CN117618564A - 一种中空型载药纳米粒子在制备声动力治疗药物中的应用 - Google Patents

一种中空型载药纳米粒子在制备声动力治疗药物中的应用 Download PDF

Info

Publication number
CN117618564A
CN117618564A CN202311668987.XA CN202311668987A CN117618564A CN 117618564 A CN117618564 A CN 117618564A CN 202311668987 A CN202311668987 A CN 202311668987A CN 117618564 A CN117618564 A CN 117618564A
Authority
CN
China
Prior art keywords
cds
drug
hpmaa
hollow
dox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311668987.XA
Other languages
English (en)
Inventor
朱森强
孟庆轩
朱晨杰
汪佳
刘睿
朱红军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202311668987.XA priority Critical patent/CN117618564A/zh
Publication of CN117618564A publication Critical patent/CN117618564A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • A61K41/0033Sonodynamic cancer therapy with sonochemically active agents or sonosensitizers, having their cytotoxic effects enhanced through application of ultrasounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/58Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly[meth]acrylate, polyacrylamide, polystyrene, polyvinylpyrrolidone, polyvinylalcohol or polystyrene sulfonic acid resin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种中空型载药纳米粒子在制备声动力治疗药物中的应用,属于医药应用技术领域,开发了中空型载药纳米粒子的新用途。本发明利用中空型载药纳米粒子的药理实验及结果来说明其在制备声动力治疗药物中的应用,使用方法为静脉注射,以磷酸盐缓冲液作为溶剂(PBS;pH=7.4),药物浓度为2mg mL‑1,注射1.2 mL(荷瘤小鼠实验),注射12 h后进行超声,超声功率为0.5 W cm−2,持续6分钟;通过体外生物实验和体内生物实验结果,确认所述中空型载药纳米粒子在声动力治疗中具有较好的抗肿瘤效果,同时还能够负载化疗药物,发挥声动力治疗和化疗的协同作用。

Description

一种中空型载药纳米粒子在制备声动力治疗药物中的应用
技术领域
本发明属于医药应用技术领域,具体涉及一种中空型载药纳米粒子在制备声动力治疗药物中的应用。
背景技术
癌症严重危害人类的生命健康,目前癌症的发病率日益增加。而目前对于癌症的治疗手段主要包括放疗、化疗以及一些其他治疗方法。对于化疗来说,目前主要存在两个问题:第一点为癌细胞的耐药性;另一方面癌细胞的转移。同时由于癌症组织中具有一些不一样的生理特点,例如较低的pH和较高的谷胱甘肽(GSH)浓度,根据这一特点可以通过载药系统可以将化疗药物运送至肿瘤部位。此外,肿瘤血管中存在着高滞留高渗透效应(EPR),当粒径合适的纳米粒子可以通过该效应被动滞留在肿瘤部位。除了被动靶向效果之外,还具有一些主动靶向肿瘤部位的受体,这类受体可以在肿瘤细胞中特异性表达,例如叶酸受体,相较于正常细胞,叶酸受体在肿瘤细胞中过度表达100倍之多,因此根据这一特点可以对其进行主动靶向,从而能够对癌症组织进行针对性治疗。而目前的载药纳米粒子具有较低的药物包封效果,同时其刺激响应性较差,容易导致载药纳米粒子的治疗效果差等问题。
除了传统的化疗治疗手段外,声动力(Sonodynamic therapy,SDT)是一种起源于光动力(Photodynamic Therapy,PDT)的新型治疗方法,该方法具有组织穿透性高,能够将超声能量聚焦于肿瘤组织内部,并激活声敏剂产生肿瘤抑制作用。超声由于具有非侵袭特性,不仅可以穿透更深的组织层,而且可以最大限度地减少对周围正常组织的损伤。另外,超声所聚焦在肿瘤部位特性可用于靶向激活声敏剂,从而选择性的杀死肿瘤细胞,而对邻近的正常组织损伤极小。而目前声敏剂主要分为有机声敏剂、无机声敏剂和声动力纳米材料三大类。无机声敏剂主要包含二氧化钛纳米粒子,二氧化钛纳米粒子具备高活性电子和特殊的化学结构,能够在超声作用下产生ROS。无机声敏剂普遍存在生物相容性差、代谢困难、ROS转化效率低等缺点,限制了其研究与应用。有机声敏剂主要由光敏剂发展而来,包括卟啉类、氧杂蒽酮类、非甾体类等,其中卟啉类为最早发现的声敏剂,可作为有机声敏剂的代表。与无机声敏剂比较,有机声敏剂具有易于修饰,可被生物体内代谢,ROS产生量多等优势,但其通常水溶性差,易在体内聚集并被清除,具有光毒性,易引起皮肤病变。另外,碳点(CDs)是具有荧光性质的准球形纳米颗粒,尺寸约为10nm,其外层含有含氧基团。CDs壳层上的这些含氧基团使材料在超声活化时产生ROS并产生空化气泡。研究表明,碳点可以作为声敏剂应用于声动力治疗中,但是由于碳点材料所具有的小尺寸特性容易被快速代谢从而影响声动力治疗效果。
发明内容
本发明提供了一种中空型载药纳米粒子在制备声动力治疗药物中的应用,开发了中空型载药纳米粒子的新用途,并提供了用于声动力治疗的新药物。
为更好的理解本发明实质,下面将利用中空型载药纳米粒子的药理实验及结果来说明其在制备声动力治疗药物中的应用。
根据体外生物实验和体内生物实验结果,使用方法为静脉注射,以磷酸盐缓冲液作为溶剂(PBS;pH=7.4),药物浓度为2mg mL-1,注射1.2mL(荷瘤小鼠实验),注射12h后进行超声,超声功率为0.5W cm-2,持续6分钟;通过观察肿瘤细胞的的凋亡情况,确认所述中空型载药纳米粒子在声动力治疗中具有较好的抗肿瘤效果。
所述中空型载药纳米粒子为修饰碳点的中空型聚甲基丙烯酸,由三层纳米结构组成,外层由碳点组成,该碳点通过酰胺化反应键链到聚甲基丙烯酸外层,主要起到主动靶向效果(叶酸受体靶向)和声动力治疗效果;中层结构为聚甲基丙烯酸,具有双硫键,可响应肿瘤微环境中的GSH(谷胱甘肽),主要起到减缓药物自主释放和刺激响应性药物释放的作用;最内层结构为空腔结构,用于负载药物,主要作用表现在两方面:一方面超声响应性主要表现在增强声动力治疗的效果;一方面是空腔结构能够造成药物突释,达到控释药物的效果。
有益效果:本发明提供了一种中空型载药纳米粒子在制备声动力治疗药物中的应用,开发了中空型载药纳米粒子的新用途,与现有技术相比具有以下优势:
1、特殊的中空型结构能够有效提高声动力治疗能力,同时载药基底能够对低频超声具有灵敏的刺激响应特性,成为可控释的载药系统;
2、具有灵敏的刺激响应性,在超声的作用下既能够产生活性氧同时还能够导致药物突释,使得纳米粒子达到更有效的主动控释效果;
3、具有声动力治疗作用的同时还能够负载化疗药物,使得联合治疗能力得到进一步加强;
4、具有多重靶向效果,其刺激响应时间较短,有利于进一步的推广使用;
5、生物安全性高,具有较强的实用价值。
附图说明
图1为本发明实施例中不同阶段纳米粒子的扫描电镜和透射电镜图像,图a为核壳型聚甲基丙烯酸(CS-PMAA)的扫描电镜和透射电镜,图b为碳点(CDs)的高分辨透射电镜和晶格条纹,图c为具有碳点修饰的中空型聚甲基丙烯酸(CDs@HPMAA)的透射电镜,图d为负载多柔比星的具有碳点修饰的中空型聚甲基丙烯酸(DOX@CDs@HPMAA)的扫描电镜以及透射电镜;
图2本为本发明实施例中纳米粒子CDs@HPMAA和CDs在不同超声功率下的活性氧产生情况(DPBF作为活性氧探针);
图3本为本发明实施例中纳米粒子CDs@HPMAA和CDs在超声情况下EPR谱图(TEMP作为活性氧探针);
图4本为本发明实施例中纳米粒子CDs@HPMAA和碳点CDs的循环伏安曲线图;
图5本为本发明实施例中纳米粒子CDs@HPMAA和碳点CDs莫特肖基特曲线图;
图6本为本发明实施例中纳米粒子CDs@HPMAA和碳点CDs的价带与导带实验计算图;
图7为本发明实施例中DOX@CDs@HPMAA在正常生理环境(pH=7.4;c=0mM)与在酸性不含GSH(pH=5.0;c=0mM)和酸性含有GSH(pH=5.0;c=10mM)以及酸性含有GSH并在中途具有超声刺激(pH=5.0;c=10mM;with US)的药物释放曲线;
图8为本发明实施例中纳米粒子DOX@CDs@HPMAA和CDs@HPMAA在细胞水平中的声毒性和联合治疗能力;
图9为本发明实施例中纳米粒子DOX@CDs@HPMAA的Calcein-AM/PI染色及其染色数据定量化结果;
图10为本发明实施例中纳米粒子CDs@HPMAA中的细胞迁移实验;
图11为本发明实施例中纳米粒子CDs@HPMAA与DOX@CDs@HPMAA的细胞凋亡检测;
图12为本发明实施例中纳米粒子CDs@HPMAA的体内荧光成像;
图13为本发明实施例中纳米粒子DOX@CDs@HPMAA的溶血性测试;
图14为本发明实施例中纳米粒子DOX@CDs@HPMAA的血常规测试;
图15为本发明实施例中纳米粒子DOX@CDs@HPMAA的H&E染色(心脏、肝脏、脾脏、肺和肾脏);
图16为本发明实施例中纳米粒子DOX@CDs@HPMAA对荷瘤小鼠的治疗过程;
图17为本发明实施例中不同治疗组和对照组的荷瘤小鼠肿瘤体积测试;
图18为本发明实施例中不同治疗组和对照组的荷瘤小鼠生物学数据,图a为荷瘤小鼠在治疗时间内体积变化,图b为荷瘤小鼠相对肿瘤体积变化数据,图c为治疗后肿瘤最终体积变化,图d为小鼠肿瘤数码图片;
图19为本发明实施例中对照组和治疗组内的肿瘤切片H&E、TUNEL、Ki67染色图;
图20为探究治疗组死亡机理生信分析,其中a为对照组与治疗组异常基因热图,b为处理后基于RNA测序的差异基因表达谱的GO,c为KEGG分析图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明:
一种中空型载药纳米粒子在制备声动力治疗药物中的应用,根据体外生物实验和体内生物实验结果,使用方法为静脉注射,以磷酸盐缓冲液作为溶剂(PBS;pH=7.4),药物浓度为2mg mL-1,注射1.2mL(荷瘤小鼠实验),注射12h后进行超声,超声功率为0.5W cm-2,持续6分钟。
所述中空型载药纳米粒子为修饰碳点的中空型聚甲基丙烯酸,由三层纳米结构组成,外层由碳点组成,该碳点通过酰胺化反应键链到聚甲基丙烯酸外层,主要起到主动靶向效果(叶酸受体靶向)和声动力治疗效果;中层结构为聚甲基丙烯酸,具有双硫键,可响应肿瘤微环境中的GSH(谷胱甘肽),主要起到减缓药物自主释放和刺激响应性药物释放的作用;最内层结构为空腔结构,用于负载药物,主要作用表现在两方面:一方面超声响应性主要表现在增强声动力治疗的效果;一方面是空腔结构能够造成药物突释,达到控释药物的效果。
所述中空型载药纳米粒子的制备方法,包括以下步骤:
CDs的合成:
将叶酸(0.150g,0.340mmol)缓慢加入蒸馏水(50.0mL)中并剧烈搅拌得到均匀的悬浊液。将悬浊液加入高压釜的聚四氟乙烯内衬后密封,将高压釜放入电热鼓风干燥箱中在180℃下反应2h。反应液经0.22μm滤膜过滤,收集滤液除去溶剂后密封低温保存待用。
MPS@SiO2的合成:
通过合成法制备表面修饰有碳碳双键的二氧化硅粒子(MPS@SiO2)。在100mL烧瓶中加入NH3·H2O(1.0mL)和蒸馏水(12.5mL)混合均匀,再将正硅酸四乙酯(4.0mL)的乙醇(52.5mL)溶液快速加入烧瓶中并搅拌(600r/min)。在70℃下反应24h,降至室温,再加入3-(异丁烯酰氧)丙基三甲氧基硅烷(2.0mL)反应12h。待反应结束后,经离心分离得到白色固体,再重新分散至乙醇中离心洗涤三遍,收集固体在真空干燥箱中干燥24h(40℃),得到白色粉末(MPS@SiO2)。
BACy的合成:
取胱胺二盐酸盐(5.630g,25.00mmol)加入100mL烧瓶,再加入40.0mL蒸馏水搅拌至全部溶解。随后,将体系温度降至0℃,用恒压滴液漏斗缓慢加入NaOH水溶液(20.0mL,5.00mol/L)并搅拌10min,再用恒压滴液漏斗加入丙烯酰氯的二氯甲烷溶液(10.0mL,5.00mol/L)。保持0℃反应0.5h,将体系温度逐渐回复至室温再反应12h。通过减压抽滤分离反应液,收集固体用石油醚/乙酸乙酯(V/V=1/1)进行重结晶,烘干后得到白色固体(BACy,4.780g,产率73.54%)。
CS-PMAA的合成:
准确称取甲基丙烯酸(0.600g)、BACy(0.075g)、MPS@SiO2(0.200g)和偶氮二异丁腈(0.060g)加入100mL单口烧瓶中,再加入CH3CN并超声10min。在反应瓶上连接一刺形冷凝管,搅拌(200r/min)并升温至83℃反应0.5h,溶液变成白色。再将反应装置改为蒸馏装置,温度升高至105℃,蒸馏出一半溶剂后停止加热,待反应液温度降至室温经离心得到白色固体,再用CH3CN重新分散、离心,重复三次后收集固体在真空干燥箱中干燥24h(40℃),得到白色粉末(核壳型聚甲基丙烯酸,CS-PMAA)。
CDs@CS-PMAA的合成:
称取0.200g CS-PMAA、N-羟基琥珀酰亚胺(0.575g,5.000mmol)、二环己基碳二亚胺(0.413g,2.000mmol)和CDs(0.10g)加入烧瓶中,再加入CH3CN(20.0mL)。在氮气条件下,60℃下活化10h后加入乙二胺(1.0mL),反应12h后冷却至室温。反应液经离心分离,收集固体用蒸馏水重新分散洗涤三次,将收集的固体在-40℃下真空冷冻干燥24h,得到黄色粉末(修饰碳点的核壳型聚甲基丙烯酸,CDs@CS-PMAA)。
CDs@HPMAA的合成:
称取0.200g修饰碳点的聚甲基丙烯酸(CDs@CS-PMAA)加入聚四氟乙烯烧杯中,加入45mLCH3CN超声分散10min,缓慢搅拌并滴加5mL氢氟酸。反应24h后,经离心分离收集固体,再用水重新分散洗涤三次,得到的固体在-40℃下真空冷冻干燥24h,得到淡黄色粉末(修饰碳点的中空型聚甲基丙烯酸,CDs@HPMAA)。
DOX@CDs@HPMAA的合成:
分别称取10mg干燥的CDs@HPMAA分散在10.0mL磷酸盐缓冲溶液(PBS,pH=7.4)中,再加入6mg多柔比星(DOX),常温下搅拌(100r/min)24h。经离心除去游离的多柔比星,收集固体再分散至PBS中洗涤三次,得到的固体在-40℃下真空冷冻干燥24h,分别得到红色粉末(DOX@CDs@HPMAA)。
以下对上述超声响应特性的纳米粒子进行测试:
测试例1:CDs@CS-PMAA,CDs@HPMAA,DOX@CDs@HPMAA等纳米粒子的TEM/SEM电镜测试
取适量CDs@CS-PMAA,CDs@HPMAA,DOX@CDs@HPMAA分别分散至CH3CN中,滴至铜导电胶带上干燥。随后将铜导电胶带固定至样品台上,在SEM上观察样品的形貌。TEM制样分散溶剂与SEM相同,并滴加到铜网中,自然晾干即可。电镜图像如图1所示,最终纳米粒子(DOX@CDs@HPMAA)粒径在150nm左右,该纳米粒子符合高渗透高滞留效应(EPR效应)所规定的粒径要求,能够有效的被动滞留在肿瘤组织内部,另外通过不同阶段纳米粒子的扫描电镜和透射电镜图像,纳米粒子由原来的核壳型结构转化为中空型结构,通过TEM可以看出CDs@HPMAA的空腔结构,在药物进行自组装之后,其内部的空腔结构被药物所填充。
测试例2:CDs与CDs@HPMAA的体外声动力治疗能力测试
以水溶液作为溶剂,以1,3-二苯基异苯并呋喃(DPBF)作为参比物质,将CDs与CDs@HPMAA配置成浓度为1.5mg·mL-1的样品溶液,然后使用紫外分光光度计,在室温避光条件下,对样品溶液进行测试,激发光谱和发射光谱如图2所示,从图2中可以看出,相较于单纯碳点材料,具有碳点修饰的中空型材料具有更强的DPBF降解能力,预示其具有较强的活性氧产生能力,在测试活性氧类型测试中,将20μL2,2,6,6-四甲基-4-哌啶酮(TEMP)和CDs(150μg mL-1,5.0mL)或CDs@HPMAA(150μg mL-1,5.0mL)的混合物溶液暴露于超声辐射下5分钟,并使用TEMP作为捕获剂的ESR光谱仪检测1O2的信号,其检测结果如图3显示,CDs@HPMAA具有更强的单线态氧信号,表现出更强的活性氧产生效果,此类的增强效果来源于载药纳米粒子所具有的空腔结构,能够增强低频超声所具有的空化作用,达到增强声动力治疗和超声响应特性的效果。
测试例3:CDs与CDs@HPMAA的电化学测试(循环伏安测试;莫特-肖特基曲线测试)
CD和CDs@HPMAA的CV曲线基于使用电化学工作站的三电极系统(中国CHI 760E)测量。参比电极、对电极和电解质分别为Ag/AgCl、铂丝和TBAPF6。采用阻抗谱分析了CDs和CDs@HPMAA的电导率类型。CD和CDs@HPMAA的导带和价带边缘通过线性电位扫描(50mV s-1)确定。如图5所示,根绝测试结果表明,CDs与CDs@HPMAA可以作为p型半导体。在超声的情况下,半导体价带与导带分离,价带作为空穴牺牲剂消耗过多的GSH,而导带与氧气产生活性氧。该纳米粒子在产生活性氧的同时能够消耗更多的GSH,因此相较于普通的声敏剂展现了更强的治疗效果,更容易导致肿瘤部位氧化应激失衡。
测试例4:CDs与CDs@HPMAA的药物释放实验
通常,将DOX@CDs@HPMAA(5.0mg)分散在4.0mL的不同缓冲溶液(pH=7.4;pH=5.0)中,并将分散液分成四个相等的部分(pH=7.4;pH=5.0;pH=5.0,GSH=10mM;pH=5.0,GSH=10Mm,With US),然后将每个DOX@CDs@HPMAA转移到透析袋(分子量截止3500Da)中,将其在10mL相应缓冲液(pH=7.4或5.0)中透析,有或没有10mM GSH,并分别在37℃下轻轻摇动。药物释放被认为在透析袋浸入储液器后立即开始。以预定的间隔,定期从储液器中收集1mL溶液,并通过测量481nm处的吸收来分析DOX@CDs@HPMAA释放的DOX量。为了保持恒定体积,每次取样后在储液槽中补充1mL新鲜缓冲培养基。
其中V是采样体积(mL),V0是药物释放培养基的总体积(mL),Ci是采样i时多柔比星的浓度(mol L-1),Cn是采样n时的DOX(mol L-1)浓度,m是DOX@CDs@HPMAA中DOX的总量,n是采样次数;研究了DOX@CDs@HPMAA在不同pH(7.4和5.5)条件下的释药行为,pH值为5.5时,24小时内的释放速率和DOX量均高于pH值为7.4时,表明其具有酸响应释放能力。GSH作用下释放速率和释放量进一步增加,24h后释放量增加到76%。如图7所示,US刺激促进药物在短时间内快速释放,说明载药基底HPMAA对US有一定的响应,可以用来控制药物释放。
测试例5:CDs@HPMAA与DOX@CDs@HPMAA的细胞内活性氧测试
采用ROS检测试剂盒(Beyotime Biotechnology,China)检测4T1细胞中的ROS水平,4T1细胞(2×104细胞/孔)接种于24孔板中,培养12h,各组分为对照组、US、CDs@HPMAA、DOX@CDs@HPMAA、CDs@HPMAA+US和DOX@CDs@HPMAA+US;用含有CDs@HPMAA或DOX@CDs@HPMAA浓度为100μg mL-1的300μL新鲜RPMI 1640纯培养基代替培养基;各组细胞培养24h,部分组用US处理,然后按照ROS检测试剂盒的说明,用无血清RPMI 1640培养基洗涤3次,用含10μMDCFH-DA探针的无血清RPMI 1640培养液孵育30min,用无血清RPMI 1640培养基洗涤,使用荧光成像系统(Olympus IX73,日本)对其进行测量,如图8测试结果表明,CDs@HPMAA(0-150μg mL-1)在孵育48h后没有明显抑制细胞增殖,表明其细胞毒性较低;然而,当施加US刺激时,细胞活力随着CDs@HPMAA浓度、US功率和US持续时间的增加而显著下降。然后,将4T1细胞与DOX@CDs@HPMAA孵育48h,发现细胞增殖能力与DOX@CDs@HPMAA浓度呈负相关,表明DOX抑制肿瘤细胞生长;用DOX@CDs@HPMAA处理4T1细胞24h,然后进行US处理(0.5W cm-2,6min)。结果显示,4T1细胞的活力非常低,展现出良好的声动力治疗和化疗联合治疗的能力。与对照组、US组和CDs@HPMAA组相比,DOX@CDs@HPMAA组的ROS含量显著增加,这是因为蒽环类抗生素DOX可嵌入双链DNA,导致RNA合成紊乱和细胞死亡,并刺激ROS的产生,此外,CDs@HPMAA在US处理下的荧光水平也有所升高,这进一步说明了其产生ROS的能力。
测试例6:CDs@HPMAA与DOX@CDs@HPMAA的Calcein-AM/PI染色
将4T1细胞2×104细胞/孔接种于24孔板上12h,然后用纯新鲜或含(100μgmL-1的CDs@HPMAA或DOX@CDs@HPMAA)RPMI 1640培养基(300μL)处理,部分组细胞孵育24小时后用US处理,用Calcein-AM/PI试剂盒(Beyotime,中国)检测死细胞和活细胞。染色前,丢弃上清液,用缓冲液彻底清洗细胞三次,将Calcein-AM溶液(2mM,5μL)和PI溶液(1.5mM,15μL)分别加入24孔板,37℃与细胞孵育30min,荧光显微镜同时检测活细胞和死细胞,并对其进行数据可视化。根据实验结果在实验组(DOX@CDs@HPMAA+US组)中死亡细胞数量显著提高,表明DOX@CDs@HPMAA+US组的治疗效果达到最佳,具有高效的肿瘤治疗能力。
测试例7:CDs@HPMAA与DOX@CDs@HPMAA的细胞迁移实验
4T1细胞以每孔10000个细胞的密度接种于六孔板中,在细胞粘附到壁上后,做一个划痕并拍照,其中1组为控制组,2组为超声对照组,3组为CDs@HPMAA,4组为DOX@CDs@HPMAA,5组为CDs@HPMAA+US,6组为DOX@CDs@HPMAA+US,其中处理组细胞用含材料(CDs@HPMAA:150μgmL-1;DOX@CDs@HPMAA:159.08μg mL-1)孵育12h;部分组用US处理,24h后,对细胞拍照;如图10细胞迁移实验结果显示DOX@CDs@HPMAA或CDs@HPMAA+US组可以抑制肿瘤细胞迁移,DOX@CDs@HPMAA+US组的迁移率最低,仅为18%,展现出良好的抑制肿瘤迁移能力的效果,能够有效的抑制癌细胞扩散效果。
测试例8:CDs@HPMAA与DOX@CDs@HPMAA的细胞凋亡检测
采用Annexin V-FITC/PI细胞凋亡检测试剂盒(Beyotime biotech,China)检测细胞凋亡,4T1细胞接种于六孔板,每孔10000个细胞;不同处理后(CDs@HPMAA:150μg mL-1;DOX@CDs@HPMAA:159.08μg mL-1)各组细胞按说明书用Annexin V-FITC和PI在黑暗中孵育20分钟;然后用PBS洗涤细胞,用流式细胞仪(Beckman,USA)检测细胞凋亡;流式细胞术显示DOX@CDs@HPMAA和CDs@HPMAA+US组细胞凋亡明显增加,DOX@CDs@HPMAA+US组细胞凋亡最高;这些结果证实了协同治疗效果显著;协同效应的增强是由于US促进化疗药物的摄取,大量ROS的产生激活了一些凋亡通路,增加了肿瘤细胞对化疗药物的敏感性。因此,大量ROS的产生破坏了细胞氧化还原平衡,释放的DOX对细胞造成持续损伤,导致肿瘤细胞死亡。
测试例9:CDs@HPMAA的体内荧光成像
CDs@HPMAA负载近红外荧光染料IR780,实现体内荧光成像。IR780(1.2mg)和CDs@HPMAA(1.0mg mL-1,6mL)充分混合,在黑暗中温和搅拌24小时,然后通过离心和PBS(pH=7.4)洗涤得到CDs@HPMAA-IR780;CDs@HPMAA-IR780分散于PBS中,注射至小鼠尾静脉(2mgmL-1,200μL)。采用德国Bruker小动物成像系统(λex=730nm,λem=830nm)记录小鼠不同时间点(1、3、6、12和24h)的荧光图像;然后,对小鼠实施安乐死,收集其主要器官和肿瘤,获得各种器官和肿瘤的荧光图像。4T1荷瘤小鼠静脉给药CDs@HPMAA-IR780后,肿瘤部位荧光信号随着注射时间的延长逐渐增强,注射后12h肿瘤荧光信号达到峰值,说明CDs@HPMAA-IR780可以通过血液循环有效靶向并积聚在肿瘤部位;选择注射后12h作为最佳处理时间,并跟踪注射后不同时间点CDs@HPMAA-IR780在各器官的积累情况。如图12所示,CDs@HPMAA-IR780在各器官中的荧光强度随时间呈现先上升后下降的模式,进一步证明了该纳米复合递送系统的代谢能力。
测试例10:CDs@HPMAA与DOX@CDs@HPMAA的体内协同治疗
荷瘤小鼠随机分为6组(n=4):(1)对照,(2)US,(3)CDs@HPMAA,(4)DOX@CDs@HPMAA,(5)CDs@HPMAA+US,(6)DOX@CDs@HPMAA+US(CDs@HPMAA和DOX@CDs@HPMAA:2mg mL-1;US:0.5W cm-2,持续6分钟)。(1)组和(3)组静脉注射PBS,注射后12h,(2)、(5)、(6)组进行US,在15天的治疗期内,小鼠接受了两次治疗。在US处理24小时后,(1)组和(6)组中的1只小鼠被安乐死,并切除肿瘤进行RNA测序,在第一天和第三天接受治疗,每3天记录小鼠肿瘤体积和体重,肿瘤体积计算公式为:V=0.52×长×宽2。肿瘤被移除,用相机记录下来,并在15天后将老鼠放下时称重。各组肿瘤切片,采用H&E、TUNEL、Ki67染色进行组织学分析。与对照组相比,各处理组的体重没有明显下降,表明DOX@CDs@HPMAA所具有的高生物安全性。15d后肿瘤体积和平均肿瘤重量直接反映各组治疗效果。如图17-18所示,对照组、US组和CDs@HPMAA组对肿瘤生长的抑制作用可以忽略不计,相比之下,DOX@CDs@HPMAA组和CDs@HPMAA+US组小鼠表现出一定的抗肿瘤作用,尤其是US处理下的DOX@CDs@HPMAA组对肿瘤增殖的抑制作用更为明显,治疗过程中肿瘤的数码照片也清楚地显示DOX@CDs@HPMAA+US组的抗肿瘤效率优于其他治疗组,这与体外评价结果一致,充分说明SDT与化疗的协同作用具有更好的治疗优势。
如图19所示,通过H&E和TUNEL染色进一步评估DOX@CDs@HPMAA在US治疗下的疗效,与其他治疗组相比,H&E和TUNEL图像显示DOX@CDs@HPMAA+US组肿瘤细胞凋亡和坏死区域更广泛;采用Ki-67抗体染色法观察不同处理后肿瘤细胞的增殖情况,与其他组相比,DOX@CDs@HPMAA+US组Ki-67表达下调,进一步表明肿瘤细胞失去了增殖能力。体内处理结果显示,DOX@CDs@HPMAA在US处理下通过诱导细胞凋亡、抑制肿瘤增殖,达到较好的抗肿瘤效果。
测试例11:CDs@HPMAA与DOX@CDs@HPMAA的血液学以及组织染色分析
取小鼠眼球血(1ml),用2mL PBS稀释,1h后将混合物离心(1200rpm,离心5min),将获得的红细胞分散于4mL PBS中,红细胞悬液分别用0、30、60、90、120、160μg mL-1DOX@CDs@HPMAA、PBS和去离子水孵育;孵育5小时后,离心(13500rpm,10min)得到上清液,测量各组在570nm处的吸光度值。红细胞溶血率计算公式为:溶血率(%)=(sample-APBS)/(Awater-APBS)×100%。DOX@CDs@HPMAA(2mg mL-1,200L)静脉注射Blab/c小鼠,于第1天和第21天采血,检测各项血液指标;然后将心、肝、脾、肺、肾固定在福尔马林溶液中,切片进行H&E染色。如图13体外溶血实验显示,各组溶血率均在5.0%以下,说明DOX@CDs@HPMAA在特定浓度范围内具有良好的血液相容性,分析DOX@CDs@HPMAA静脉注射21d后对血常规指标及主要脏器的影响,如图14-15所示,注射DOX@CDs@HPMAA的小鼠与注射PBS的小鼠血液指标无显著差异,这意味着它不会影响血液中的各种细胞,主要脏器(心、肝、脾、肺、肾)的H&E染色结果未见明显的炎症和组织损伤,结果表明DOX@CDs@HPMAA具有良好的生物相容性。
测试例12:治疗组(DOX@CDs@HPMAA+US)小鼠转录组分析
对未治疗的小鼠肿瘤(对照组)和DOX@CDs@HPMAA+US组小鼠肿瘤组织进行了转录组测序分析。与对照组相比,DOX@CDs@HPMAA+US组肿瘤组织中有28583个异常基因,其中约203个基因出现显著异常。对差异表达基因(DEGs)进行了分层聚类,其中70个基因上调,123个基因下调,其中Cxcr5、Ccl5、Ccr7等趋化因子或趋化因子受体在肿瘤转移过程中发挥重要作用,不仅促进恶性肿瘤血管生成,而且通过改变肿瘤微环境促进肿瘤的发生、发展和转移。DOX@CDs@HPMAA+US组的Cxcr5、Ccl5和Ccr7下调,说明基于DOX@CDs@HPMAA的SDT和化疗可以通过下调Cxcr5、Ccl5和Ccr7的表达来抑制肿瘤细胞的生长。此外,参与肿瘤细胞增殖和迁移的Itgb7、Rasal3、Nrcam等基因也下调,表明基于DOX@CDs@HPMAA的协同治疗可以抑制肿瘤细胞的增殖和迁移,进行了Kyoto Encyclopedia基因与基因组百科(KEGG)途径富集研究,对于KEGG数据库,发现它诱导了与信号转导、癌症、内分泌系统、信号分子和相互作用相关的基因表达谱的改变,这些结果表明DOX@CDs@HPMAA+US的协同治疗改变了参与凋亡、增殖和迁移的基因的表达,这些基因在抑制肿瘤细胞生长中起着至关重要的调节作用。
上述各个测试结果表明本发明中所得到的纳米粒子具有较强的超声响应特性和高药物负载量,在超声的作用下,外层碳点能产生活性氧,另外超声能够促进药物的释放,对其体外和体内的实验数据说明其具有较强的生物可降解能力和安全性。
以上实例说明该纳米粒子在体外和体内的应用,体外测试预测其所具有的声动力治疗效果,体外细胞实验和体内实验结果表明该纳米粒子具有良好的声动力治疗和化疗联合治疗效果以及较强的生物安全性。
以上所述仅是本发明的优选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种中空型载药纳米粒子在制备声动力治疗药物中的应用。
2.根据权利要求1所述的中空型载药纳米粒子在制备声动力治疗药物中的应用,其特征在于,所述中空型载药纳米粒子的中空结构用于负载化疗药物,发挥声动力治疗和化疗的协同作用。
3.根据权利要求1或2所述的中空型载药纳米粒子在制备声动力治疗药物中的应用,其特征在于,所述中空型载药纳米粒子为修饰碳点的中空型聚甲基丙烯酸。
4.根据权利要求3所述的中空型载药纳米粒子在制备声动力治疗药物中的应用,其特征在于,所述中空型载药纳米粒子由三层纳米结构组成,外层由碳点组成,该碳点通过酰胺化反应键链到聚甲基丙烯酸外层,中层为聚甲基丙烯酸,内层为空腔结构。
5.根据权利要求4所述的中空型载药纳米粒子在制备声动力治疗药物中的应用,其特征在于,中层聚甲基丙烯酸具有双硫键。
CN202311668987.XA 2023-12-06 2023-12-06 一种中空型载药纳米粒子在制备声动力治疗药物中的应用 Pending CN117618564A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311668987.XA CN117618564A (zh) 2023-12-06 2023-12-06 一种中空型载药纳米粒子在制备声动力治疗药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311668987.XA CN117618564A (zh) 2023-12-06 2023-12-06 一种中空型载药纳米粒子在制备声动力治疗药物中的应用

Publications (1)

Publication Number Publication Date
CN117618564A true CN117618564A (zh) 2024-03-01

Family

ID=90019761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311668987.XA Pending CN117618564A (zh) 2023-12-06 2023-12-06 一种中空型载药纳米粒子在制备声动力治疗药物中的应用

Country Status (1)

Country Link
CN (1) CN117618564A (zh)

Similar Documents

Publication Publication Date Title
Hailing et al. Doxorubicin-loaded fluorescent carbon dots with PEI passivation as a drug delivery system for cancer therapy
CN108434462B (zh) 一种介孔聚多巴胺负载羰基锰的多功能纳米诊疗剂及其制备方法与应用
Das et al. Nanomaterials for biomedical applications
Zhang et al. Black phosphorus quantum dots gated, carbon‐coated Fe3O4 nanocapsules (BPQDs@ ss‐Fe3O4@ C) with low premature release could enable imaging‐guided cancer combination therapy
Zhang et al. Perylenediimide chromophore as an efficient photothermal agent for cancer therapy
CN110623939B (zh) 一种负载斑蝥素的肿瘤细胞膜包封碲单质纳米颗粒的制备方法
WO2006051198A1 (fr) Nanoparticules pourvues d'un element de ciblage intra-cellulaire, preparation et utilisations
Sun et al. MnO 2 nanoflowers as a multifunctional nano-platform for enhanced photothermal/photodynamic therapy and MR imaging
CN109276721A (zh) 一种靶向介孔聚多巴胺多功能纳米诊疗剂及其制备方法与应用
CN108671231B (zh) 一种用于肿瘤光热增效治疗和超声成像的多功能纳米载体及制备方法
Sun et al. Targeted and imaging-guided in vivo photodynamic therapy for tumors using dual-function, aggregation-induced emission nanoparticles
Li et al. Colon cancer exosome-derived biomimetic nanoplatform for curcumin-mediated sonodynamic therapy and calcium overload
Chen et al. Nanoengineered biomimetic Cu-based nanoparticles for multifunational and efficient tumor treatment
CN106177950A (zh) 一种包金纳米棒、其制备方法及应用
Thirumalaivasan et al. In vitro and in vivo approach of hydrogen-sulfide-responsive drug release driven by azide-functionalized mesoporous silica nanoparticles
Song et al. Boosted photocatalytic activity induced NAMPT-Regulating therapy based on elemental bismuth-humic acids heterojunction for inhibiting tumor proliferation/migration/inflammation
Li et al. A self-assembled nanoplatform based on Ag2S quantum dots and tellurium nanorods for combined chemo-photothermal therapy guided by H2O2-activated near-infrared-II fluorescence imaging
CN111686251A (zh) 用于声动力/气体协同抗肿瘤治疗的仿生纳米材料及其制备方法
CN114073767A (zh) 一种靶向响应型治疗纳米颗粒及其制备方法与应用
CN113633625A (zh) 一种杂膜负载氧化磷酸化抑制剂的纳米药物及其制备方法
Fang et al. Oxyhemoglobin-monitoring photodynamic theranostics with an 808 nm-excited upconversion optical nanoagent
Ding et al. Protein sulfenic acid-mediated anchoring of gold nanoparticles for enhanced CT imaging and radiotherapy of tumors in vivo
Wang et al. Flexible CuS-embedded human serum albumin hollow nanocapsules with peroxidase-like activity for synergistic sonodynamic and photothermal cancer therapy
Xu et al. MnO2 coated multi-layer nanoplatform for enhanced sonodynamic therapy and MR imaging of breast cancer
Bai et al. Blood cellular membrane-coated Au/polydopamine nanoparticle-targeted NIR-II antibacterial therapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination