CN117603379A - 一种阴离子交换模式聚合物分离介质及其制备方法和应用 - Google Patents

一种阴离子交换模式聚合物分离介质及其制备方法和应用 Download PDF

Info

Publication number
CN117603379A
CN117603379A CN202311585957.2A CN202311585957A CN117603379A CN 117603379 A CN117603379 A CN 117603379A CN 202311585957 A CN202311585957 A CN 202311585957A CN 117603379 A CN117603379 A CN 117603379A
Authority
CN
China
Prior art keywords
anion exchange
separation medium
polymer
polymer separation
exchange mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311585957.2A
Other languages
English (en)
Other versions
CN117603379B (zh
Inventor
魏杰
李明凤
张微
王利春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Spectrum Tech Beijing Technology Co ltd
Original Assignee
China Spectrum Tech Beijing Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Spectrum Tech Beijing Technology Co ltd filed Critical China Spectrum Tech Beijing Technology Co ltd
Priority to CN202311585957.2A priority Critical patent/CN117603379B/zh
Publication of CN117603379A publication Critical patent/CN117603379A/zh
Application granted granted Critical
Publication of CN117603379B publication Critical patent/CN117603379B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction, e.g. ion-exchange, ion-pair, ion-suppression or ion-exclusion
    • B01D15/361Ion-exchange
    • B01D15/363Anion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/13Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明涉及一种阴离子交换模式聚合物分离介质及其制备方法和应用,所述阴离子交换模式聚合物分离介质,结构新颖,由聚合物微球以及聚合物微球表面键合的三甲基铵乙酰肼基团构成,首次引入三甲基铵乙酰肼基团,含有氨基、酰胺、季铵基团,具有氢键作用、静电作用等作用力,增强了与酸性样品间的离子交换作用能力,更有利于酸性样品的吸附,提升回收率。通过先对聚合物微球进行氧化,然后通过环氧与氯化三甲基铵乙酰肼开环反应制备得到,制备过程简单可靠,反应条件温和,有利于实现产业化。本发明所述的阴离子交换模式聚合物分离介质,能够用于对复杂样品中酸性化合物进行分析测定。

Description

一种阴离子交换模式聚合物分离介质及其制备方法和应用
技术领域
本发明属于分离材料技术领域,具体涉及一种阴离子交换模式聚合物分离介质及其制备方法和应用。
背景技术
离子交换材料常用于富集或去除来自用于各种应用的流体的可离子化组分。固相萃取是复杂样品分析流程中的不可或缺的环节,能够实现目标物的富集或者杂质的脱除,从而降低基质效应,延长液相色谱柱的寿命,提升检测结果的准确性,目前已广泛应用于食品安全、药物、环境和法医等行业中。在固相萃取中,分离材料是基础,阴离子交换材料是重要组成部分。阴离子交换材料表面含有大量的带负电的基团,如磺酸基或羧基等,能可逆的吸附结合溶液中的阴离子。目前市场上已有阴离子聚合物的固相萃取材料,但存在对部分样品的回收率差及重现性和稳定性差的问题,因此,亟需开发新的阴离子交换固相萃取材料。
发明内容
为了解决现有技术存在的以上问题,本发明提供了一种阴离子交换模式聚合物分离介质及其制备方法。本发明所述的阴离子交换模式聚合物分离介质结构新颖,首次引入三甲基铵乙酰肼基团作为阴离子交换基团,巯基的存在能够提升额外的极性作用,提升与目标化合物的相互作用力。制备过程简单可靠,反应条件温和,有利于实现产业化。本发明所述聚合物作为阴离子交换模式分离介质,对复杂样品的前处理过程中的酸性化合物具有良好的收率。
本发明所采用的技术方案为:
本发明具体如下有益效果:
(1)本发明所述的阴离子交换模式聚合物分离介质,结构新颖,由聚合物微球以及聚合物微球表面键合的三甲基铵乙酰肼基团构成,首次引入三甲基铵乙酰肼基团,含有氨基、酰胺、季铵基团,具有氢键作用、静电作用等作用力,增强了与酸性样品间的离子交换作用能力,更有利于酸性样品的吸附,提升回收率。
(2)本发明所述的阴离子交换模式聚合物分离介质的制备方法,先对聚合物微球进行氧化,然后通过环氧与氯化三甲基铵乙酰肼开环反应制备得到,制备过程简单可靠,反应条件温和,有利于实现产业化。
(3)本发明所述的阴离子交换模式聚合物分离介质,能够用于对复杂样品中酸性化合物进行分析测定。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1显示为牛肉基质标准品中五氯酚钠测试谱图;
图2显示为牛肉实际样品中五氯酚钠测试谱图;
图3显示为猪瘦肉基质标准品中3-甲基喹喔啉-2-羧酸测试谱图;
图4显示为猪瘦肉实际样品中3-甲基喹喔啉-2-羧酸测试谱图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
实施例1
本实施例提供一种阴离子交换模式聚合物分离介质,结构包括二乙烯苯-N-乙烯吡咯烷酮共聚物微球以及在聚合物微球表面键合的三甲基铵乙酰肼基团。所述阴离子交换模式聚合物分离介质的结构式为:
所述阴离子交换模式聚合物分离介质的制备方法,具体操作如下:
(1)在10mL二氯甲烷中加入1g 3-氯过氧化苯甲酸和1g二乙烯苯-N-乙烯吡咯烷酮共聚物微球(粒径60μm,比表面积750m2/g),在30℃下反应24h,过滤,依次用乙醇、二氯甲烷洗涤,所得固体于干燥箱中30℃条件下真空干燥16h,得到氧化后的二乙烯苯-N-乙烯吡咯烷酮共聚物微球;
(2)环氧开环反应:在20mL水中加入1g氯化三甲基铵乙酰肼、1.2g碳酸氢钠和1g氧化后的二乙烯苯-N-乙烯吡咯烷酮共聚物微球,在90℃下反应24h,过滤,依次用水、0.1M稀盐酸、水、甲醇洗涤,所得固体于干燥箱中60℃条件下真空干燥16h,得到聚合物填料,即为所述的阴离子交换模式聚合物分离介质。
实施例2
本实施例提供一种阴离子交换模式聚合物分离介质,与实施例1的区别仅在于:所述聚合物微球为二乙烯基苯-N-乙烯基吡咯烷酮共聚物微球。
实施例3
本实施例提供一种阴离子交换模式聚合物分离介质,与实施例1的区别仅在于:步骤(1)中,所述有机溶剂为氯仿,所述氧化剂为叔丁基过氧化氢。
实验例1
使用实施例1中所得的聚合物填料装填60mg/3mL规格的固相萃取柱,用于牛肉中的五氯酚钠含量测定。具体操作如下:
步骤1:五氯酚钠标准储备液配制:精密称取一定量的五氯酚钠标准品,用甲醇配制成20μg/mL的标准储备液。基质标准品的配制:12.5μL的20μg/mL五氯酚钠标准品和987.5μL空白基质混合,作为基质标准品进行定量。样品配制:猪肉空白样品,称取均质试样2g(精确到0.01g),置于10mL具螺旋盖聚丙烯离心管中,加入6mL 5%三乙胺的乙腈-水溶液。样品均质提取2min,5000r/min离心5min,收集上清液于一具刻度离心管中。离心后的残渣用约6mL 5%三乙胺的乙腈-水溶液重复上述提取步骤1次,合并上清液,混匀,待净化。加标样品(500LOQ),在样品提取液中每12mL中加标50μL的20μg/mL五氯酚钠储备液,待净化液。
步骤2:固相萃取过程如下,流速<1滴/s,步骤收集的溶液以0.22μm有机滤膜过滤,供液相色谱仪器测定,测试谱图如图1和图2所示,从图中可以看出经过固相萃取柱分离的牛肉样品中五氯酚钠出峰位置附近无杂质干扰,说明该聚合物填料可以很好的去除样品中的杂质;基质标准品和牛肉样品中的目标峰出峰位置相同,峰响应接近。
固相萃取的具体操作和过程如表1所示。
表1-固相萃取的具体操作和过程
步骤 具体过程
活化 5mL甲醇
平衡 5mL水,无需抽干直接上样
上样 10mL测试样品,抽至近干
清洗1 5mL 5%氨水
清洗2 5mL甲醇
清洗3 5mL 2%甲酸的50%甲醇水,抽干
洗脱1 4mL 4%甲酸甲醇溶液,抽干
步骤3:检测条件
1)液相条件
仪器:液质联用(超高效液相色谱仪-Xevo TQ);
色谱柱:StarCore C18,2.1×100mm,2.6μm;
流动相:5mM乙酸铵+甲醇;
流速:0.3mL/min;
柱温:30℃;
进样量:8μL;
2)质谱条件
a)离子化模式:电喷雾电离负离子模式(ESI-);
b)质谱扫描方式:多反应监测(MRM);
c)分辨率:单位分辨率;
d)定量离子对:262.7>262.7,定性离子对:264.7>264.7、266.7>266.7、268.7>268.7;
e)毛细管电压1.0V,锥孔电压34,碰撞能10。
实验结果:实施例1中的聚合物填料对牛肉中的五氯酚钠具有良好的回收率,并且具有很好的重现性和稳定性。
表2-回收率和重现性的测定
填料 五氯酚钠回收率(%) RSD(%)
实施例1中的聚合物填料 92.3 2.01
实验例2
使用实施例1中所得的聚合物填料装填60mg/3mL规格的固相萃取柱,用于猪瘦肉中的3-甲基喹喔啉-2-羧酸含量测定。
具体操作:
步骤1:3-甲基喹喔啉-2-羧酸标准储备液配制:精密称取一定量的3-甲基喹喔啉-2-羧酸标准品,用甲醇配制成100μg/mL的标准储备液。基质标准品的配制:200μL的100μg/mL 3-甲基喹喔啉-2-羧酸标准品和3mL洗脱液混合,加水定容至6mL,作为标准品进行定量。样品配制:猪瘦肉空白样品,称取均质试样5g,置于50mL离心管中,加偏磷酸甲醇溶液8mL,涡旋混合2min,6000r/min离心10min,取出上清液,在残渣中加入偏磷酸甲醇溶液8mL,重复提取一次,合并上清液。于上清液中加入乙酸乙酯8mL,涡旋混合1min,6000r/min离心10min,取有机相层,在残渣中加入乙酸乙酯8mL,重复提取一次,合并有机相。在有机相中加入磷酸盐缓冲液6mL,震荡2次,静置10min,收集下层水相,另用磷酸盐缓冲液6mL再反萃取有机相一次,合并两次水相待净化。加标样品(500LOQ),在样品提取液中每12mL中加标200μL的100μg/mL 3-甲基喹喔啉-2-羧酸工作液,待净化液。
步骤2:固相萃取过程如下,流速<1滴/s,各步骤收集的溶液,其中洗脱1、洗脱2加水定容至6mL,供液相色谱仪器测定,测试谱图如图3和图4所示,从图中可以看出经过固相萃取柱分离的猪瘦肉中3-甲基喹喔啉-2-羧酸出峰位置附近无杂质干扰,说明该聚合物填料可以很好的去除样品中的杂质;基质标准品和猪瘦肉样品中的目标峰出峰位置相同,峰响应接近。
固相萃取的具体操作和过程如表3所示。
表3-固相萃取的具体操作和过程
步骤 具体过程
活化 3mL甲醇
平衡 3mL水
上样 12mL测试样品,抽干
清洗1 3mL 0.05mol/L NaOH,抽干
清洗2 3mL甲醇,抽干
洗脱1 3mL 2%甲酸-甲醇,抽干
步骤3:检测条件
1)液相条件
仪器:液相色谱;
色谱柱:Alphasil VC-C18,4.6×250mm,5μm;
流动相:1%甲酸水+乙腈(80:20);
流速:1mL/min;
柱温:30℃;
进样量:10μL;
运行时间:16min;
检测波长:320nm。
实验结果:实施例1中的聚合物填料对猪瘦肉中的3-甲基喹喔啉-2-羧酸具有良好的回收率,并且具有很好的重现性和稳定性。
表4-回收率和重现性的测定
填料 3-甲基喹喔啉-2-羧酸回收率(%) RSD(%)
实施例1中的聚合物填料 99.7 2.15
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

1.一种阴离子交换模式聚合物分离介质,其特征在于,结构包括聚合物微球和在聚合物微球表面键合的三甲基铵乙酰肼基团,所述阴离子交换模式聚合物分离介质的结构式为:
2.根据权利要求1所述的阴离子交换模式聚合物分离介质,其特征在于,所述聚合物微球为二乙烯基苯-乙烯基苯共聚物微球或二乙烯基苯-N-乙烯基吡咯烷酮共聚物微球。
3.根据权利要求1或2所述的阴离子交换模式聚合物分离介质,其特征在于,所述聚合物微球的粒径为50~70μm,比表面积为650~800m2/g。
4.根据权利要求1-3任一项所述的阴离子交换模式聚合物分离介质的制备方法,其特征在于,包括如下步骤:
(1)聚合物微球氧化:在5~20mL有机溶剂中加入0.1~2g氧化剂和1g聚合物微球,一定条件下进行反应后,依次经过滤、洗涤和干燥,得到氧化后的聚合物微球;
(2)环氧开环反应:在10~20mL水中加入0.2~2g硫代水杨酸、0.1~2g碱性催化剂和1g氧化后的聚合物微球,一定条件下进行反应后,依次经过滤、洗涤和干燥,得到所述阴离子交换模式聚合物分离介质。
5.根据权利要求4所述的阴离子交换模式聚合物分离介质的制备方法,其特征在于,步骤(1)中,所述有机溶剂为二氯甲烷、氯仿、正庚烷、异辛烷中的一种或几种的组合。
6.根据权利要求4所述的阴离子交换模式聚合物分离介质,其特征在于,步骤(1)中,所述氧化剂为3-氯过氧化苯甲酸、叔丁基过氧化氢、过硫酸氢钾中的一种或几种的组合。
7.根据权利要求4所述的阴离子交换模式聚合物分离介质,其特征在于,步骤(1)中,所述反应的条件为:在20-60℃反应8-48h;
所述洗涤为:依次用乙醇、二氯甲烷洗涤;
所述干燥为:在20-80℃条件下真空干燥8~24h。
8.根据权利要求4所述的阴离子交换模式聚合物分离介质的制备方法,其特征在于,步骤(2)中,所述碱性催化剂为二异丙基乙胺、三乙胺、氢氧化钠、碳酸氢钠、碳酸钾、吡啶中的一种或几种的组合物。
9.根据权利要求4所述的阴离子交换模式聚合物分离介质的制备方法,其特征在于,步骤(2)中,所述反应的条件为:在30~100℃下反应3~24h;
所述洗涤为:依次用水、0.1M稀盐酸、水、甲醇洗涤;
所述干燥为:在40-80℃条件下真空干燥8~24h。
10.根据权利要求1-3任一项所述的阴离子交换模式聚合物分离介质或权利要求4-9任一项所述方法制备得到的阴离子交换模式聚合物分离介质作为固相萃取填料在动物源食品中五氯酚钠或3-甲基喹喔啉-2-羧酸的含量测定中的应用。
CN202311585957.2A 2023-11-27 2023-11-27 一种阴离子交换模式聚合物分离介质及其制备方法和应用 Active CN117603379B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311585957.2A CN117603379B (zh) 2023-11-27 2023-11-27 一种阴离子交换模式聚合物分离介质及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311585957.2A CN117603379B (zh) 2023-11-27 2023-11-27 一种阴离子交换模式聚合物分离介质及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN117603379A true CN117603379A (zh) 2024-02-27
CN117603379B CN117603379B (zh) 2024-09-27

Family

ID=89945782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311585957.2A Active CN117603379B (zh) 2023-11-27 2023-11-27 一种阴离子交换模式聚合物分离介质及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117603379B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648070A (en) * 1991-12-04 1997-07-15 Cobe Laboratories, Inc. Biocompatible anion exchange materials
CN104525151A (zh) * 2014-12-02 2015-04-22 佛山市博新生物科技有限公司 用于血液灌流的内毒素吸附剂及其制备方法
CN113996276A (zh) * 2021-11-15 2022-02-01 南京大学 固相萃取材料及其制备方法与应用
CN114700056A (zh) * 2022-04-11 2022-07-05 华东理工大学 表面接枝型聚合酰胺季铵盐型阴离子色谱固定相及制备方法与用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648070A (en) * 1991-12-04 1997-07-15 Cobe Laboratories, Inc. Biocompatible anion exchange materials
CN104525151A (zh) * 2014-12-02 2015-04-22 佛山市博新生物科技有限公司 用于血液灌流的内毒素吸附剂及其制备方法
CN113996276A (zh) * 2021-11-15 2022-02-01 南京大学 固相萃取材料及其制备方法与应用
CN114700056A (zh) * 2022-04-11 2022-07-05 华东理工大学 表面接枝型聚合酰胺季铵盐型阴离子色谱固定相及制备方法与用途

Also Published As

Publication number Publication date
CN117603379B (zh) 2024-09-27

Similar Documents

Publication Publication Date Title
Novotny et al. New hyphenated methodologies in high‐sensitivity glycoprotein analysis
Niñonuevo et al. Nanoliquid chromatography‐mass spectrometry of oligosaccharides employing graphitized carbon chromatography on microchip with a high‐accuracy mass analyzer
Duan et al. Rapid protein digestion and identification using monolithic enzymatic microreactor coupled with nano-liquid chromatography-electrospray ionization mass spectrometry
Li et al. Supercritical fluid chromatography‐mass spectrometry for chemical analysis
CN107262078B (zh) 一种石墨烯/硅胶固相萃取材料及其应用
CN105067723B (zh) 一种气相色谱‑串联四级杆质谱分析土壤/沉积物中有机磷酸酯阻燃剂的方法
Ren et al. Novel molecularly imprinted phenolic resin–dispersive filter extraction for rapid determination of perfluorooctanoic acid and perfluorooctane sulfonate in milk
CN103028383B (zh) 一种硅胶色谱填料及其制备方法
Zhang et al. Molecularly imprinted solid‐phase extraction for the selective HPLC determination of ractopamine in pig urine
Yan et al. Screening, recognition and quantitation of salbutamol residues in ham sausages by molecularly imprinted solid phase extraction coupled with high-performance liquid chromatography–ultraviolet detection
Ambrosini et al. Glucuronide directed molecularly imprinted solid-phase extraction: isolation of testosterone glucuronide from its parent drug in urine
Saito et al. Fibrous rigid‐rod heterocyclic polymer as the stationary phase in packed capillary gas chromatography
CN117603379B (zh) 一种阴离子交换模式聚合物分离介质及其制备方法和应用
Pyatkivskyy et al. Coupling of ion‐molecule reactions with liquid chromatography on a quadrupole ion trap mass spectrometer
Zhou et al. Selective extraction and analysis of catecholamines in rat blood microdialysate by polymeric ionic liquid-diphenylboric acid-packed capillary column and fast separation in high-performance liquid chromatography-electrochemical detector
CN117603380B (zh) 一种阳离子交换模式聚合物分离介质及其制备方法和应用
Ali et al. Open tubular capillary electrochromatography with an N‐phenylacrylamide‐styrene copolymer‐based stationary phase for the separation of anomers of glucose and structural isomers of maltotriose
CN102250285A (zh) 选择性分离酚类的半共价分子印迹聚合物及其制备和应用
US20040178340A1 (en) Separation of components of an analysis sample in an ion mobility spectrometer using a supply of selectively interactive gaseous particles
CN101412778B (zh) 一种用于富集磷酸化肽段的聚合物材料的制备方法
CN112697892B (zh) 定量检测石油采出液中环烷基磺酸盐组分和渣油磺酸盐组分的方法
Possi-Pezzali et al. Evaluation of electrospun fibers as solid phase extraction sorbents for sample preparation in HPLC-MS/MS confirmatory doping control analysis of dexamethasone and betamethasone
CN110115991A (zh) 一种gc/ms用联合热脱附固相萃取棒的制备与使用方法
Liu et al. Solid‐phase extraction of ursolic acid from herb using β‐cyclodextrin‐based molecularly imprinted microspheres
Wei-Qi et al. An overview of pretreatment and analysis of nucleotides in different samples (update since 2010)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant