能分布,可去除或至少基本上减小此不匹配。准直光学系统无法用于此变换,因为这将意味着违反正弦条件,从而无法产生清晰的像。
通常,两个非球面折射表面足以实现此变换。然而,在一些实施例中,两个或更多个微透镜与每一耦合器相关联。这增加了额外的设计自由度。
上文所描述的一些功能可能难以运用具有球面折射表面的微透镜来实现。因此,在许多情况下,优选的将为使用具有至少一个非球面透镜表面的至少一些微透镜。
在一些实施例中,所述装置包括布置在微透镜与准直光学系统之间的透明平面平行板。此板可有助于减小由微透镜引入的球面像差。所述板可具有一厚度且可由一材料组成,所述厚度及所述材料被选择成使得由微透镜和板组成的子系统的球面像差小于不具有板的微透镜的球面像差。
也可以有利地采用变换角光能分布的概念,而无需调适数值孔径。根据本发明的一方面,提供一种用于扫描测量距物体的距离的LiDAR装置。所述装置包括光子集成电路,所述光子集成电路包括多个光学波导和多个耦合器。每一耦合器与光学波导中的一个相关联,且被配置成将在光学波导中引导的光耦合到自由空间中和/或将在自由空间中传播的光耦合到光学波导中。所述装置进一步包括:准直光学系统,其被配置成使由耦合器发射的光束准直和/或聚集已准直的光束;及多个微透镜。每一微透镜与耦合器中的一个相关联,且形成相关联的耦合器的实像或虚像。耦合器的像布置在准直光学系统的物体场中。每一微透镜被配置成将由相关联的耦合器产生的输入角光能分布变换成比输入角光能分布更平坦和/或更宽的输出角光能分布。
附图说明
参考结合附图进行的以下详细描述可更容易地理解本发明的各种特征和优点,在附图中:
图1是车辆接近由根据本发明的扫描装置检测到的物体的示意性侧视图;
图2是图1中所展示的扫描装置的俯视图;
图3示意性地示出根据本发明的各种实施例的扫描装置的基本设计;
图4是展示由图3中所展示的扫描装置发射的光学信号的频率的时间变化的图;
图5示意性地展示分布矩阵和扫描装置中包含的偏转单元的其它重要组件;
图6示意性地展示根据第一实施例的布置在光子集成电路的端部部分与准直光学系统之间的微透镜阵列;
图7以类似于图6的表示示意性地展示根据第二实施例的布置在光子集成电路的端部部分与准直光学系统之间的微透镜阵列,其中准直光学系统具有弯曲物体场;
图8以类似于图6的表示示意性地展示根据第三实施例的布置在光子集成电路的端部部分与准直光学系统之间的微透镜阵列,其中光子集成电路的表面法线相对于准直光学系统的光轴倾斜;
图9是根据第四实施例的修改角光能分布的一对微透镜的子午截面;
图10a、10b和10c分别是示出高斯角光分布、加宽角光分布和顶帽角光分布的图;
图11是根据第五实施例的形成波导到自由空间耦合器的虚像的微透镜的子午截面;
图12是根据第六实施例的微透镜和布置在微透镜与准直光学系统之间的平面平行板的子午截面;
图13和14以类似于图6的表示示意性地展示根据第七实施例的布置在光子集成电路的端部部分与准直光学系统之间的微透镜阵列的两个变体,其中微透镜形成在光子集成电路的表面上。
具体实施方式
1.示例性使用情境
图1是车辆10接近由树表示的物体12的示意性侧视图。车辆10具有至少一个扫描装置14,其使用光束L11、L21、L31和L41以扫描车辆10前方的环境。可以根据由扫描装置14产生的距离信息计算环境的三维图像。另外,扫描装置14确定相对于物体12的相对速度。如果物体12是也在移动的另一车辆、动物或行人,那么此信息尤其重要。
举例来说,可以使用由扫描装置14确定的关于车辆10前方的环境的信息,以辅助车辆10的驾驶员控制车辆。举例来说,当车辆10与物体12即将发生碰撞时,可以产生警告消息。如果车辆10自动驾驶,那么控制车辆10的控制算法需要关于前方环境的信息。
如图1中可看出,扫描装置14在竖直平面(在图1中,此为纸张平面)中在不同方向上发射光束L11到L41以便在竖直方向上扫描环境。同时,扫描还在水平方向上进行,如图2中在扫描装置14的俯视图中所展示。展示在水平面中在不同方向上发射的四个光束L11、L12、L13和L14。
为了清晰起见,假设在图1和2中,扫描装置14仅产生四个不同平面中的四个光束Ln1到Ln4,即,总共16个光束。然而,实际上,扫描装置14发射明显更多的光束。举例来说,k·2n个光束为优选的,其中n是7与13之间的自然数,且指示有多少光束在k个平面中的一个中发射,其中k是1与16之间的自然数。
2.扫描装置
图3示意性地展示根据本发明的实施例的扫描装置14的基本设计。扫描装置14被设计为LiDAR系统,且包括FMCW光源16,所述FMCW光源在扫描装置14的操作期间产生具有不同频率fchirp的测量光。如图4中所示出,频率fchirp随时间t在较低频率fl与较高频率fh之间周期性地变化(“线性调频脉冲”)。
在此实施例中,具有线性调频脉冲持续时间T的每一测量间隔被划分成具有相等长度T/2的两半。在第一间隔期间,频率fchirp以恒定且正的上调频速率(upchirp rate)rchirp=fchirp/dt线性地增加。在第二间隔期间,频率fchirp以恒定的负的下调频速率(downchirp rate)-rchirp线性地减小。所测量的光的频率可因此通过周期性三角形函数来描述。然而,也审慎考虑其它函数关系,例如锯齿函数。
光源16连接到分光器22,所述分光器将测量光分成参考光(也被称作本机振荡器)和输出光。在所示出的实施例中,输出光通过光学放大器24放大,且接着传递到光学循环器26,所述光学循环器将放大的测量光导向到偏转单元28。光学循环器具有三个端口A、B和C,和进入一个端口的光会离开下一端口的属性。因此,进入端口A的光会离开端口B,进入端口B的光会离开端口C,且进入端口C的光会离开端口A。光学循环器26可包含与其它偏振光学元件相互作用的偏振敏感光束分光器,如本领域本身已知的。举例来说,还可使用2×2耦合器来代替循环器,但这会导致更高的光损耗。
偏转单元28沿着不同方向将输出光导向到物体12(在图3中由移动的汽车表示)上,其已在上文参考图1和2解释。通常,由偏转单元28发射的光学信号至少部分地由物体12漫反射。反射信号的一小部分返回到扫描装置14,其中所述一小部分再耦合到偏转单元28中。
光学循环器26将此反射光部分导向到组合器30,在组合器中此光部分与已经通过分光器22与测量光分离的参考光叠加。由于叠加的光分量的频率因不同的光程长度而略微不同,因此产生差拍信号,其由对称光电检测器或另一类型的检测器32检测到。由检测器32产生的电信号被馈送到计算单元34,计算单元基于所检测到的差频计算距物体的距离R和扫描装置14与物体12之间的相对径向速度v。
图5示意性地展示偏转单元28的重要组件。其包括分布矩阵M,其中若干光学开关S11、S21和S22以树状方式布置。借助于光学分布矩阵M,在分布矩阵M的输入36处进入的光学信号可以被连续地分布到多个光学波导38。出于清晰起见,光学分布矩阵M在图5中仅具有三个光学开关,使得能够将光学信号分布到四个光学波导38。在实际扫描装置14中,八个或更多个开关级可串联布置,使得例如256个光学波导38可以选择性地连接到输入36。
在其它实施例中,分布矩阵M位于放大器24的上游或位于放大器24与循环器26之间。如果要通过将光学信号并行地供应到多个分布矩阵来同时发射多个光学信号,那么这是尤其有利的。用于将分布矩阵集成到扫描装置14中的另外其它的可能设计可以从欧洲专利申请EP 20176355.4和DE 10 2020 110 142 A1中搜集到,这两个欧洲专利申请均转让给本申请人。
每一光学波导38终止于波导到自由空间耦合器40,所述耦合器将在相关联的光学波导38中引导的光学信号耦合到自由空间中。此类波导到自由空间耦合器40在现有技术中是已知的,且可被设计为例如光栅耦合器,其具有加宽波导区域,后面跟着光栅结构。替代地,波导到自由空间耦合器40可以是边缘耦合器,其通常具有比光栅耦合器高的耦合效率。
图5进一步示出从波导到自由空间耦合器40发出的发散光束通过准直光学系统44准直且在不同方向上发射。波导到自由空间耦合器40布置得离准直光学系统44的光轴42越远,准直光学系统44发射准直光束的角度越大。
在所示出的实施例中,偏转单元28还用于接收从物体12反射的光学信号,且用于经由波导到自由空间耦合器40将所述光学信号耦合回到光学波导38中。在其它实施例中,反射信号由单独且独立的波导到自由空间耦合器40接收,且经由自身的波导被馈送到检测器32。
扫描装置14的一些组件被实现为光子集成电路(PIC)。PIC可以包括其上形成有SiN波导的硅衬底,但其它材料组合也是本领域中已知的。理想地,除了准直光学系统44之外的所有组件都是PIC的一部分。然而,由于技术限制,更复杂的组件,例如光源16、光学循环器26或检测器32,可以在PIC外部。
3.微透镜阵列-第一实施例
图6示意性地展示布置在PIC 52的端部部分与准直光学系统44之间的微透镜阵列50,为简单起见,所述准直光学系统由空的方框表示。多个光学波导38和波导到自由空间耦合器40形成在PIC 52上,使得每一波导到自由空间耦合器40与光学波导38中的一个相关联。在此第一实施例中,每一波导到自由空间耦合器40被配置成将在相关联的光学波导38中引导的光耦合到自由空间中,且还将在自由空间中传播的光耦合到相关联的光学波导38中。
微透镜阵列50包括沿着直线紧邻彼此布置的多个相同的微透镜54。每一微透镜54与波导到自由空间耦合器40中的一个相关联,且形成相关联的耦合器40的实像。波导到自由空间耦合器40的像位于准直光学系统44的物体场56中。在所展示的实施例中,物体场56是平面的。在下文进一步描述的其它实施例中,物体场56为三维弯曲的。
如可以在放大的切口57中最佳地看出,每一波导到自由空间耦合器40具有耦合器数值孔径NA1,使得光以最大角度α1发射,其中NA1=sin(α1),假设周围空气具有折射率n=1。这意味着如果角度超过α1,那么从物体12返回的光无法进入波导到自由空间耦合器40。
可以是双侧远心的准直光学系统44具有准直器数值孔径NA2,其中NA2=sin(α2)。NA2大于NA1,或在其中波导到自由空间耦合器40具有不同的数值孔径的实施例中,大于这些数值孔径NA1中的任一个。准直器数值孔径NA2由ΦEP/(2·f)给出,其中ΦEP为入射光瞳的直径且f为准直光学系统44的焦距。数值孔径NA2必须相对较大,因为只有用较大的入射光瞳才能确保光束具有足够小的发散度。
在此类条件下,且在不存在微透镜阵列50的情况下,从物体12反射且穿过准直光学系统44的光的一部分将以角度α21入射在波导到自由空间耦合器40上。此部分无法耦合到光学波导38中,且因此不会有助于与参考信号叠加。此外,准直光束的光束发散度将如此大,以致于装置14无法实现所需的空间分辨率。
微透镜54调适数值孔径,使得避免由NA不匹配引起的插入损耗。为此目的,微透镜54在指向波导到自由空间耦合器40的一侧上具有耦合器侧数值孔径NAm1,且在指向准直光学系统44的一侧上具有大于耦合器侧数值孔径NAm1的准直器侧数值孔径NAm2。理想地,条件NA1=NAm1且NA2=NAm2至少基本上成立,从而实现完美的或至少非常好的NA匹配。那么将不会因NA不匹配而引起插入损耗,从而使得扫描装置14接收更多的光,且因此产生更高的SNR和提高的准确度。
为了在耦合器侧上及在准直器侧上实现不同的NA,微透镜54具有带有不同的折射曲率(即,不同的折射能力)的表面58、60,其中表面60上的较强曲率指向准直光学系统44。通常,优选的是使用非球面表面58、60以便减小球面像差。如果光学系统44和微透镜54的球面像差彼此补偿,那么球面表面可为足够的。
微透镜54的最大直径主要取决于邻近的光学波导的横向距离。举例来说,如果存在256个光学波导38,那么微透镜54的直径在阵列是12.8mm长的情况下可以大致约为50μm。
在图6中,假设微透镜54沿着直线线性地布置。在此偏转单元28的情况下,只能在单个平面中(例如水平地)进行扫描。为了实现在垂直的扫描方向上的扫描,将需要另一扫描机构,例如旋转扫描镜。
在其它实施例中,波导到自由空间耦合器40被二维地布置在平面中。为此目的,可以使用复杂的3D PIC,或多个2D PIC可以一个接一个堆叠在彼此的顶部上。接着,各自与单个波导到自由空间耦合器40相关联的微透镜54也将布置成二维阵列。在此类实施例中,不需要机械组件,例如旋转扫描镜,因为在两个方向上的扫描是通过覆盖准直光学系统44的整个物体场(不仅仅是一条线)的波导到自由空间耦合器40来完成的。
4.微透镜阵列-第二实施例
图7以类似于图6的表示示意性地展示根据第二实施例的微透镜阵列50,其中准直光学系统44具有弯曲物体场56。允许弯曲的物体场56使得有可能设计出具有非常少—在所展示的实施例中仅具有两个—透镜L1和L2的准直光学系统44,所述透镜可具有至少一个非球面表面。这减小了准直光学系统44的大小、重量和成本。
此实施例中的微透镜54不仅减少或消除数值孔径不匹配,而且还用于对波导到自由空间耦合器40进行成像,所述波导到自由空间耦合器再次在弯曲物体场56上、在弯曲场上沿着直线布置或三维地布置在平面中。实现此的一种方法是以下布置:其中波导到自由空间耦合器40布置在微透镜54的前表面58的前焦平面中。接着,可以通过改变微透镜54的厚度、即通过使用表面58、60之间的不同距离来轴向地定位波导到自由空间耦合器40的像。在某些情况下,可能还需要调适表面58、60的表面形状。
5.微透镜阵列-第三实施例
图8以类似于图6的表示示意性地展示根据第三实施例的微透镜阵列50。在此实施例中,PIC 52具有其中布置有波导到自由空间耦合器40的表面62。在所展示的实施例中,表面62是平面的,且不垂直于准直光学系统44的光轴42对准。换句话说,表面法线64与光轴44形成角度β>0,如图8中所示出。
此倾斜布置是有利的,因为大多数波导到自由空间耦合器40发射光束—或更确切地说,光束的质心射线,所述光束并非平行的,而是与局部表面法线成一定角度。与准直光学系统44的光轴42形成的此角度可以通过将整个PIC 52从其如图7中所展示的常规的布置倾斜角度β来容易地补偿。在某一倾斜角度,光束的质心射线与微透镜54的光轴重合,且平行于准直光学系统44的光轴42。这避免了校正由于穿过微透镜的倾斜射线而导致的非旋转对称像差的需要。
然而,使PIC 52倾斜还导致场的倾斜,所述场通过微透镜阵列50成像在准直光学系统44的物体场56上。如图8中所展示,可以通过轴向地定位具有不同厚度的微透镜54而将其中布置有波导到自由空间耦合器40的倾斜场成像在弯曲物体场56上。
如果PIC 52的表面62并非平面的而是阶梯状的或甚至弯曲的,那么此方法也适用。
6.微透镜阵列-第四实施例
在前述实施例中,恰好一个微透镜54与每一波导到自由空间耦合器40相关联。如果存在不是仅一个、而是两个或更多个微透镜与每一波导到自由空间耦合器40相关联,那么更多的设计选项和其它功能是可用的。图9示出与单个波导到自由空间耦合器40相关联的一对微透镜54a、54b。
举例来说,微透镜54可以被配置成将由相关联的波导到自由空间耦合器40产生的输入角光能分布变换成比输入角光能分布更平坦和/或更宽的输出角光能分布。
角光能分布的此变换进一步提高了耦合效率。与波导到自由空间耦合器40相关联的角光能分布通常是高斯分布,如图10a中所示出,图10a展示随发射角度α而变的强度lout。另一方面,从物体12反射且返回到扫描仪装置14的光基本上准直地到达,即作为平面波。如果平面波通过准直光学系统44聚焦,那么从准直光学系统44发出的光束将具有更宽的角光能分布且通常可以(至少大致)由顶帽分布描述,如图10c中所示出,图10c展示随角度α而变的强度Iin。然而,波导到自由空间耦合器40适于发射且接收具有高斯角分布的光。如果不去除此不匹配,那么额外的插入损耗是不可避免的。
图9中所展示的一对微透镜54a、54b将由波导到自由空间耦合器40产生且具有如图10a中所展示的高斯角光能分布的发散光束变换成比高斯角光能分布更平坦且更宽的光能分布(图10b)。为此目的,发散高斯光束通过第一表面58a准直。第二表面60a和第三表面58b重布空间光分布,且最后一个表面60b再次聚焦光,进而将重布的空间光分布变换成具有所需孔径角度和更宽角分布的输出分布。为了重布空间光分布,第一微透镜54a的表面60a具有使光折射远离光轴的凹入的中心区域。第二微透镜54b的表面58b再准直光的此部分。
由于单个折射表面无法实现正弦条件,因此图9中所展示的实施例可以在对聚焦光束的波前进行非常好的校正的附加要求的情况下将图10a中所展示的高斯角输入分布仅变换成在中间和边缘处有偏差的更宽且大致矩形的分布,如图10b中所示出。
如图10c中的基本上矩形的角分布以及聚焦光束的非常好的校正可以通过按以下方式修改图9中所展示的实施例来实现。在此修改的实施例中,表面58a、60b为平面的,且具有两个弯曲表面且实现正弦条件的正透镜放置在表面58a前方。实现正弦条件的另一透镜放置在表面60b之后。替代地,可以使用各自具有两个弯曲表面的三个或更多个微透镜。接着,可以通过准直光学系统44来聚焦从物体返回的横跨准直器自由孔径具有矩形空间强度分布(在限制的情况下)的平面波,使得光束至少在非常好的近似下具有顶帽角光能分布。微透镜54b与准直光学系统44之间的额外微透镜将此角顶帽变换成空间顶帽分布。微透镜54a和54b的弯曲表面60a、58b分别将此顶帽空间光能分布变换成高斯空间光能分布。所述高斯空间光能分布通过布置在微透镜54a与波导到自由空间耦合器40之间的额外微透镜变换成高斯角分布,所述高斯角分布可以由波导到自由空间耦合器40完全接收。
7.微透镜阵列-第五实施例
虽然提供两个或更多个透镜在许多情况下可能是有用的,但是也可以运用每一波导到自由空间耦合器40仅一个微透镜来实现角光能分布的变换。图11示出微透镜54,其具有两个非球面表面58、60且形成波导到自由空间耦合器40的虚像66。单个微透镜54将由波导到自由空间耦合器40产生的高斯角光能分布变换成顶帽角光能分布,且在反向上,反之亦然。
8.微透镜阵列-第六实施例
图12示出其中具有非球面表面的单个微透镜54实现调适数值孔径和角光能分布的两个功能的另一实施例。在此实施例中,微透镜54产生波导到自由空间耦合器40的实像。扫描仪装置14包括布置在微透镜54与准直光学系统44之间的透明平面平行板70。此板70可有助于放宽对微透镜54的必要的球面像差校正,因为板70产生负球面像差,其可以至少部分地补偿由正透镜产生的正球面像差。这可以允许在微透镜54中使用至少一个纯球面表面。由板70形成的虚像由66指示。
在其中不需要球面像差的补偿的情况下,也可以在没有板70的情况下有利地使用图12中所展示的光学设计。
9.微透镜阵列-第七实施例
图13和14以类似于图6到8的表示示出其中仅具有一个弯曲表面的第一微透镜54a直接附接在PIC 52的表面62上或与其一体地形成的实施例。第一微透镜54a使从波导到自由空间耦合器40发射的光束准直。
第二微透镜54b在透明楔形件72的一侧上一体地形成,所述透明楔形件布置在PIC52与准直光学系统44之间的空间中。第二微透镜54b在准直光学系统44的物体场56中形成波导到自由空间耦合器40的像。
楔形件72的相对侧由平面表面74形成,所述平面表面布置成相对于准直光束的传播方向倾斜。此倾斜布置确保来自平面表面74的反射不会到达波导到自由空间耦合器40。
在图13中所展示的实施例中,波导到自由空间耦合器40在垂直于PIC 52的表面62的方向上发射光束。因此,PIC 52相对于准直光学系统44的光轴42倾斜。
在图14中所展示的实施例中,波导到自由空间耦合器40相对于PIC 52的表面62倾斜地发射光束。选择楔形件72的楔角,使得由平面表面74引起的光束倾斜补偿由波导到自由空间耦合器40产生的光束倾斜。PIC 54的表面62因此可以布置成垂直于准直光学系统44的光轴42。

Claims (13)

1.一种用于扫描测量距物体(12)的距离的LiDAR装置(14),其中所述装置(14)包括:
光子集成电路(52),其包括多个光学波导(38)和多个耦合器(40),其中每一耦合器(40)
与所述光学波导(38)中的一个相关联,且
被配置成将在所述光学波导(38)中引导的光耦合到自由空间中和/或将在自由空间中传播的光耦合到所述光学波导(38)中,
准直光学系统(44),其被配置成使由所述耦合器(40)发射的光束准直和/或聚集已准直的光束,及
多个微透镜(54;54a,54b),其中
每一微透镜(54;54a,54b)与所述耦合器(40)中的一个相关联,且形成相关联的耦合器(40)的实像或虚像,其中所述耦合器的所述像被布置在所述准直光学系统(44)的物体场(56)中,
其中
每一耦合器(40)具有耦合器数值孔径,且所述准直光学系统(44)具有大于所述耦合器数值孔径中的每一个的准直器数值孔径,且其中
每一微透镜(54;54a,54b)在指向所述耦合器(40)的一侧上具有耦合器侧数值孔径,且在指向所述准直光学系统(44)的一侧上具有大于所述耦合器侧数值孔径的准直器侧数值孔径。
2.根据权利要求1所述的装置,其中每一耦合器(40)的所述耦合器数值孔径至少基本上等于相关联的微透镜(54;54a,54b)的所述耦合器侧数值孔径,且其中所述准直器数值孔径至少基本上等于所述微透镜(54;54a,54b)的所述准直器侧数值孔径。
3.根据权利要求2所述的装置,其中每一耦合器(40)的所述耦合器数值孔径与所述相关联的微透镜(54;54a,54b)的所述耦合器侧数值孔径相差小于10%,且其中所述准直器数值孔径与所述微透镜(54;54a,54b)的所述准直器侧数值孔径相差小于10%。
4.根据前述权利要求中任一项所述的装置,其中所述每一微透镜(54;54a,54b)包括具有不同的折射能力的两个弯曲表面(58,60)。
5.根据前述权利要求中任一项所述的装置,其中
所述耦合器(40)被布置在所述光子集成电路(52)的表面(62)中,
所述耦合器(40)被配置成发射和/或接收光束,所述光束各自具有与局部表面法线(64)形成角度的质心射线,其中所述角度是在5°与70°之间,且其中
所述微透镜的光轴与相关联的质心射线的方向重合,且平行于所述准直光学系统(44)的光轴(42)。
6.根据权利要求5所述的装置,其中所述表面(62)是平面的且具有表面法线(64),所述表面法线与所述准直光学系统(44)的所述光轴(42)形成非零角度(β)。
7.根据前述权利要求中任一项所述的装置,其中所述微透镜(54;54a,54b)具有不同的厚度。
8.根据前述权利要求中任一项所述的装置,其中每一微透镜(54;54a,54b)被配置成将由所述相关联的耦合器(40)产生的输入角光能分布变换成比所述输入角光能分布更平坦和/或更宽的输出角光能分布。
9.根据权利要求7所述的装置,其中所述输出角光能分布至少基本上是矩形分布。
10.根据权利要求7或8中任一项所述的装置,其中两个或更多个微透镜(54a,54b)与每一耦合器(40)相关联。
11.根据前述权利要求中任一项所述的装置,其中至少一些微透镜(54;54a,54b)具有至少一个非球面透镜表面。
12.根据前述权利要求中任一项所述的装置,其包括布置在所述微透镜(54)与所述准直光学系统(44)之间的透明平面平行板(70)。
13.根据前述权利要求中任一项所述的装置,其中所述准直光学件(44)的所述物体场(56)是弯曲的。
CN202280051185.1A 2021-07-27 2022-07-18 用于扫描测量距物体的距离的LiDAR装置 Pending CN117677861A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP21187955.6 2021-07-27
EP21187955.6A EP4124882A1 (en) 2021-07-27 2021-07-27 Lidar device for scanning measurement of a distance to an object
PCT/EP2022/070036 WO2023006470A1 (en) 2021-07-27 2022-07-18 Lidar device for scanning measurement of a distance to an object

Publications (1)

Publication Number Publication Date
CN117677861A true CN117677861A (zh) 2024-03-08

Family

ID=77226592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280051185.1A Pending CN117677861A (zh) 2021-07-27 2022-07-18 用于扫描测量距物体的距离的LiDAR装置

Country Status (4)

Country Link
EP (1) EP4124882A1 (zh)
KR (1) KR20240027114A (zh)
CN (1) CN117677861A (zh)
WO (1) WO2023006470A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9651417B2 (en) * 2012-02-15 2017-05-16 Apple Inc. Scanning depth engine
US10261389B2 (en) 2016-06-22 2019-04-16 Massachusetts Institute Of Technology Methods and systems for optical beam steering
US10613276B2 (en) 2018-06-08 2020-04-07 Huawei Technologies Co., Ltd. Optical scanner with optically switched paths to multiple surface or edge couplers
AU2019290021A1 (en) * 2018-06-21 2020-12-17 Baraja Pty Ltd An optical beam director
WO2021029969A1 (en) 2019-08-13 2021-02-18 Apple Inc. Focal plane optical conditioning for integrated photonics
DE102020110142A1 (de) 2020-04-14 2021-10-14 Scantinel Photonics GmbH Vorrichtung und Verfahren zur scannenden Messung des Abstands zu einem Objekt

Also Published As

Publication number Publication date
EP4124882A1 (en) 2023-02-01
KR20240027114A (ko) 2024-02-29
WO2023006470A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
US6567584B2 (en) Illumination system for one-dimensional spatial light modulators employing multiple light sources
US20210316756A1 (en) Device and method for scanning measurement of the distance to an object
US10048504B2 (en) Optical system generating a structured light field from an array of light sources by means of a refracting or reflecting light structuring element
US7413311B2 (en) Speckle reduction in laser illuminated projection displays having a one-dimensional spatial light modulator
KR20200041365A (ko) 커버 요소로 커버된 스캐닝 미러를 갖고 있는 lidar 스캐너용 송신 장치
JP5237813B2 (ja) 電気光学的測定装置
KR20220060528A (ko) 헤드 마운트 디스플레이용 컴팩트 프로젝터
US11947040B2 (en) Monostatic LiDAR transceiver system
JP6913236B2 (ja) Lidarシステム用の光学装置、lidarシステム、及び作業装置
US8654424B2 (en) Multibeam deflector for separating beams output from optical deflection devices
JP2016109517A (ja) レーザレーダ装置
EP0278929B1 (en) Alignment means for a light source emitting invisible laser light
CN117677861A (zh) 用于扫描测量距物体的距离的LiDAR装置
CN1379287A (zh) 具有offner型宏光具的印版制图像装置
US11237399B2 (en) Optical beam shaping unit, distance measuring device and laser illuminator
US20090168186A1 (en) Device and method for reducing etendue in a diode laser
JP5430112B2 (ja) ビーム光投受光装置
US7301697B2 (en) Microscope device
US20020041732A1 (en) Optical module
JP2004272116A (ja) 波長分散補償器及び光伝送装置
WO2023218924A1 (ja) 細径ビーム生成装置
CN220288408U (zh) 组合式瞄准系统及其光学系统
KR102608027B1 (ko) 고해상도 차량 헤드램프
EP3422615B1 (en) Filter block for an n-channel multiplexing/demultiplexing device and optical wavelength division/demultiplexing device
US20210231780A1 (en) Beamsplitter Architecture for Monostatic LiDAR

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination