CN117592678A - 一种基于用电去需求分析的综合能源调度方法及系统 - Google Patents

一种基于用电去需求分析的综合能源调度方法及系统 Download PDF

Info

Publication number
CN117592678A
CN117592678A CN202311394939.6A CN202311394939A CN117592678A CN 117592678 A CN117592678 A CN 117592678A CN 202311394939 A CN202311394939 A CN 202311394939A CN 117592678 A CN117592678 A CN 117592678A
Authority
CN
China
Prior art keywords
energy
electricity
data
electricity consumption
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311394939.6A
Other languages
English (en)
Inventor
赵鹏翔
杨佳霖
周喜超
丛琳
吕承友
王冰
杨宪
窦真兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Comprehensive Energy Service Group Co ltd
State Grid Shanghai Electric Power Co Ltd
Original Assignee
State Grid Comprehensive Energy Service Group Co ltd
State Grid Shanghai Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Comprehensive Energy Service Group Co ltd, State Grid Shanghai Electric Power Co Ltd filed Critical State Grid Comprehensive Energy Service Group Co ltd
Priority to CN202311394939.6A priority Critical patent/CN117592678A/zh
Publication of CN117592678A publication Critical patent/CN117592678A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/092Reinforcement learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • G06Q10/06375Prediction of business process outcome or impact based on a proposed change
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Educational Administration (AREA)
  • Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及能源调度技术领域,具体涉及一种基于用电去需求分析的综合能源调度方法及系统,包括以下步骤:建立多维度的用电数据模型,记录用电量并分析用户用电行为模式及设备运行状态,得到多维度用电数据;利用高级数据处理技术对收集到的多维度用电数据进行相关性分析;构建用电去需求预测模型,生成用电去需求预测报告;制定综合能源调度计划;实施一个基于区块链的能源交易机制,允许在系统中的用户基于综合能源调度计划,自主进行能源的买卖,生成能源交易数据;集成自适应调节机制,自动微调综合能源调度计划和动态储能策略。本发明,为能源供应商和用户都带来了实时、准确的用电信息,提高了能源调度的准确性和效率。

Description

一种基于用电去需求分析的综合能源调度方法及系统
技术领域
本发明涉及能源调度技术领域,尤其涉及一种基于用电去需求分析的综合能源调度方法及系统。
背景技术
随着全球能源结构的变革和可再生能源的日益普及,如何有效地进行能源调度以满足不断变化的用电需求,成为了能源行业面临的重要挑战。传统的能源调度方法往往基于固定的模式和统计数据进行预测,然后手动制定调度计划。这种方法在面对复杂的用电环境和快速变化的用电需求时,可能会导致能源浪费、供需失衡以及成本上升。
此外,随着智能设备和物联网技术的普及,大量的用电数据被不断产生,包括用户的用电行为、设备运行状态等。这些数据在一定程度上反映了用电需求的真实情况,但如何从中提取有价值的信息,进而对能源进行精准调度,仍是一个待解决的问题。
同时,随着电力市场的开放和去中心化趋势,用户与能源供应商之间的交互也日益复杂。如何保证能源交易的透明性、安全性和效率,使交易价格更真实地反映市场供需关系,也是当前电力行业面临的一大挑战。
因此,急需一种新的能源调度方法,能够整合和分析大量的用电数据,实现对用电需求的精准预测,同时考虑不同能源类型的可用性和成本效益,进行优化组合,确保能源供应的稳定性和经济性,并引入现代技术手段如区块链等,提高能源交易的透明性和效率。
发明内容
基于上述目的,本发明提供了一种基于用电去需求分析的综合能源调度方法及系统。
一种基于用电去需求分析的综合能源调度方法,包括以下步骤:
S1:建立多维度的用电数据模型,该用电数据模型通过综合用户分类、用电时间、用电设备类型,收集并整合来自不同用户和设备的用电信息,同时记录用电量并分析用户用电行为模式及设备运行状态,得到多维度用电数据;
S2:利用高级数据处理技术对S1中收集到的多维度用电数据进行相关性分析,识别影响用电需求的内在关联因素和模式,将该关联因素和模式作为输入参数用于下一步的用电去需求分析;
S3:构建用电去需求预测模型,该模型使用S2中分析得出的内在关联因素和模式,通过预测算法预测未来一段时间内的用电需求,包括峰值时间和低谷时间的预测,并将预测结果细化至小单位时间,生成用电去需求预测报告;
S4:制定综合能源调度计划,根据S3的用电去需求预测报告,考虑不同能源类型的可用性和成本效益,优化能源组合,同时制定动态储能策略,动态储能策略包括在预测出的低需求期间将多余能源存储于储能设备,以及在高需求期间从储能设备释放能源以满足需求;
S5:实施一个基于区块链的能源交易机制,该能源交易机制允许在系统中的用户基于S4中的综合能源调度计划,自主进行能源的买卖,生成能源交易数据;
S6:集成自适应调节机制,该集成自适应调节机制根据实时监控到的用电数据和系统状态,包括S5中的能源交易数据,自动微调综合能源调度计划和动态储能策略。
进一步的,所述S1具体包括:
S11:用户分类阶段,通过应用用户识别模块,根据用户的用电历史数据、合同容量、行业类型、地理位置信息,将用户分为不同的类别;
S12:用电时间分析阶段,应用时间序列分析技术,收集各类用户在不同时间段的用电数据,识别出每个时间段内的用电特征和模式,包括周期性、随机性,该用电数据将用于识别高需求时间段和低需求时间段;
S13:用电设备识别阶段,通过设备识别模块,分析各类用户的用电设备类型和数量,收集各用电设备的运行状态数据,并识别设备的用电特征和负荷曲线;
S14:数据整合与用户行为分析阶段,将收集和分析的数据进行融合,利用数据挖掘和聚类分析,挖掘用户的用电行为模式和设备运行状态之间的内在联系和规律,生成包含用户行为特征的多维度用电数据模型。
进一步的,所述S1中的多维度的用电数据模型构建如下:
设U={u1,u2,...,un}为用户集,其中ui代表第i个用户;
设T={t1,t2,...,tm}为考察周期内的时间点集合,其中tj代表第j个时间点;
设D={d1,d2,...,dk}为设备类型集合,其中dk代表第k种设备类型;
用户分类矩阵C,其中元素ci,x表示第i个用户属于第x类别的信息或参数:C=[ci,x]n×x
用电时间矩阵E,其中元素ei,j表示第i个用户在时间点tj的用电量:E=[ei,j]n×m
设备用电矩阵A,其中元素ai,k表示第i个用户的第k种设备的用电情况:A=[ai,k]n×k
基于用户分类矩阵C、用电时间矩阵E、设备用电矩阵A,多维度用电数据模型M构建为:M=f(C,E,A);其中,f为函数表达,表示用户分类信息、时间维度的用电数据以及设备用电数据的综合影响。
进一步的,所述S2具体包括:
S21:识别用电峰谷特征,分析多维度用电数据,明确用电高峰期和低谷期的时间点或时间段,包括工作日与非工作日、季节变化、特殊节假日或事件对用电峰谷的影响,分析在该时间节点用户用电量的显著变化,确定用电峰谷模式;
S22:用户行为模式分析,通过历史用电数据,分析不同用户类别的用电习惯,包括用电频率、用电时间偏好、用电量大小,识别不同类型用户的常规用电模式和偏好;
S23:用电设备运行状态关联分析,监测各类用电设备在不同时间、不同状态下的用电量,分析不同设备状态与用电量之间的关联性,确定某些设备状态导致的用电量突增或降低的模式;
S24:异常用电模式识别,基于统计学方法和数据分析,识别异常用电模式,包括设备故障、非法用电情况下的用电模式,该用电模式表现为与常规用电行为模式显著不同的用电数据变化;
S25:季节性与气候因素分析,考虑季节变化和气候条件对用电需求的影响,分析在不同季节或不同气候条件下用户用电需求的变化趋势和模式。
进一步的,所述S3中的构建用电去需求预测模型具体包括:
S31:参数输入与模型设定,根据S2中分析得出的内在关联因素和模式,选择与用电需求预测相关的输入参数,该输入参数包括季节性变化、用户行为模式、用电设备状态、历史用电数据,基于,该输入参数数据,设定预测模型的框架,确定模型的输入层、隐藏层和输出层;
S32:预测算法的选择与优化,选取长短期记忆网络作为用电去需求预测算法,并对其进行训练和优化;
S33:时间粒度的设定与需求预测,设定用电去需求预测模型的时间粒度,该时间粒度为如15分钟、30分钟或1小时,使用电去需求预测模型可生成细分的预测结果,输入参数后,用电去需求预测模型输出一段时间内的用电需求预测,包括预计的峰值时间和低谷时间,及其相应的用电量;
S34:用电去需求预测报告的生成,根据模型预测的结果,生成详细的用电去需求预测报告。
进一步的,所述S4中的制定综合能源调度计划具体包括:
S41:分析用电去需求预测报告,该报告基于用电去需求预测模型所得,包含未来特定时间段内的用电需求预测值;
S42:评估不同能源类型的可用性和成本效益,包括可再生能源如太阳能、风能和非可再生能源如燃煤、天然气,该评估基于各能源的生产成本、环境影响、供应稳定性以及转换和存储的效率进行;
S43:优化能源组合,基于相关性分析结果,结合决策程序计算确定最优能源组合;
S44:制定动态储能策略,包括:
S441:在预测出的用电需求低谷期,根据确定的最优能源组合,将多余能源指导至储能设备;
S442:在预测出的用电需求峰值期,控制储能设备释放先前存储的能源,以满足高峰期间的额外能源需求。
进一步的,所述决策程序具体包括:
设定决策标准:确定影响能源组合选择的关键标准,关键标准包括成本效益、环境影响、可用性、可靠性、存储和转换效率以及供应风险;
标准权重分配:使用层次分析方法,对每个关键标准进行权重分配;
方案评分:对每种能源方案根据各标准进行评分;
计算综合得分:对每种能源方案,根据其在每个标准下的评分和该标准的权重,计算其综合得分:综合得分=∑(各项标准的评分×对应标准的权重);
比较各能源方案的综合得分,得分最高的能源组合视为最优方案。
进一步的,所述S5中的实施一个基于区块链的能源交易机制,具体包括:
S51:创建一个去中心化的能源交易平台,该平台使用区块链技术来记录所有交易活动,每个交易块包含交易的细节,设定能源交易规则和协议,基于综合能源调度计划的指导,定义交易的参与者、价格形成机制、交易时间、交易方式、质量标准以及供应链追踪;
S52:使用预设的代码自动执行合约条款,当交易条件满足时触发相应的买卖程序;
S53:通过区块链的分布式账本,确保所有参与者能实时查看交易信息和市场动态,使用综合能源调度计划作为参考,允许用户基于即时的市场信息作出反应,进行能源的买卖;
S54:利用能源调度计划数据,对交易平台进行持续的优化和调整,通过分析能源供需状况、价格波动以及用户反馈,动态调整交易参数和规则,提升系统的响应性和效率。
进一步的,所述S6具体包括:
设立实时数据监控单元,持续收集和评估包括用电量、用电趋势、设备运行状态、环境因素、能源交易数据以及系统运行状态;
建立一个自适应算法模型,该模型实时分析从监控单元中收集到的数据,并与预先设定的能源供需平衡标准、成本效益分析、碳排放限制参数进行比较,以识别偏差或未按预期进行的变化;
实现自动微调功能,当自适应算法模型识别到能源供需不平衡、成本效益降低或其他关键指标出现偏差时,该自动微调功能自启动,通过调整综合能源调度计划中的指定参数,指定参数调整包括改变能源组合、调节发电量、重新分配储能资源来重新平衡系统。
一种基于用电去需求分析的综合能源调度系统,包括:
数据收集模块,配置有用于收集和整合来自不同用户和设备的用电信息的传感器网络,该数据收集模块通过综合用户分类、用电时间、用电设备类型,记录用电量并分析用户用电行为模式及设备运行状态,生成多维度用电数据;
数据处理和分析模块,内嵌有高级数据处理技术,对接收自数据收集模块的多维度用电数据进行相关性分析,识别出影响用电需求的内在关联因素和模式,并将这些因素和模式作为输入参数传递给用电去需求预测模块;
用电去需求预测模块,内置有预测算法,利用来自数据处理和分析模块的输入参数,预测未来一段时间内的用电需求,包括峰值时间和低谷时间,并将预测结果细化至小单位时间,形成用电去需求预测报告;
能源调度计划模块,根据用电去需求预测报告,考虑不同能源类型的可用性和成本效益,利用优化算法确定最优能源组合,制定动态储能策略,并生成综合能源调度计划;
基于区块链的能源交易模块,提供一个平台,允许系统内的用户根据能源调度计划进行能源的自主买卖,反映市场供需变化,并自动更新能源价格;
自适应调节模块,配备深度强化学习算法,根据实时监控到的用电数据、系统状态以及能源交易数据,自动微调综合能源调度计划和动态储能策略。
本发明的有益效果:
本发明,通过建立多维度的用电数据模型,精确收集并分析用户的用电行为和设备运行状态,实现对用电需求的深度理解,进一步通过相关性分析识别影响用电需求的关键因素,构建更为精确的用电去需求预测模型,为能源供应商和用户都带来了实时、准确的用电信息,极大地提高了能源调度的准确性和效率。
本发明,通过动态储能策略和自适应调节机制的应用,使得整个能源调度系统能够灵活应对用电需求的波动,在用电需求降低时,系统能够将多余的能源储存起来,反之,在高峰需求期,系统可以从储能设备中释放能源,平衡供需差异,自适应调节机制还使系统能够在实时监测到数据变化时,自动调整调度计划和储能策略,响应突发事件,确保能源供应的稳定性,同时避免了能源浪费和供应过剩的问题。
本发明,通过引入基于区块链的能源交易机制,本发明不仅确保了交易过程的透明性、安全性和可追溯性,还提高了市场的活跃度和参与度。这种机制允许用户根据实时能源价格自主进行买卖决策,从而激发了市场的竞争力,使价格更加合理,反映了真实的供需关系。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的能源调度方法流程示意图;
图2为本发明实施例的系统模块结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,对本发明进一步详细说明。
需要说明的是,除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
如图1-图2所示,一种基于用电去需求分析的综合能源调度方法,包括以下步骤:
S1:建立多维度的用电数据模型,该用电数据模型通过综合用户分类、用电时间、用电设备类型,收集并整合来自不同用户和设备的用电信息,同时记录用电量并分析用户用电行为模式及设备运行状态,得到多维度用电数据;
S2:利用高级数据处理技术对S1中收集到的多维度用电数据进行相关性分析,识别影响用电需求的内在关联因素和模式,将该关联因素和模式作为输入参数用于下一步的用电去需求分析;
S3:构建用电去需求预测模型,该模型使用S2中分析得出的内在关联因素和模式,通过预测算法预测未来一段时间内的用电需求,包括峰值时间和低谷时间的预测,并将预测结果细化至小单位时间,生成用电去需求预测报告;
S4:制定综合能源调度计划,根据S3的用电去需求预测报告,考虑不同能源类型(如可再生能源和非可再生能源)的可用性和成本效益,优化能源组合,同时制定动态储能策略,动态储能策略包括在预测出的低需求期间将多余能源存储于储能设备,以及在高需求期间从储能设备释放能源以满足需求;
S5:实施一个基于区块链的能源交易机制,该能源交易机制允许在系统中的用户基于S4中的综合能源调度计划,自主进行能源的买卖,生成能源交易数据,区块链技术确保交易的透明性、可追溯性和安全性,同时,该交易机制能实时反映市场供需变化,自动更新能源价格,促进资源的高效利用;
S6:集成自适应调节机制,该集成自适应调节机制根据实时监控到的用电数据和系统状态,包括S5中的能源交易数据,自动微调综合能源调度计划和动态储能策略,确保在突发事件或需求变化时能源供应的稳定性和高效性,减少不必要的能源损失;
该方法通过多步骤的深入分析和实时调整,确保了综合能源调度的精确性和灵活性,提高了能源利用的效率,同时引入的基于区块链的能源交易机制,增强了整个系统的透明度和用户之间的互动,是一种创新性的综合能源调度解决方案。
S1具体包括:
S11:用户分类阶段,通过应用用户识别模块,根据用户的用电历史数据、合同容量、行业类型、地理位置信息,将用户分为不同的类别,例如:居民用户、工业用户、商业用户等,每个类别进一步根据用电特点和行为模式细分为子类别,形成详细的用户分类体系;
S12:用电时间分析阶段,应用时间序列分析技术,收集各类用户在不同时间段(例如:尖峰、平峰、谷段)的用电数据,识别出每个时间段内的用电特征和模式,包括周期性、随机性,该用电数据将用于识别高需求时间段和低需求时间段;
S13:用电设备识别阶段,通过设备识别模块,分析各类用户的用电设备类型和数量,包括空调、加热设备、生产机器等,收集各用电设备的运行状态数据(如开机时间、功率、运行效率等),并识别设备的用电特征和负荷曲线;
S14:数据整合与用户行为分析阶段,将收集和分析的数据进行融合,利用数据挖掘和聚类分析,挖掘用户的用电行为模式和设备运行状态之间的内在联系和规律,生成包含用户行为特征的多维度用电数据模型;
通过以上综合方法,多维度用电数据模型不仅整合了详细的用户分类、用电时间序列、设备用电特征等多方面信息,还能够揭示用户的用电行为模式和设备运行状态,为后续的用电需求预测和能源调度决策提供精准的数据支持。
S1中的多维度的用电数据模型构建如下:
设U={u1,u2,...,un}为用户集,其中ui代表第i个用户;
设T={t1,t2,...,tm}为考察周期内的时间点集合,其中tj代表第j个时间点;
设D={d1,d2,...,dk}为设备类型集合,其中dk代表第k种设备类型;
用户分类矩阵C,其中元素ci,x表示第i个用户属于第x类别的信息或参数(例如用电行为、合同容量等):C=[ci,x]n×x
用电时间矩阵E,其中元素ei,j表示第i个用户在时间点tj的用电量:E=[ei,j]n×m
设备用电矩阵A,其中元素ai,k表示第i个用户的第k种设备的用电情况(如功率、使用时长等):A=[ai,k]n×k
基于用户分类矩阵C、用电时间矩阵E、设备用电矩阵A,多维度用电数据模型M构建为:M=f(C,E,A);其中,f为函数表达,表示用户分类信息、时间维度的用电数据以及设备用电数据的综合影响。
S2具体包括:
S21:识别用电峰谷特征,分析多维度用电数据,明确用电高峰期和低谷期的时间点或时间段,包括工作日与非工作日、季节变化、特殊节假日或事件对用电峰谷的影响,分析在该时间节点用户用电量的显著变化,确定用电峰谷模式;
S22:用户行为模式分析,通过历史用电数据,分析不同用户类别的用电习惯,包括用电频率、用电时间偏好、用电量大小,识别不同类型用户的常规用电模式和偏好;
S23:用电设备运行状态关联分析,监测各类用电设备在不同时间、不同状态下的用电量,包括启动、运行、空载、停机等状态,分析不同设备状态与用电量之间的关联性,确定某些设备状态导致的用电量突增或降低的模式;
S24:异常用电模式识别,基于统计学方法和数据分析,识别异常用电模式,包括设备故障、非法用电情况下的用电模式,该用电模式表现为与常规用电行为模式显著不同的用电数据变化;
S25:季节性与气候因素分析,考虑季节变化和气候条件对用电需求的影响,分析在不同季节或不同气候条件下用户用电需求的变化趋势和模式;
通过上述分析过程,系统地识别和理解了影响用电需求的多种内在关联因素和模式,并将这些具体因素和模式作为关键输入,用于下一步更精确的用电去需求分析和预测,从而实现更优化的能源调度策略。
S3中的构建用电去需求预测模型具体包括:
S31:参数输入与模型设定,根据S2中分析得出的内在关联因素和模式,选择与用电需求预测相关的输入参数,该输入参数包括季节性变化、用户行为模式、用电设备状态、历史用电数据,基于,该输入参数数据,设定预测模型的框架,确定模型的输入层(各种关键参数)、隐藏层(数据处理和分析单元)和输出层(预测结果);
S32:预测算法的选择与优化,选取长短期记忆网络作为用电去需求预测算法,并对其进行训练和优化;
S33:时间粒度的设定与需求预测,设定用电去需求预测模型的时间粒度,该时间粒度为如15分钟、30分钟或1小时,使用电去需求预测模型可生成细分的预测结果,输入参数后,用电去需求预测模型输出一段时间内的用电需求预测,包括预计的峰值时间和低谷时间,及其相应的用电量;
S34:用电去需求预测报告的生成,根据模型预测的结果,生成详细的用电去需求预测报告,该报告不仅图文并茂地显示预测数据,还分析可能影响未来用电需求的关键因素,并提供针对预测准确性的置信区间或误差范围,以便决策者进行参考。
S4中的制定综合能源调度计划具体包括:
S41:分析用电去需求预测报告,该报告基于用电去需求预测模型所得,包含未来特定时间段内的用电需求预测值,如峰值时间和低谷时间,每个时间点或时间段的用电量需求;
S42:评估不同能源类型的可用性和成本效益,包括可再生能源如太阳能、风能和非可再生能源如燃煤、天然气,该评估基于各能源的生产成本、环境影响、供应稳定性以及转换和存储的效率进行;
S43:优化能源组合,基于相关性分析结果,结合决策程序计算确定最优能源组合;
S44:制定动态储能策略,包括:
S441:在预测出的用电需求低谷期,根据确定的最优能源组合,将多余能源指导至储能设备,如电池存储系统、抽水蓄能电站或其他形式的储能技术,进行能源存储;
S442:在预测出的用电需求峰值期,控制储能设备释放先前存储的能源,以满足高峰期间的额外能源需求。
决策程序具体包括:
设定决策标准:确定影响能源组合选择的关键标准,关键标准包括成本效益、环境影响、可用性、可靠性、存储和转换效率以及供应风险;
标准权重分配:使用层次分析方法,对每个关键标准进行权重分配;
方案评分:对每种能源方案(如太阳能、风能、水力、燃气、煤炭等)根据各标准进行评分;
计算综合得分:对每种能源方案,根据其在每个标准下的评分和该标准的权重,计算其综合得分:综合得分=∑(各项标准的评分×对应标准的权重);
比较各能源方案的综合得分,得分最高的能源组合视为最优方案。
S5中的实施一个基于区块链的能源交易机制,具体包括:
S51:创建一个去中心化的能源交易平台,该平台使用区块链技术来记录所有交易活动,每个交易块包含交易的细节,如交易双方的身份、交易数量、价格以及时间戳,设定能源交易规则和协议,基于综合能源调度计划的指导,定义交易的参与者、价格形成机制、交易时间、交易方式、质量标准以及供应链追踪;
S52:使用预设的代码自动执行合约条款,当交易条件满足时触发相应的买卖程序,如自动转账、自动调节能源供应或需求,避免人工干预导致的延误或错误,同时降低交易成本和复杂性;
S53:通过区块链的分布式账本,确保所有参与者能实时查看交易信息和市场动态,使用综合能源调度计划作为参考,允许用户基于即时的市场信息作出反应,进行能源的买卖;
S54:利用能源调度计划数据,对交易平台进行持续的优化和调整,通过分析能源供需状况、价格波动以及用户反馈,动态调整交易参数和规则,提升系统的响应性和效率。
S6具体包括:
设立实时数据监控单元,持续收集和评估包括用电量、用电趋势、设备运行状态、环境因素、能源交易数据以及系统运行状态;
建立一个自适应算法模型,该模型实时分析从监控单元中收集到的数据,并与预先设定的能源供需平衡标准、成本效益分析、碳排放限制参数进行比较,以识别偏差或未按预期进行的变化;
实现自动微调功能,当自适应算法模型识别到能源供需不平衡、成本效益降低或其他关键指标出现偏差时,该自动微调功能自启动,通过调整综合能源调度计划中的指定参数,指定参数调整包括改变能源组合、调节发电量、重新分配储能资源来重新平衡系统;
整合动态储能策略的调整,基于实时的系统信息和能源市场动态,自动调整储能设备的充放电策略和节奏,例如在能源供大于求的情况下增加储能,反之则优化能源的释放,以更有效地应对用电高峰和低谷;
该自适应算法模型基于深度强化学习网络:
定义状态空间S,该状态空间包括多维度的用电数据、设备运行状态、能源价格、当前储能状态、环境因素等;
定义动作空间A,这些动作包括调整能源分配、储能设备的充电/放电、能源购买/销售等;
定义奖励函数R(s,a),用于评估采取特定动作的即时和长期回报,通常与成本节约、能源效率、碳排放等因素相关;
设计深度神经网络,该网络包括多个隐藏层,能够捕捉状态和动作之间的复杂非线性关系;
利用历史数据和模拟环境,通过与环境的交互来训练网络,在每个时间步,根据当前状态s选择一个动作a,环境返回一个新状态s'和奖励r。
更新网络的参数,优化以下目标函数:
其中,θ和θ-分别是当前网络和目标网络的参数,γ是折扣因子,表示未来奖励的当前价值。
一种基于用电去需求分析的综合能源调度系统,包括:
数据收集模块,配置有用于收集和整合来自不同用户和设备的用电信息的传感器网络,该数据收集模块通过综合用户分类、用电时间、用电设备类型,记录用电量并分析用户用电行为模式及设备运行状态,生成多维度用电数据;
数据处理和分析模块,内嵌有高级数据处理技术,对接收自数据收集模块的多维度用电数据进行相关性分析,识别出影响用电需求的内在关联因素和模式,并将这些因素和模式作为输入参数传递给用电去需求预测模块;
用电去需求预测模块,内置有预测算法,利用来自数据处理和分析模块的输入参数,预测未来一段时间内的用电需求,包括峰值时间和低谷时间,并将预测结果细化至小单位时间,形成用电去需求预测报告;
能源调度计划模块,根据用电去需求预测报告,考虑不同能源类型的可用性和成本效益,利用优化算法确定最优能源组合,制定动态储能策略,并生成综合能源调度计划;
基于区块链的能源交易模块,提供一个平台,允许系统内的用户根据能源调度计划进行能源的自主买卖,反映市场供需变化,并自动更新能源价格;
自适应调节模块,配备深度强化学习算法,根据实时监控到的用电数据、系统状态以及能源交易数据,自动微调综合能源调度计划和动态储能策略,以应对突发事件或需求变化,确保能源供应的稳定性和高效性。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本发明的范围被限于这些例子;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明它们没有在细节中提供。
本发明旨在涵盖落入权利要求的宽泛范围之内的所有这样的替换、修改和变型。因此,凡在本发明的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于用电去需求分析的综合能源调度方法,其特征在于,包括以下步骤:
S1:建立多维度的用电数据模型,该用电数据模型通过综合用户分类、用电时间、用电设备类型,收集并整合来自不同用户和设备的用电信息,同时记录用电量并分析用户用电行为模式及设备运行状态,得到多维度用电数据;
S2:利用高级数据处理技术对S1中收集到的多维度用电数据进行相关性分析,识别影响用电需求的内在关联因素和模式,将该关联因素和模式作为输入参数用于下一步的用电去需求分析;
S3:构建用电去需求预测模型,该预测模型使用S2中分析得出的内在关联因素和模式,通过预测算法预测未来一段时间内的用电需求,包括峰值时间和低谷时间的预测,并将预测结果细化至小单位时间,生成用电去需求预测报告;
S4:制定综合能源调度计划,根据S3的用电去需求预测报告,考虑不同能源类型的可用性和成本效益,优化能源组合,同时制定动态储能策略,动态储能策略包括在预测出的低需求期间将多余能源存储于储能设备,以及在高需求期间从储能设备释放能源以满足需求;
S5:实施一个基于区块链的能源交易机制,该能源交易机制允许在系统中的用户基于S4中的综合能源调度计划,自主进行能源的买卖,生成能源交易数据;
S6:集成自适应调节机制,该集成自适应调节机制根据实时监控到的用电数据和系统状态,包括S5中的能源交易数据,自动微调综合能源调度计划和动态储能策略。
2.根据权利要求1所述的一种基于用电去需求分析的综合能源调度方法,其特征在于,所述S1具体包括:
S11:用户分类阶段,通过应用用户识别模块,根据用户的用电历史数据、合同容量、行业类型、地理位置信息,将用户分为不同的类别;
S12:用电时间分析阶段,应用时间序列分析技术,收集各类用户在不同时间段的用电数据,识别出每个时间段内的用电特征和模式,包括周期性、随机性,该用电数据将用于识别高需求时间段和低需求时间段;
S13:用电设备识别阶段,通过设备识别模块,分析各类用户的用电设备类型和数量,收集各用电设备的运行状态数据,并识别设备的用电特征和负荷曲线;
S14:数据整合与用户行为分析阶段,将收集和分析的数据进行融合,利用数据挖掘和聚类分析,挖掘用户的用电行为模式和设备运行状态之间的内在联系和规律,生成包含用户行为特征的多维度用电数据模型。
3.根据权利要求2所述的一种基于用电去需求分析的综合能源调度方法,其特征在于,所述S1中的多维度的用电数据模型构建如下:
设U={u1,u2,...,un}为用户集,其中ui代表第i个用户;
设T={t1,t2,...,tm}为考察周期内的时间点集合,其中tj代表第j个时间点;
设D={d1,d2,...,dk}为设备类型集合,其中dk代表第k种设备类型;
用户分类矩阵C,其中元素ci,x表示第i个用户属于第x类别的信息或参数:C=[ci,x]n×x
用电时间矩阵E,其中元素ei,j表示第i个用户在时间点tj的用电量:E=[ei,j]n×m
设备用电矩阵A,其中元素ai,k表示第i个用户的第k种设备的用电情况:A=[ai,k]n×k
基于用户分类矩阵C、用电时间矩阵E、设备用电矩阵A,多维度用电数据模型M构建为:M=f(C,E,A);其中,f为函数表达,表示用户分类信息、时间维度的用电数据以及设备用电数据的综合影响。
4.根据权利要求3所述的一种基于用电去需求分析的综合能源调度方法,其特征在于,所述S2具体包括:
S21:识别用电峰谷特征,分析多维度用电数据,明确用电高峰期和低谷期的时间点或时间段,包括工作日与非工作日、季节变化、特殊节假日或事件对用电峰谷的影响,分析在该时间节点用户用电量的显著变化,确定用电峰谷模式;
S22:用户行为模式分析,通过历史用电数据,分析不同用户类别的用电习惯,包括用电频率、用电时间偏好、用电量大小,识别不同类型用户的常规用电模式和偏好;
S23:用电设备运行状态关联分析,监测各类用电设备在不同时间、不同状态下的用电量,分析不同设备状态与用电量之间的关联性,确定某些设备状态导致的用电量突增或降低的模式;
S24:异常用电模式识别,基于统计学方法和数据分析,识别异常用电模式,包括设备故障、非法用电情况下的用电模式,该用电模式表现为与常规用电行为模式显著不同的用电数据变化;
S25:季节性与气候因素分析,考虑季节变化和气候条件对用电需求的影响,分析在不同季节或不同气候条件下用户用电需求的变化趋势和模式。
5.根据权利要求4所述的一种基于用电去需求分析的综合能源调度方法,其特征在于,所述S3中的构建用电去需求预测模型具体包括:
S31:参数输入与模型设定,根据S2中分析得出的内在关联因素和模式,选择与用电需求预测相关的输入参数,该输入参数包括季节性变化、用户行为模式、用电设备状态、历史用电数据,基于,该输入参数数据,设定预测模型的框架,确定模型的输入层、隐藏层和输出层;
S32:预测算法的选择与优化,选取长短期记忆网络作为用电去需求预测算法,并对其进行训练和优化;
S33:时间粒度的设定与需求预测,设定用电去需求预测模型的时间粒度,该时间粒度为如15分钟、30分钟或1小时,使用电去需求预测模型可生成细分的预测结果,输入参数后,用电去需求预测模型输出一段时间内的用电需求预测,包括预计的峰值时间和低谷时间,及其相应的用电量;
S34:用电去需求预测报告的生成,根据模型预测的结果,生成详细的用电去需求预测报告。
6.根据权利要求5所述的一种基于用电去需求分析的综合能源调度方法,其特征在于,所述S4中的制定综合能源调度计划具体包括:
S41:分析用电去需求预测报告,该报告基于用电去需求预测模型所得,包含未来特定时间段内的用电需求预测值;
S42:评估不同能源类型的可用性和成本效益,包括可再生能源如太阳能、风能和非可再生能源如燃煤、天然气,该评估基于各能源的生产成本、环境影响、供应稳定性以及转换和存储的效率进行;
S43:优化能源组合,基于相关性分析结果,结合决策程序计算确定最优能源组合;
S44:制定动态储能策略,包括:
S441:在预测出的用电需求低谷期,根据确定的最优能源组合,将多余能源指导至储能设备;
S442:在预测出的用电需求峰值期,控制储能设备释放先前存储的能源,以满足高峰期间的额外能源需求。
7.根据权利要求6所述的一种基于用电去需求分析的综合能源调度方法,其特征在于,所述决策程序具体包括:
设定决策标准:确定影响能源组合选择的关键标准,关键标准包括成本效益、环境影响、可用性、可靠性、存储和转换效率以及供应风险;
标准权重分配:使用层次分析方法,对每个关键标准进行权重分配;
方案评分:对每种能源方案根据各标准进行评分;
计算综合得分:对每种能源方案,根据其在每个标准下的评分和该标准的权重,计算其综合得分:综合得分=∑(各项标准的评分×对应标准的权重);
比较各能源方案的综合得分,得分最高的能源组合视为最优方案。
8.根据权利要求7所述的一种基于用电去需求分析的综合能源调度方法,其特征在于,所述S5中的实施一个基于区块链的能源交易机制,具体包括:
S51:创建一个去中心化的能源交易平台,该平台使用区块链技术来记录所有交易活动,每个交易块包含交易的细节,设定能源交易规则和协议,基于综合能源调度计划的指导,定义交易的参与者、价格形成机制、交易时间、交易方式、质量标准以及供应链追踪;
S52:使用预设的代码自动执行合约条款,当交易条件满足时触发相应的买卖程序;
S53:通过区块链的分布式账本,确保所有参与者能实时查看交易信息和市场动态,使用综合能源调度计划作为参考,允许用户基于即时的市场信息作出反应,进行能源的买卖;
S54:利用能源调度计划数据,对交易平台进行持续的优化和调整,通过分析能源供需状况、价格波动以及用户反馈,动态调整交易参数和规则,提升系统的响应性和效率。
9.根据权利要求8所述的一种基于用电去需求分析的综合能源调度方法,其特征在于,所述S6具体包括:
设立实时数据监控单元,持续收集和评估包括用电量、用电趋势、设备运行状态、环境因素、能源交易数据以及系统运行状态;
建立一个自适应算法模型,该模型实时分析从监控单元中收集到的数据,并与预先设定的能源供需平衡标准、成本效益分析、碳排放限制参数进行比较,以识别偏差或未按预期进行的变化;
实现自动微调功能,当自适应算法模型识别到能源供需不平衡、成本效益降低或其他关键指标出现偏差时,该自动微调功能自启动,通过调整综合能源调度计划中的指定参数,指定参数调整包括改变能源组合、调节发电量、重新分配储能资源来重新平衡系统。
10.一种基于用电去需求分析的综合能源调度系统,其特征在于,包括:
数据收集模块,配置有用于收集和整合来自不同用户和设备的用电信息的传感器网络,该数据收集模块通过综合用户分类、用电时间、用电设备类型,记录用电量并分析用户用电行为模式及设备运行状态,生成多维度用电数据;
数据处理和分析模块,内嵌有高级数据处理技术,对接收自数据收集模块的多维度用电数据进行相关性分析,识别出影响用电需求的内在关联因素和模式,并将这些因素和模式作为输入参数传递给用电去需求预测模块;
用电去需求预测模块,内置有预测算法,利用来自数据处理和分析模块的输入参数,预测未来一段时间内的用电需求,包括峰值时间和低谷时间,并将预测结果细化至小单位时间,形成用电去需求预测报告;
能源调度计划模块,根据用电去需求预测报告,考虑不同能源类型的可用性和成本效益,利用优化算法确定最优能源组合,制定动态储能策略,并生成综合能源调度计划;
能源交易模块,提供一个平台,允许系统内的用户根据能源调度计划进行能源的自主买卖,反映市场供需变化,并自动更新能源价格;
自适应调节模块,配备深度强化学习算法,根据实时监控到的用电数据、系统状态以及能源交易数据,自动微调综合能源调度计划和动态储能策略。
CN202311394939.6A 2023-10-25 2023-10-25 一种基于用电去需求分析的综合能源调度方法及系统 Pending CN117592678A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311394939.6A CN117592678A (zh) 2023-10-25 2023-10-25 一种基于用电去需求分析的综合能源调度方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311394939.6A CN117592678A (zh) 2023-10-25 2023-10-25 一种基于用电去需求分析的综合能源调度方法及系统

Publications (1)

Publication Number Publication Date
CN117592678A true CN117592678A (zh) 2024-02-23

Family

ID=89915706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311394939.6A Pending CN117592678A (zh) 2023-10-25 2023-10-25 一种基于用电去需求分析的综合能源调度方法及系统

Country Status (1)

Country Link
CN (1) CN117592678A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118094398A (zh) * 2024-04-26 2024-05-28 深圳市云之声科技有限公司 一种基于物联网的电源评估方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118094398A (zh) * 2024-04-26 2024-05-28 深圳市云之声科技有限公司 一种基于物联网的电源评估方法

Similar Documents

Publication Publication Date Title
Boza et al. Artificial intelligence to support the integration of variable renewable energy sources to the power system
Abedinia et al. A new feature selection technique for load and price forecast of electrical power systems
Das et al. Day-ahead optimal bidding strategy of microgrid with demand response program considering uncertainties and outages of renewable energy resources
Humeau et al. Electricity load forecasting for residential customers: Exploiting aggregation and correlation between households
Xia et al. Modeling and optimizing maintenance schedule for energy systems subject to degradation
CN110222882A (zh) 一种电力系统中长期负荷的预测方法和装置
JPH06236202A (ja) プラントの運転方法及び装置
CN101872441A (zh) 离散资源管理
Lu et al. A hybrid deep learning-based online energy management scheme for industrial microgrid
CN117592678A (zh) 一种基于用电去需求分析的综合能源调度方法及系统
CN111191854A (zh) 一种基于线性回归及神经网络的光伏发电预测模型和方法
Petrichenko et al. District heating demand short-term forecasting
Logenthiran et al. Formulation of unit commitment (UC) problems and analysis of available methodologies used for solving the problems
Yahya et al. Short-term electric load forecasting using recurrent neural network (study case of load forecasting in central java and special region of yogyakarta)
Gosavi et al. A budget-sensitive approach to scheduling maintenance in a total productive maintenance (TPM) program
Guo et al. Real-time self-dispatch of a remote wind-storage integrated power plant without predictions: Explicit policy and performance guarantee
CN117439101B (zh) 一种用于电网中新能源与柔性负荷互动的智能网络
Mohammadi et al. A review of machine learning applications in electricity market studies
CN117458544B (zh) 一种基于多类型储能资源动态聚合的优化协同调控方法
CN117217553A (zh) 一种热电联产系统低碳运行方法
Leenders et al. Integrated scheduling of batch production and utility systems for provision of control reserve
Perera et al. Developing a Reinforcement Learning model for energy management of microgrids in Python
KR20170089549A (ko) 지능형 수요 반응 입찰 관리 시스템 및 그 방법
CN112734277A (zh) 信息物理融合的需求侧响应资源多层级建模方法
CN117764515B (zh) 一种变电站设备的故障检修成本核算方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination