CN117595049B - 一种异形多程增益激光系统、激光器以及激光雷达 - Google Patents

一种异形多程增益激光系统、激光器以及激光雷达 Download PDF

Info

Publication number
CN117595049B
CN117595049B CN202410070526.0A CN202410070526A CN117595049B CN 117595049 B CN117595049 B CN 117595049B CN 202410070526 A CN202410070526 A CN 202410070526A CN 117595049 B CN117595049 B CN 117595049B
Authority
CN
China
Prior art keywords
laser
module
crystal
polygonal
resonant cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410070526.0A
Other languages
English (en)
Other versions
CN117595049A (zh
Inventor
陈薪羽
刘景良
张晓雷
邱基斯
李小宁
于永吉
金光勇
姜相宇
季铁锋
孙晔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN202410070526.0A priority Critical patent/CN117595049B/zh
Publication of CN117595049A publication Critical patent/CN117595049A/zh
Application granted granted Critical
Publication of CN117595049B publication Critical patent/CN117595049B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1022Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lasers (AREA)

Abstract

一种异形多程增益激光系统、激光器以及激光雷达。涉及泵浦激光技术领域,解决了现有2μm波段激光器输出功率受限的问题。系统包括半导体泵浦模块、耦合镜组模块以及谐振腔模块;所述半导体泵浦模块用于发出泵浦光束;所述耦合镜组模块由三个柱透镜组成,用于将所述泵浦光束准直聚焦后输出至所述谐振腔模块;所述谐振腔模块包含反射镜M1、输出镜M2和多边形板条晶体,所述反射镜M1用于将侧面光源反射至所述多边形板条晶体的侧面,所述多边形板条晶体用于将光束在内部进行多次反射后输送至输出镜M2,所述输出镜M2用于将激光光束从谐振腔中输出到外部。

Description

一种异形多程增益激光系统、激光器以及激光雷达
技术领域
本发明涉及泵浦激光技术领域,具体涉及一种异形多程增益激光系统、激光器以及激光雷达。
背景技术
对于激光雷达,通常采用波长为10.6μm的CO2激光器进行探测,但是由于2μm波段固体激光器的波长是CO2激光器的1/5,所以线宽窄,测量精度比CO2激光雷达高出1个数量级;同时2μm激光波长为人眼安全、处于大气窗口的波段,利用2μm的水吸收谱线测量远距离环境的温度和湿度的精度分别可达1℃和1%。根据实际的天气状况,采用InGaAs ADP和InGaAs PIN探测器实现远距离大气变化的实时监测。此外,利用水分子对红外激光强烈吸收产生的热效应,高功率的红外激光被更多的应用在生物组织切除手术中。因此,激光二极管泵浦的2μm波段固体激光器逐渐成为了目前激光领域研究的热点,在激光雷达、光电对抗、激光医疗和诊断等领域都有着广泛的应用。
然而,由于2μm波段的激光介质增益较小、热效应严重等缺陷,导致2μm波段掺Tm激光器的输出功率受到明显的制约。随着LD泵浦固体激光器的发展,有关固体激光功率拓展技术也在不断的推陈出新,针对制约LD泵浦固体激光性能的各个方面,如泵浦功率、散热速度、模式匹配等等,各种新技术正在不断地开发应用。
发明内容
为了解决现有2μm波段激光器输出功率受限的问题,本发明提出了一种异形多程增益激光系统、激光器以及激光雷达。
本发明的技术方案如下:
一种异形多程增益激光系统,包括半导体泵浦模块、耦合镜组模块以及谐振腔模块;
所述半导体泵浦模块用于发出泵浦光束;
所述耦合镜组模块由三个柱透镜组成,用于将所述泵浦光束准直聚焦后输出至所述谐振腔模块;
所述谐振腔模块包含反射镜M1、输出镜M2和多边形板条晶体,所述反射镜M1用于将侧面光源反射至所述多边形板条晶体的侧面,所述多边形板条晶体用于将光束在内部进行多次反射后输送至输出镜M2,所述M2用于将激光光束从谐振腔中输出到外部。
优选地,所述三个柱透镜沿光路传播方向按照透镜F1、F2、F3的顺序排列,其中所述透镜F1的焦距为100mm,透镜F3的焦距为80mm,透镜F2的焦距为80mm。
优选地,所述多边形板条晶体为2μm Tm:YLF七边形板条晶体。
优选地,所述2μm Tm:YLF七边形板条晶体截面的顶点顺时针依次为A、B、C、D、E、F和G,∠A=∠C=∠D=∠E=∠F=∠G=135°,∠B=90°;其中AB、BC、DE和FG所在的侧面均镀有1908mm高反膜,AB=BC=DE=()/3mm,FG=(/>)/3mm,EF=2/3mm;所述侧面光源经F点所在位置进入2μm Tm:YLF七边形板条晶体,光束在内部进行16次反射后从G点所在位置输送至输出镜M2。
本发明还提供一种异形多程增益激光器,包含如上所述的异形多程增益激光系统。
本发明还提供一种激光雷达,包含如上所述的异形多程增益激光器。
与现有技术相比,本发明的具体有益效果为:
1.本发明提供了一种结构更加紧凑,光束质量更高的2μm异形多程增益激光系统,晶体区别于传统的形状构造,设计采用特殊的七边形晶体,泵浦光经过耦合透镜组,整形为矩形光斑端面入射于板条晶体内,采用多折叠腔多程增益技术,在现有2μm波段Tm晶体增益较小的情况下通过增加增益路径来提高总体增益效果,在保证端泵固体激光的模式匹配、耦合效率高、光束质量好的同时,能在有限泵浦功率密度的限制下大幅提高泵浦功率,改善高功率阵列板条晶体光束质量较差的缺陷,实现紧凑型高功率2μm Tm激光输出。
2.本发明采用板条晶体技术,在提供大增益体积的同时拥有很大的散热面积,能够提高散热效果,减缓热效应。
附图说明
图1为异形多程增益激光系统的结构示意图;
图2为多边形板条晶体晶体内的光线传播路径示意图。
具体实施方式
为使本发明的技术方案更加清楚,下面将结合本发明的说明书附图,对本发明实施例中的技术方案进行清楚、完整地描述,需要说明的是,以下实施例仅用于更好地理解本发明的技术方案,而不应理解为对本发明的限制。
实施例1.
本实施例提供一种异形多程增益激光系统,如图1所示,包括半导体泵浦模块、耦合镜组模块以及谐振腔模块;
所述半导体泵浦模块用于发出泵浦光束;
所述耦合镜组模块由三个柱透镜组成,用于将所述泵浦光束准直聚焦后输出至所述谐振腔模块;
所述谐振腔模块包含反射镜M1、输出镜M2和多边形板条晶体,所述反射镜M1用于将侧面光源反射至所述多边形板条晶体的一个侧面,所述多边形板条晶体用于将光束在内部进行多次反射后输出至输出镜M2,所述输出镜M2用于将激光光束从谐振腔中输出到外部。
本实施例采用多边形板条晶体,其拥有很大的散热面积,能够提高散热效果,减缓热效应;泵浦光经过耦合透镜组,能够整形为矩形光斑端面入射于板条晶体内,采用多折叠腔多程增益技术,在现有2μm波段Tm晶体增益较小的情况下通过增加增益路径来提高总体增益效果,在保证端泵固体激光的模式匹配、耦合效率高、光束质量好的同时,能在有限泵浦功率密度的限制下大幅提高泵浦功率,改善高功率阵列板条晶体光束质量较差的缺陷,实现紧凑型高功率2μm Tm激光输出。
实施例2.
本实施例为对实施例1的进一步举例说明,所述三个柱透镜沿光路传播方向按照透镜F1、F2、F3的顺序排列,其中所述透镜F1的焦距为100mm,透镜F3的焦距为80mm,透镜F2的焦距为80mm。
泵浦源发出泵浦光,在慢轴方向,经过F1、F3两柱透镜焦距的作用,实现对慢轴方向光斑的压缩;通过改变F2的焦距,对快轴方向的光斑进行压缩。实验中得到,F1焦距为100mm,F3焦距为80mm时,可将慢轴方向的光斑压缩为8mm;F2为80mm时,可将快轴方向光斑压缩为1mm。通过配合F1,F2,F3耦合透镜组,将LD泵浦光压缩为1×8mm的椭圆形光斑入射晶体。
实施例3.
本实施例为对实施例1的进一步举例说明,所述多边形板条晶体为2μm Tm:YLF七边形板条晶体。
实施例4.
本实施例为对实施例1的进一步举例说明,所述2μm Tm:YLF七边形板条晶体截面的顶点顺时针依次为A、B、C、D、E、F和G,∠A=∠C=∠D=∠E=∠F=∠G=135°,∠B=90°;其中AB、BC、DE和FG所在的侧面均镀有1908mm高反膜,AB=BC=DE= ()/3mm,FG=(/>)/3mm,EF=2/3mm所述侧面光源经F点所在位置进入2μm Tm:YLF七边形板条晶体,光束在内部进行16次反射后从G点所在位置送至输出镜M2。
本实施例提供一种七边形板条晶体的基体形状构造,通过七边形晶体的形状设计,如图2所示,使得光束在晶体内部可以经过多达16次反射,并且准确地从指定位置射出,增加增益路径来提高总体增益效果,在保证端泵固体激光的模式匹配、耦合效率高、光束质量好的同时,能在有限泵浦功率密度的限制下大幅提高泵浦功率,改善高功率阵列板条晶体光束质量较差的缺陷,实现紧凑型高功率2μm Tm激光输出。
实施例5.
本实施例提供一种异形多程增益激光器,包含如实施例1~4中任一项所述的异形多程增益激光系统。
实施例6.
本实施例提供一种激光雷达,包含如实施例5所述的异形多程增益激光器。
以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (4)

1.一种异形多程增益激光系统,其特征在于,包括半导体泵浦模块、耦合镜组模块以及谐振腔模块;
所述半导体泵浦模块用于发出泵浦光束;
所述耦合镜组模块由三个柱透镜组成,用于将所述泵浦光束准直聚焦后输出至所述谐振腔模块;
所述谐振腔模块包含反射镜M1、输出镜M2和多边形板条晶体,所述反射镜M1用于将侧面光源反射至所述多边形板条晶体的侧面,所述多边形板条晶体用于将光束在内部进行多次反射后输送至输出镜M2,所述输出镜M2用于将激光光束从谐振腔中输出到外部;
所述多边形板条晶体为2μm Tm:YLF七边形板条晶体;
所述2μm Tm:YLF七边形板条晶体截面的顶点顺时针依次为A、B、C、D、E、F和G,∠A=∠C=∠D=∠E=∠F=∠G=135°,∠B=90°;其中AB、BC、DE和FG所在的侧面均镀有1908mm高反膜,AB=BC=DE=()/3mm,FG=(/>)/3mm,EF=2/3mm;所述侧面光源经F点所在位置进入2μmTm:YLF七边形板条晶体,光束在内部进行16次反射后从G点所在位置输送至输出镜M2。
2.根据权利要求1所述的异形多程增益激光系统,其特征在于,所述三个柱透镜沿光路传播方向按照透镜F1、F2、F3的顺序排列,其中所述透镜F1的焦距为100mm,透镜F3的焦距为80mm,透镜F2的焦距为80mm。
3.一种异形多程增益激光器,其特征在于,包含如权利要求1或2中所述的异形多程增益激光系统。
4.一种激光雷达,其特征在于,包含如权利要求3所述的异形多程增益激光器。
CN202410070526.0A 2024-01-18 2024-01-18 一种异形多程增益激光系统、激光器以及激光雷达 Active CN117595049B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410070526.0A CN117595049B (zh) 2024-01-18 2024-01-18 一种异形多程增益激光系统、激光器以及激光雷达

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410070526.0A CN117595049B (zh) 2024-01-18 2024-01-18 一种异形多程增益激光系统、激光器以及激光雷达

Publications (2)

Publication Number Publication Date
CN117595049A CN117595049A (zh) 2024-02-23
CN117595049B true CN117595049B (zh) 2024-04-05

Family

ID=89922270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410070526.0A Active CN117595049B (zh) 2024-01-18 2024-01-18 一种异形多程增益激光系统、激光器以及激光雷达

Country Status (1)

Country Link
CN (1) CN117595049B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231641A (en) * 1992-01-21 1993-07-27 Laserscope Crystalline slab laser with intracavity non-linear optic
US5249196A (en) * 1992-05-21 1993-09-28 The United States Of America As Represented By The Secretary Of The Navy Internally folded scalable laser
US5651021A (en) * 1993-04-21 1997-07-22 The Commonwealth Of Australia Diode pumped slab laser
WO2002017444A2 (en) * 2000-08-18 2002-02-28 Corporation For Laser Optics Research Solid state laser
CN1540382A (zh) * 2003-06-24 2004-10-27 S・朱塔莫利亚 具有高耦合效率及低反馈噪声的光纤耦合激光二极管器件
CN205583365U (zh) * 2016-04-26 2016-09-14 武汉市杰都易光电科技有限公司 半导体双端泵浦板条多程折叠腔激光器
WO2018036129A1 (zh) * 2016-08-26 2018-03-01 中国科学院光电研究院 多边形的激光增益结构、激光振荡器以及激光放大器
CN110932077A (zh) * 2019-12-23 2020-03-27 南京先进激光技术研究院 一种端泵多程板条激光放大器
CN113131320A (zh) * 2021-04-06 2021-07-16 北京工业大学 一种铒玻璃平面波导被动调q激光器
CN114142330A (zh) * 2021-11-17 2022-03-04 中国电子科技集团公司第十一研究所 侧面之字形泵浦增益介质及激光器系统
CN216529826U (zh) * 2021-12-16 2022-05-13 大连淡宁实业发展有限公司 一种全固态激光器的谐振腔及全固态激光器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7388895B2 (en) * 2003-11-21 2008-06-17 Tsinghua University Corner-pumping method and gain module for high power slab laser
ITMI20051609A1 (it) * 2005-08-29 2007-02-28 Laservall Spa Sorgente laser a stato solido pompata lateralmente e procedimento di pompaggio di una sorgente laser a stato solido
CN116526261A (zh) * 2022-01-20 2023-08-01 Ii-Vi特拉华有限公司 小型化的主振荡器功率放大器结构二极管泵浦固体激光器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231641A (en) * 1992-01-21 1993-07-27 Laserscope Crystalline slab laser with intracavity non-linear optic
US5249196A (en) * 1992-05-21 1993-09-28 The United States Of America As Represented By The Secretary Of The Navy Internally folded scalable laser
US5651021A (en) * 1993-04-21 1997-07-22 The Commonwealth Of Australia Diode pumped slab laser
WO2002017444A2 (en) * 2000-08-18 2002-02-28 Corporation For Laser Optics Research Solid state laser
CN1540382A (zh) * 2003-06-24 2004-10-27 S・朱塔莫利亚 具有高耦合效率及低反馈噪声的光纤耦合激光二极管器件
CN205583365U (zh) * 2016-04-26 2016-09-14 武汉市杰都易光电科技有限公司 半导体双端泵浦板条多程折叠腔激光器
WO2018036129A1 (zh) * 2016-08-26 2018-03-01 中国科学院光电研究院 多边形的激光增益结构、激光振荡器以及激光放大器
CN110932077A (zh) * 2019-12-23 2020-03-27 南京先进激光技术研究院 一种端泵多程板条激光放大器
CN113131320A (zh) * 2021-04-06 2021-07-16 北京工业大学 一种铒玻璃平面波导被动调q激光器
CN114142330A (zh) * 2021-11-17 2022-03-04 中国电子科技集团公司第十一研究所 侧面之字形泵浦增益介质及激光器系统
CN216529826U (zh) * 2021-12-16 2022-05-13 大连淡宁实业发展有限公司 一种全固态激光器的谐振腔及全固态激光器

Also Published As

Publication number Publication date
CN117595049A (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
KR101188897B1 (ko) 레이저 발진장치
US10630044B2 (en) Frequency-doubled laser and method of generating harmonic laser
Erhard et al. Pumping schemes for multi-kW thin disk lasers
CN216648854U (zh) 一种占比可调的正交偏振双波长激光器
CN117595049B (zh) 一种异形多程增益激光系统、激光器以及激光雷达
KR101857751B1 (ko) 슬랩 고체 레이저 증폭장치
US6704341B1 (en) Diode-pumped laser with improved pumping system
US20160285225A1 (en) Radial polarization thin-disk laser
CN216529826U (zh) 一种全固态激光器的谐振腔及全固态激光器
CN210201153U (zh) 中长波红外激光器
CN115084982A (zh) 一种面向高峰值功率激光的板条激光放大增益模块
RU2339138C2 (ru) Твердотельный лазер с диодной накачкой (варианты)
CN110233418B (zh) 一种可调脉宽短脉冲激光器
CN111384659B (zh) 激光器的谐振组件、激光器以及谐振组件的调试方法
WO2021128828A1 (zh) 一种端泵多程板条激光放大器
CN111952837A (zh) 一种太赫兹量子级联激光器的耦合输出结构及其封装方法
Greiner et al. Diode-pumped Nd: YAG laser using reflective pump optics
CN114204394A (zh) 一种占比可调的正交偏振双波长激光器
JP3967276B2 (ja) 端面励起微細ロッド型レーザー利得モジュール
CN116454714B (zh) 一种内折返叠程板条激光放大装置
Petros et al. Diode pumped 135 mJ Ho: Tm: LuLF Oscillator
CN112531450A (zh) 2μm激光二极管泵浦的全固态Tm,Ho:LLF激光器
CN111244734A (zh) 中红外单模激光器
KR100348998B1 (ko) 방사형으로 배치된 여러 개의 직선형 다이오드 레이저를이용한 고체레이저 발생장치.
CN110932077B (zh) 一种端泵多程板条激光放大器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant