CN117613120A - 一种日盲光电探测器及其制备方法 - Google Patents

一种日盲光电探测器及其制备方法 Download PDF

Info

Publication number
CN117613120A
CN117613120A CN202311514753.XA CN202311514753A CN117613120A CN 117613120 A CN117613120 A CN 117613120A CN 202311514753 A CN202311514753 A CN 202311514753A CN 117613120 A CN117613120 A CN 117613120A
Authority
CN
China
Prior art keywords
layer
algan barrier
barrier layer
position area
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311514753.XA
Other languages
English (en)
Inventor
董栩婷
张畅
黄永
包军林
王一
王亦飞
卢灏
解靖飞
常娟雄
陈财
龚子刚
万坤
邵语嫣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhu Research Institute of Xidian University
Original Assignee
Wuhu Research Institute of Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhu Research Institute of Xidian University filed Critical Wuhu Research Institute of Xidian University
Priority to CN202311514753.XA priority Critical patent/CN117613120A/zh
Publication of CN117613120A publication Critical patent/CN117613120A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02165Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors using interference filters, e.g. multilayer dielectric filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种日盲光电探测器及其制备方法,其中的日盲光电探测器包括:衬底以及依次设置于衬底上的AlN缓冲层和GaN沟道层;AlGaN势垒层,设置于GaN沟道层上,且AlGaN势垒层和GaN沟道层之间形成二维电子气;AlGaN势垒层覆盖GaN沟道层上的阴极位置区域和阳极位置区域,并在阴极位置区域和阳极位置区域之间的区域形成叉指状结构;阴电极和阳电极,分别设置于阴极位置区域和阳极位置区域的AlGaN势垒层上;一维光子晶体层,设置于叉指状结构的AlGaN势垒层上。本发明中的日盲光电探测器,光生电流较高、响应度较高、暗电流较低,且成本较低。

Description

一种日盲光电探测器及其制备方法
技术领域
本发明涉及半导体技术领域,尤其涉及到一种日盲光电探测器及其制备方法。
背景技术
在地球表面,太阳辐射是最主要的辐射源,其中波长小于200nm的紫外辐射会被大气层中的气体分子和游离态的原子吸收,使其在地球表面完全不存在;波长在300nm以下的紫外线辐射会被包裹地球的臭氧层吸收。这就意味当太阳光射向地球表面时,地球表面只存在波长介于300nm至400nm的紫外波段太阳辐射,而波长在200-280nm范围内的辐射由于吸收不能达到地球表面,该波段被称为日盲区,如在日盲紫外波段探测,可最大程度排除太阳辐射的干扰,探测背景噪声低。日盲紫外探测器从而能够高效精准探测地球表面非自然因素产生的微弱的紫外信号。
但是,目前商用日盲光电探测器通常是体积庞大并且易碎的光电倍增管,不仅需要200V到400V的偏置电压,其内还包括成本较高的紫外滤光片等部件,具有体积大、成本高、抗干扰差等问题,使用限制较大。因此,亟待提供一种体积小、成本低、效果好的日盲光电探测器以满足使用需求。
发明内容
因此,基于上述问题,本发明提供了一种以GaN材料为基础、具有高响应度和低暗电流,且成本较低的的日盲光电探测器。
为此,根据第一方面,本发明提供了一种日盲光电探测器,包括:
衬底以及依次设置于衬底上的AlN缓冲层和GaN沟道层;
AlGaN势垒层,设置于GaN沟道层上,且AlGaN势垒层和GaN沟道层之间形成二维电子气;AlGaN势垒层覆盖GaN沟道层上的阴极位置区域和阳极位置区域,并在阴极位置区域和阳极位置区域之间的区域形成叉指状结构;
阴电极和阳电极,分别设置于阴极位置区域和阳极位置区域的AlGaN势垒层上;
一维光子晶体层,设置于叉指状结构的AlGaN势垒层上。
在可选的实施方式中,一维光子晶体层包括若干交替叠设的TiO2层和MgF2层。
在可选的实施方式中,一维光子晶体层包括若干交替叠设的SiO2层和Si3N4层。
在可选的实施方式中,一维光子晶体层的交替周期为7个周期。
在可选的实施方式中,叉指状结构中的叉指的宽度在5μm~10μm之间,间距在10μm~30μm之间。
根据第二方面,本发明还提供了一种日盲光电探测器的制备方法,包括如下步骤:
依次在衬底上生长AlN缓冲层、GaN沟道层和初始AlGaN势垒层;
刻蚀初始AlGaN势垒层,以形成AlGaN势垒层,AlGaN势垒层覆盖GaN沟道层上的阴极位置区域和阳极位置区域,并在阴极位置区域和阳极位置区域之间的区域形成叉指状结构;
分别在阴极位置区域和阳极位置区域的AlGaN势垒层上生长阴电极和阳电极;
在叉指状结构的AlGaN势垒层上生长一维光子晶体层。
本发明提供的技术方案,具有如下优点:
本发明提供的日盲光电探测器,通过设置GaN沟道层和AlGaN势垒层的异质结构,使二者的界面处形成的具有较高饱和速度、较高电子迁移率的高导电二维电子气通道,并通过设置AlGaN势垒层在阴极位置区域和阳极位置区域之间的区域形成叉指状结构,隔断电极之间的二维电子气,使得在暗态条件下,二维电子气不再作为导电通道,有效降低了暗电流;同时,通过在叉指状结构的AlGaN势垒层上设置一维光子晶体层,既能以较低的成本实现滤波日盲,还可以有效增大感光区面积(相对于在叉指状结构上设置金属电极),提高光生电流,最终得到响应度较高暗电流较低,且成本较低的日盲光电探测器。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1提供的一种日盲光电探测器的结构示意图;
图2为本发明实施例1提供的一种日盲光电探测器中的势垒层的结构示意图;
图3为本发明实施例2提供的一种日盲光电探测器的制备方法的方法流程图;
附图标记说明:
1-衬底;2-AlN缓冲层;3-GaN沟道层;4-AlGaN势垒层;51-阴电极;52-阳电极;6-一维光子晶体层。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
实施例1
本实施例提供了一种日盲光电探测器,如图1所示,该日盲光电探测器包括衬底1、AlN缓冲层2、GaN沟道层3、AlGaN势垒层4、阴电极51、阳电极52和一维光子晶体层6。
本实施例中,AlN缓冲层2和GaN沟道层3依次设置于衬底1上。具体实施时,可以设置衬底1为蓝宝石衬底或者Si衬底等,GaN沟道层3为未掺杂GaN层。
具体实施时,AlN缓冲层2和GaN沟道层3均可以为通过金属有机化学气相沉积工艺(MOCVD)设置。
本实施例中,AlGaN势垒层4设置于GaN沟道层上,且AlGaN势垒层4和GaN沟道层2之间形成二维电子气。具体地,如图2所述,AlGaN势垒层4覆盖GaN沟道层3上的阴极位置区域和阳极位置区域,并在阴极位置区域和阳极位置区域之间的区域形成叉指状结构。
具体实施时,可以设置AlGaN势垒层4的Al组分在0.2~0.3之间。
具体实施时,可以设置叉指状结构中的叉指的宽度在5μm~10μm之间,间距在10μm~30μm之间。
具体实施时,可以先通过金属有机化学气相沉积工艺(MOCVD)设置覆盖GaN沟道层3的全部上表面的初始AlGaN势垒层,再对阴极位置区域和阳极位置区域之间的区域的初始AlGaN势垒层进行沟道刻蚀,并使刻蚀深度直至GaN沟道层3,从而切断二维电子气,形成AlGaN势垒层4。具体实施时,可以使用Cl2和BCl3混合气进行刻蚀。
本实施例中,阴电极51和阳电极52分别设置于阴极位置区域和阳极位置区域的AlGaN势垒层4上。
具体实施时,可以设置阴电极51和阳电极52为采用Ti、Al、Ni和Au中的一种或者多种金属材料制备形成;以阴电极51和阳电极52均为Ti/Al/Ni/Au电极为例,可以采用电子束蒸发镀膜依次生长Ti、Al、Ni和Au的金属薄膜后制备形成阴电极51和阳电极52。具体实施时,可以设置Ti的厚度为40nm,Al的厚度为150nm,Ni的厚度为40nm,Au的厚度为100nm;金属生长结束后,可以在N2氛围下,850℃退火30s,以使阴电极51和阳电极52与AlGaN势垒层4形成良好的欧姆接触。
本实施例中,一维光子晶体层6设置于叉指状结构的AlGaN势垒层5上。
具体实施时,可以设置一维光子晶体层6包括若干交替叠设的TiO2层和MgF2层。
具体实施时,还可以设置一维光子晶体层6包括若干交替叠设的SiO2层和Si3N4层。
具体实施时,以一维光子晶体层6包括若干交替叠设的SiO2层和Si3N4层,且一维光子晶体层6中的底层为Si3N4层(当然,底层也可以为SiO2层)为例,则可以先使用PECVD设备在叉指状结构的AlGaN势垒层5上生长Si3N4底层薄膜,再在Si3N4底层薄膜上依次生长SiO2薄膜和Si3N4薄膜,形成一个交替周期;重复若干个交替周期,完成一维光子晶体层6的设置。具体实施时,在生长Si3N4薄膜(包括Si3N4底层薄膜)时,可以设置PECVD设备内的反应气体为氨气、硅烷以及高纯氮气,生长温度在250℃~350℃之间,工作气压在100Pa~150Pa之间,其中硅烷采用4%~6%的SiH4与氮气的混合气;具体实施时,可以设置硅烷的气体流量为300sccm,氨气的气体流量为11sccm,氮气的气体流量为500sccm。具体实施时,在生长SiO2薄膜时,可以设置PECVD设备内的生长温度在140℃~160℃之间,工作气压在1.8Pa~2.5Pa之间,反应气体硅烷和氧气,其中硅烷为4%~6%的的硅烷与氩气的混合气体;具体实施时,可以设置硅烷的气体流量为130.5sccm,氧气的气体流量为13sccm。
具体实施时,可以设置交替周期为7个周期,进而形成具有15层的一维光子晶体层6。
本实施例中的日盲光电探测器日盲光电探测器,通过设置GaN沟道层3和AlGaN势垒层4的异质结构,使二者的界面处形成的具有较高饱和速度、较高电子迁移率的高导电二维电子气通道,并通过设置AlGaN势垒层4在阴极位置区域和阳极位置区域之间的区域形成叉指状结构,隔断电极之间的二维电子气,使得在暗态条件下,二维电子气不再作为导电通道,有效降低了暗电流;同时,通过在叉指状结构的AlGaN势垒层4上设置一维光子晶体层6,既能以较低的成本实现滤波日盲,还可以有效增大感光区面积(相对于在叉指状结构上设置金属电极),提高光生电流,最终得到响应度高、暗电流低、成本低的日盲光电探测器。
实施例2
本实施例提供了一种日盲光电探测器的制备方法,其即为上述实施例1中的日盲光电探测器的制备方法,因而其具体方案可以参照实施例1中的内容进行理解。
如图3所示,本实施例中的日盲光电探测器的制备方法包括如下步骤:
S100:依次在衬底1上生长AlN缓冲层2、GaN沟道层3和初始AlGaN势垒层。
本实施例中,可以设置衬底1为蓝宝石衬底或者Si衬底等;可以设置GaN沟道层3为非掺杂GaN层;可以设置AlGaN势垒层4的Al组分在0.2~0.3之间。
具体实施时,AlN缓冲层2、GaN沟道层3和初始AlGaN势垒层的生长均可以在金属有机化学气相沉积(MOCVD)设备内进行。
S200:刻蚀初始AlGaN势垒层,以形成AlGaN势垒层4,AlGaN势垒层4覆盖GaN沟道层3上的阴极位置区域和阳极位置区域,并在阴极位置区域和阳极位置区域之间的区域形成叉指状结构。
具体实施时,可以先在初始AlGaN势垒层上光刻隔离沟槽图形,再采用电感耦合等离子体(ICP)工艺,以光刻胶为刻蚀模板,通过刻蚀气体(如,Cl2和BCl3混合气)刻蚀得到深至GaN沟道层3的隔离沟槽,以在阴极位置区域和阳极位置区域之间的区域形成叉指状结构,进而形成AlGaN势垒层4。刻蚀结束后,还可以分别用丙酮、乙醇、去离子水清洗制备形成的半导体表面,并使用氮气吹干。
具体实施时,可以设置叉指状结构中的叉指的宽度在5μm~10μm之间,间距在10μm~30μm之间。
S300:分别在阴极位置区域和阳极位置区域的AlGaN势垒层4上生长阴电极51和阳电极52。
本实施例中,阴电极51和阳电极52可以为采用Ti、Al、Ni和Au中的一种或者多种金属材料制备形成;以阴电极51和阳电极52均为Ti/Al/Ni/Au电极为例,可以采用电子束蒸发镀膜分别在阴极位置区域和阳极位置区域的AlGaN势垒层4上依次生长Ti、Al、Ni和Au的金属薄膜的方式,完成阴电极51和阳电极52的生长;且可以在N2氛围下进行退火,以形成良好的欧姆接触。
具体实施时,可以设置Ti的厚度为40nm,Al的厚度为150nm,Ni的厚度为40nm,Au的厚度为100nm。
S400:在叉指状结构的AlGaN势垒层4上生长一维光子晶体层6。
具体实施时,可以设置一维光子晶体层6包括若干交替叠设的TiO2层和MgF2层。
具体实施时,还可以设置一维光子晶体层6包括若干交替叠设的SiO2层和Si3N4层。
具体实施时,以一维光子晶体层6包括若干交替叠设的SiO2层和Si3N4层,且一维光子晶体层6中的底层为Si3N4层(当然,底层也可以为SiO2层)为例,则可以先使用PECVD设备在叉指状结构的AlGaN势垒层5上生长Si3N4底层薄膜,再在Si3N4底层薄膜上依次生长SiO2薄膜和Si3N4薄膜,形成一个交替周期;重复若干个交替周期,完成一维光子晶体层6的设置。具体实施时,在生长Si3N4薄膜(包括Si3N4底层薄膜)时,可以设置PECVD设备内的反应气体为氨气、硅烷以及高纯氮气,生长温度在250℃~350℃之间,工作气压在100Pa~150Pa之间,其中硅烷采用4%~6%的SiH4与氮气的混合气;具体实施时,可以设置硅烷的气体流量为300sccm,氨气的气体流量为11sccm,氮气的气体流量为500sccm。具体实施时,在生长SiO2薄膜时,可以设置PECVD设备内的生长温度在140℃~160℃之间,工作气压在1.8Pa~2.5Pa之间,反应气体硅烷和氧气,其中硅烷为4%~6%的的硅烷与氩气的混合气体;具体实施时,可以设置硅烷的气体流量为130.5sccm,氧气的气体流量为13sccm。
具体实施时,可以设置交替周期为7个周期,进而形成具有15层以360nm为中心波长的单周期一维光子晶体层6。在此波段区间,峰值反射率达到99%,可实现日盲光电探测器对可见盲区280nm-380nm波段的光响应抑制。
本实施例中的日盲光电探测器的制备方法,可以制备得到光生电流较高、响应度较高、暗电流较低,且成本较低的日盲光电探测器。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (6)

1.一种日盲光电探测器,其特征在于,包括:
衬底以及依次设置于所述衬底上的AlN缓冲层和GaN沟道层;
AlGaN势垒层,设置于所述GaN沟道层上,且所述AlGaN势垒层和所述GaN沟道层之间形成二维电子气;所述AlGaN势垒层覆盖所述GaN沟道层上的阴极位置区域和阳极位置区域,并在所述阴极位置区域和所述阳极位置区域之间的区域形成叉指状结构;
阴电极和阳电极,分别设置于所述阴极位置区域和所述阳极位置区域的所述AlGaN势垒层上;
一维光子晶体层,设置于所述叉指状结构的所述AlGaN势垒层上。
2.根据权利要求1所述的日盲光电探测器,其特征在于,所述一维光子晶体层包括若干交替叠设的TiO2层和MgF2层。
3.根据权利要求1所述的日盲光电探测器,其特征在于,所述一维光子晶体层包括若干交替叠设的SiO2层和Si3N4层。
4.根据权利要求2或3所述的日盲光电探测器,其特征在于,所述一维光子晶体层的交替周期为7个周期。
5.根据权利要求4所述的日盲光电探测器,其特征在于,所述叉指状结构中的叉指的宽度在5μm~10μm之间,间距在10μm~30μm之间。
6.一种日盲光电探测器的制备方法,其特征在于,包括如下步骤:
依次在衬底上生长AlN缓冲层、GaN沟道层和初始AlGaN势垒层;
刻蚀所述初始AlGaN势垒层,以形成AlGaN势垒层,所述AlGaN势垒层覆盖所述GaN沟道层上的阴极位置区域和阳极位置区域,并在所述阴极位置区域和所述阳极位置区域之间的区域形成叉指状结构;
分别在所述阴极位置区域和所述阳极位置区域的所述AlGaN势垒层上生长阴电极和阳电极;
在所述叉指状结构的所述AlGaN势垒层上生长一维光子晶体层。
CN202311514753.XA 2023-11-10 2023-11-10 一种日盲光电探测器及其制备方法 Pending CN117613120A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311514753.XA CN117613120A (zh) 2023-11-10 2023-11-10 一种日盲光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311514753.XA CN117613120A (zh) 2023-11-10 2023-11-10 一种日盲光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN117613120A true CN117613120A (zh) 2024-02-27

Family

ID=89955372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311514753.XA Pending CN117613120A (zh) 2023-11-10 2023-11-10 一种日盲光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN117613120A (zh)

Similar Documents

Publication Publication Date Title
US9136410B2 (en) Selective emitter nanowire array and methods of making same
US9337380B2 (en) Method for fabricating heterojunction interdigitated back contact photovoltaic cells
CN110970513B (zh) Msm型多孔氧化镓日盲探测器及其制造方法
CN111785797B (zh) 一种超薄量子阱结构AlGaN日盲紫外探测器及其制备方法
CN114220878B (zh) 一种具有载流子传输层的Ga2O3/GaN日盲紫外探测器及其制备方法
CN110571301A (zh) 氧化镓基日盲探测器及其制备方法
CN108321256A (zh) 一种基于p型透明栅极GaN基紫外探测器的制备方法
CN110690323B (zh) 紫外光电探测器的制备方法及紫外光电探测器
US7768091B2 (en) Diamond ultraviolet sensor
CN109755349A (zh) 一种低应力钝化的台面型延伸波长铟镓砷探测器制备方法
CN113675297A (zh) 一种氧化镓/氮化镓异质结光电探测器及其制备方法
JP7281444B2 (ja) 太陽電池の製造方法
CN117613120A (zh) 一种日盲光电探测器及其制备方法
CN115036380B (zh) 一种pin结构的日盲型紫外探测器及其制备方法
CN112420871B (zh) 台面型铟镓砷探测器芯片及其制备方法
CN114242800B (zh) 日盲AlGaN紫外光电探测器及其制备方法
CN109713083A (zh) 一种原位生长Al等离激元提高AlGaN基PIN型探测器性能的方法
JP7237920B2 (ja) 太陽電池の製造方法
Visser et al. Investigations of sol-gel ZnO films nanostructured by reactive ion beam etching for broadband anti-reflection
CN110164994B (zh) InGaN/GaN多量子阱太阳能电池
CN112349777A (zh) 具有钙钛矿复合栅结构的GaN HEMT光电探测器及其制备方法
CN111710750A (zh) 基于六方氮化硼厚膜的深紫外光电探测器及制备方法
CN109755327A (zh) 原子尺度多层复合膜钝化的延伸波长铟镓砷探测器及方法
JPS5864070A (ja) フツ素を含むアモルフアスシリコン太陽電池
JP2019004145A (ja) Msm型紫外線受光素子、msm型紫外線受光装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination