CN117572647A - Micro-display, intelligent display device and picture anti-shake method thereof - Google Patents

Micro-display, intelligent display device and picture anti-shake method thereof Download PDF

Info

Publication number
CN117572647A
CN117572647A CN202410051009.9A CN202410051009A CN117572647A CN 117572647 A CN117572647 A CN 117572647A CN 202410051009 A CN202410051009 A CN 202410051009A CN 117572647 A CN117572647 A CN 117572647A
Authority
CN
China
Prior art keywords
display
micro
picture
chip
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410051009.9A
Other languages
Chinese (zh)
Other versions
CN117572647B (en
Inventor
孙润光
王仕伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Shengqi Guangxin Technology Co ltd
Original Assignee
Beijing Shengqi Guangxin Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Shengqi Guangxin Technology Co ltd filed Critical Beijing Shengqi Guangxin Technology Co ltd
Priority to CN202410051009.9A priority Critical patent/CN117572647B/en
Priority claimed from CN202410051009.9A external-priority patent/CN117572647B/en
Publication of CN117572647A publication Critical patent/CN117572647A/en
Application granted granted Critical
Publication of CN117572647B publication Critical patent/CN117572647B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The micro display comprises a micro display chip with a display area and at least one acceleration sensor, and a controller, wherein the controller is integrated in the micro display chip or arranged outside the micro display chip, the controller comprises a picture comparison circuit unit and a picture correction circuit unit, the picture comparison circuit unit is used for receiving primary picture information to be displayed and is electrically connected with the display area, the at least one acceleration sensor and the picture correction circuit unit respectively, and the picture correction circuit unit is electrically connected with the display area. According to the technical scheme, the technical problem that the picture is unclear due to the fact that shaking easily occurs in the using process of an existing intelligent display device such as intelligent glasses can be effectively solved.

Description

Micro-display, intelligent display device and picture anti-shake method thereof
Technical Field
The present disclosure relates to the field of display technologies, and in particular, to a micro display, an intelligent display device, and an anti-shake method for a frame of the micro display.
Background
Currently, "artificial intelligence" and "meta-universe" have gradually become the forefront technologies of leading-edge information technologies, wherein a micro display is a visual entrance of the concept of "meta-universe", and intelligent glasses such as VR and AR are core hardware of "meta-universe". However, in the use process of the conventional intelligent glasses, especially when people walk or run and other application scenes, the technical problem of unclear pictures caused by shaking can occur.
Disclosure of Invention
The embodiment of the application provides a micro display, an intelligent display device and an image anti-shake method thereof, and aims to solve the technical problem that an existing intelligent display device such as intelligent glasses is easy to shake in the use process to cause unclear images.
To this end, a first aspect of the embodiments of the present application provides a micro-display, including a micro-display chip having a display area and at least one acceleration sensor, and a controller, where the controller is integrated in the micro-display chip or is installed outside the micro-display chip, and the controller includes a picture comparison circuit unit and a picture correction circuit unit, where the picture comparison circuit unit is configured to receive primary picture information to be displayed, and is electrically connected to the display area, the at least one acceleration sensor, and the picture correction circuit unit is further electrically connected to the display area.
Optionally, in some embodiments of the present application, at least one position driving unit is further included;
the at least one position driving unit is arranged outside the micro-display chip respectively, and each position driving unit is arranged opposite to one side edge of the micro-display chip and is in driving connection with the opposite side edge of the micro-display chip;
the controller further includes a position correction circuit unit electrically connected to the at least one acceleration sensor and the at least one position driving unit, respectively.
Optionally, in some embodiments of the present application, the micro display chip includes a first side, a second side, a third side, and a fourth side that are sequentially disposed end to end, and the micro display includes four position driving units;
one of the position driving units is arranged opposite to the first side edge and is in driving connection with the first side edge;
one of the position driving units is arranged opposite to the second side edge and is in driving connection with the second side edge;
one of the position driving units is arranged opposite to the third side edge and is in driving connection with the third side edge;
and one position driving unit is arranged opposite to the fourth side edge and is in driving connection with the fourth side edge.
Optionally, in some embodiments of the present application, the micro display further includes four elastic structures, one of the position driving units is in driving connection with the first side through one of the elastic structure transmissions, one of the position driving units is in driving connection with the second side through one of the elastic structure transmissions, one of the position driving units is in driving connection with the third side through one of the elastic structure transmissions, and one of the position driving units is in driving connection with the fourth side through one of the elastic structure transmissions.
Optionally, in some embodiments of the present application, a surface of the micro display chip provided with the display area is further provided with at least one interface definition area, the at least one interface definition area being located between the first side and a side of the adjacent display area and/or between the second side and a side of the adjacent display area;
when the controller is integrated in the micro-display chip, the at least one interface definition area is electrically connected with the controller respectively, and the at least one position driving unit is electrically connected with the controller through the at least one interface definition area; or alternatively, the first and second heat exchangers may be,
when the controller is arranged outside the micro-display chip, the controller is electrically connected with the display area of the micro-display chip and the at least one acceleration sensor through the at least one interface definition area.
Optionally, in some embodiments of the present application, the at least one acceleration sensor is respectively disposed on a surface of the micro display chip where the display area is disposed,
the at least one acceleration sensor is located between the first side and the adjacent side of the interface definition area and/or between the second side and the adjacent side of the interface definition area, respectively; or alternatively, the first and second heat exchangers may be,
the at least one acceleration sensor is located in the at least one interface definition area, respectively.
Optionally, in some embodiments of the present application, the at least one acceleration sensor is respectively disposed on or built into a surface of the micro display chip other than the surface on which the display area is disposed; or alternatively, the first and second heat exchangers may be,
the micro-display chip is provided with four acceleration sensors, the four acceleration sensors are respectively arranged on the surface of the micro-display chip, on which the display area is arranged, and the four acceleration sensors are respectively arranged on four corners of the micro-display chip.
Optionally, in some embodiments of the present application, the acceleration sensor is any one of a capacitive acceleration sensor, a piezoresistive acceleration sensor, and a gyroscope.
In addition, a second aspect of the embodiments of the present application provides an intelligent display device, which includes a device housing and the above micro display, where the micro display is mounted on the device housing, and the display area of the micro display chip is exposed on the surface of the device housing.
In addition, a third aspect of the embodiments of the present application provides a method for preventing image shake, which is applied to the above micro display or the above intelligent display device, and includes the following steps:
acquiring primary picture information to be displayed and sensor information of the at least one acceleration sensor through the picture comparison circuit unit;
judging whether the display area shakes according to the sensor information, and analyzing and obtaining the picture shaking condition of the primary picture information to be displayed according to the primary picture information to be displayed and the sensor information when the display area shakes;
and according to the picture jitter condition, carrying out picture correction processing on the primary picture information to be displayed through the picture correction circuit unit to obtain and output and display target picture information without jitter through the display area.
The micro-display comprises a micro-display chip with a display area and at least one acceleration sensor, and a controller, wherein the controller is integrated in the micro-display chip or arranged outside the micro-display chip, and is used for receiving primary picture information to be displayed and comprises a picture comparison circuit unit and a picture correction circuit unit, the picture comparison circuit unit is respectively and electrically connected with the display area, the at least one acceleration sensor and the picture correction circuit unit, and the picture correction circuit unit is also electrically connected with the display area. Therefore, through the structure, when the micro-display chip shake is detected through the acceleration sensor in the use process of the intelligent display device provided with the micro-display, the picture comparison circuit unit can be used for respectively acquiring the primary picture information to be displayed and the sensor information of at least one acceleration sensor so as to analyze and obtain the picture shake condition of the primary picture information to be displayed. And according to the picture jitter condition, carrying out picture correction processing on the primary picture information to be displayed through a picture correction circuit unit to obtain and output and display target picture information without jitter through a display area. Meanwhile, as the anti-shake detection structure (namely the acceleration sensor) is directly integrated into the micro-display chip, the complexity and cost of the manufacturing process are reduced, the component structure of the intelligent display device assembled with the micro-display is reduced, and the overall convenience of the intelligent display device is further improved. Therefore, the technical scheme can effectively solve the technical problem that the picture is unclear due to the fact that the existing intelligent display device such as intelligent glasses is easy to shake in the use process.
Drawings
In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the drawings that are required in the embodiments or the description of the prior art will be briefly described below, and it is obvious that the drawings in the following description are only some embodiments of the present application, and that other drawings may be obtained from the structures shown in these drawings without inventive effort to a person of ordinary skill in the art.
FIG. 1 is a schematic diagram of a micro display according to an embodiment of the present application;
FIG. 2 is a block diagram of electrical connections of the micro-display shown in FIG. 1;
FIG. 3 is a schematic diagram of another structure of a micro-display chip of the micro-display shown in FIG. 1;
FIG. 4 is a schematic diagram of another structure of a micro-display chip of the micro-display shown in FIG. 1;
FIG. 5 is a schematic diagram of another structure of a micro-display chip of the micro-display shown in FIG. 1;
fig. 6 is a flowchart of an image anti-shake method according to an embodiment of the present application.
Reference numerals illustrate:
100. a micro display; 110. a micro display chip; 111. a display area; 112. an acceleration sensor; 113. a first interface definition area; 114. a second interface definition area; 120. a controller; 121. a picture comparison circuit unit; 122. a picture correction circuit unit; 123. a position correction circuit unit; 130. A position driving unit; 140. an elastic structure.
The realization, functional characteristics and advantages of the present application will be further described with reference to the embodiments, referring to the attached drawings.
Detailed Description
The following description of the embodiments of the present application will be made clearly and fully with reference to the accompanying drawings, in which it is evident that the embodiments described are only some, but not all, of the embodiments of the present application. All other embodiments, which can be made by one of ordinary skill in the art based on the embodiments herein without making any inventive effort, are intended to be within the scope of the present application.
It should be noted that all directional indicators (such as up, down, left, right, front, and rear … …) in the embodiments of the present application are merely used to explain the relative positional relationship, movement, etc. between the components in a specific posture (as shown in the drawings), and if the specific posture is changed, the directional indicator is correspondingly changed.
Furthermore, the descriptions of "first," "second," and the like, herein are for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, a feature defining "a first" or "a second" may explicitly or implicitly include at least one such feature. In addition, the technical solutions of the embodiments may be combined with each other, but it is necessary to base that the technical solutions can be realized by those skilled in the art, and when the technical solutions are contradictory or cannot be realized, the technical solutions should be considered that the combination of the technical solutions does not exist and is not within the protection scope of the present application.
In one embodiment, as shown in fig. 1 and 2, the embodiment of the present application provides a micro display 100, which includes a micro display chip 110 having a display area 111 and at least one acceleration sensor 112, and a controller 120, wherein the controller 120 is integrated in the micro display chip 110 or is disposed outside the micro display chip 110, the controller 120 includes a picture comparison circuit unit 121 and a picture correction circuit unit 122, the picture comparison circuit unit 121 is configured to receive primary picture information to be displayed, and is electrically connected to the display area 111, the at least one acceleration sensor 112, and the picture correction circuit unit 122, respectively, and the picture correction circuit unit 122 is further electrically connected to the display area 111.
It is understood that the micro display 100 according to the embodiment of the present application may be applied to a smart display device such as smart glasses to output screen information for displaying a corresponding smart display device through the display area 111 thereof. Thus, the above-mentioned primary screen information to be displayed is mainly transmitted to the screen comparing circuit unit 121 of the present micro display 100 by the controllers of these smart display devices. Since the acceleration sensor 112 is disposed on the micro display chip 110 simultaneously with the display area 111, it can determine whether the display area 111 is subject to shake by sensing whether the micro display chip 110 is subject to shake, and the number of the acceleration sensors 112 can be arbitrarily adjusted according to the actual detection accuracy. The above-mentioned picture comparison circuit unit 121 may be specifically configured to obtain primary picture information to be displayed and sensor information of at least one acceleration sensor 112, and directly output the primary picture information to be displayed to the display area 111 for corresponding picture display when no shake occurs in the display area 111, or analyze and obtain a picture shake condition (specifically may include a shake direction and a shake amplitude) of the primary picture information to be displayed according to the primary picture information to be displayed and the sensor information when shake occurs in the display area 111, and feed back the picture shake condition to the picture correction circuit unit 122. The above-mentioned picture correction circuit unit 122 is specifically configured to perform picture correction processing on the primary picture information to be displayed according to the picture jitter condition (this process may be specifically described as follows: after analyzing the direction and amplitude of the jitter, the picture correction circuit unit 122 generates an electric signal in an opposite direction according to these information to counteract the jitter in the original signal), so as to obtain and output the target picture information without jitter to the display area 111. In addition, the above-mentioned controller 120 is integrated in the micro display chip 110 or is disposed outside the micro display chip 110, and it is preferable to optionally integrate the controller 120 in the micro display chip 110, so that the degree of the micro display chip 110 can be further improved, so as to reduce the number of components of the micro display 100 disposed outside the micro display chip 110, and further reduce the occupied space of the micro display 100.
Thus, with the above configuration, when the acceleration sensor 112 detects the shake of the micro display chip 110 during the use of the smart display device equipped with the micro display 100, the picture comparison circuit unit 121 may obtain the primary picture information to be displayed in the display area 111 and the sensor information of at least one acceleration sensor 112, respectively, so as to analyze and obtain the picture shake of the primary picture information to be displayed. And according to the picture shaking situation, the picture correction processing is performed on the primary picture information to be displayed by the picture correction circuit unit 122, so that the target picture information without shaking is obtained and output and displayed by the display area 111. Meanwhile, since the above structure directly integrates the anti-shake detection structure (i.e., the acceleration sensor 112) into the micro-display chip 110, the complexity and cost of the respective manufacturing process are reduced, and the component structure of the intelligent display device equipped with the micro-display 100 is reduced, thereby increasing the convenience of the whole intelligent display device.
In some examples, as shown in fig. 1 and 2, the micro display 100 specifically further includes at least one position driving unit 130. At least one position driving unit 130 is respectively disposed outside the micro display chip 110, and each position driving unit 130 is disposed opposite to one side of the micro display chip 110 and is in driving connection with the opposite side of the micro display chip 110. The controller 120 further includes a position correction circuit unit 123, and the position correction circuit unit 123 is electrically connected to the at least one acceleration sensor 112 and the at least one position driving unit 130, respectively.
It is understood that the number of the above-mentioned position driving units 130 is mainly determined according to the number of sides of the micro display chip 110 and the position correction accuracy of the micro display chip 110. Preferably, a position driving unit 130 is disposed corresponding to each side of the micro display chip 110, so that when the direction of any side of the micro display chip 110 is jittered, the corresponding position driving unit 130 drives the micro display chip 110 to perform corresponding position change, so as to ensure that the picture displayed in the display area 111 on the micro display chip 110 is not jittered.
Thus, through the structural arrangement in this example, when the micro display chip 110 is detected to shake by the acceleration sensor 112 during the use process of the intelligent display device equipped with the micro display 100 of this embodiment of the present application, the micro display chip 110 is driven by the position driving unit 130 to perform corresponding position change, so as to reduce the shake situation of the micro display chip 110, and effectively improve the shake situation of the picture displayed in the display area 111 on the micro display chip 110.
In some examples, as shown in fig. 1, the micro display chip 110 includes a first side, a second side, a third side, and a fourth side disposed end to end in order, and the micro display 100 includes four position driving units 130. A position driving unit 130 is disposed opposite to the first side and is in driving connection with the first side. A position driving unit 130 is disposed opposite to the second side and is in driving connection with the second side. A position driving unit 130 is disposed opposite to the third side and is in driving connection with the third side. A position driving unit 130 is disposed opposite to the fourth side and is in driving connection with the fourth side. In this way, by the above configuration, when the direction of any side of the micro display chip 110 is jittered, the corresponding position driving unit 130 drives the micro display chip 110 to perform corresponding position change, so as to ensure that the picture displayed in the display area 111 on the micro display chip 110 is not jittered.
In some examples, as shown in fig. 1, the micro display 100 further includes four elastic structures 140, one position driving unit 130 is drivingly connected to the first side driving through one elastic structure 140, one position driving unit 130 is drivingly connected to the second side driving through one elastic structure 140, one position driving unit 130 is drivingly connected to the third side driving through one elastic structure 140, and one position driving unit 130 is drivingly connected to the fourth side driving through one elastic structure 140. In this way, the above structure can be used to make the elastic structure 140 not only make the corresponding position driving unit 130 act on the position of the corresponding side of the micro display chip 110. Meanwhile, when the micro display chip 110 shakes, the micro display chip 110 can be buffered, so that the shaking of the picture can be further reduced.
In some examples, as shown in fig. 1, the surface of the micro display chip 110 provided with the display area 111 is further provided with at least one interface definition area, which is located between the first side and the side of the adjacent display area 111 and/or between the second side and the side of the adjacent display area 111. When the controller 120 is integrated in the micro display chip 110, at least one interface definition area is electrically connected to the controller 120, and at least one position driving unit 130 is electrically connected to the controller 120 through at least one interface definition area. Or, when the controller 120 is disposed outside the micro display chip 110, the controller 120 is electrically connected to the display area 111 of the micro display chip 110 and the at least one acceleration sensor 112 through at least one interface definition area, that is, the picture comparison circuit unit 121 of the controller 120 is electrically connected to the at least one acceleration sensor 112 through at least one interface definition area, and the picture correction circuit unit 122 of the controller 120 is electrically connected to the display area 111 through at least one interface definition area. It is understood that the at least one interface definition area may be a pad interface definition area, and is formed by a row of metal pads (bonding pads). The number of the at least one interface definition area mentioned above may be correspondingly set according to the actual application requirement of the micro display chip 110, that is, one interface definition area may be set, or two interface definition areas may be set, or even three or more interface definition areas may be set, where at least one interface definition area shown in the figure includes a first interface definition area 113 and a second interface definition area 114, for example, the first interface definition area 113 may be specifically located between the first side and the side of the adjacent display area 111, and the second interface definition area 114 may be specifically located between the second side and the side of the adjacent display area 111. Thus, by the above configuration, the connection interface between the chip pins of the present micro-display chip 110 and the external circuit can be provided by the configuration of at least one interface definition area, and the signal transmission performance and the package layout of the present micro-display chip 110 are affected.
In some examples, as shown in fig. 1, at least one acceleration sensor 112 is respectively disposed on the surface of the micro display chip 110 where the display area 111 is disposed, and the at least one acceleration sensor 112 is respectively disposed between the first side and the side of an adjacent interface definition area (may be specifically the first interface definition area 113) and/or between the second side and the side of an adjacent interface definition area (may be specifically the second interface definition area 114). Taking the example that two acceleration sensors 112 are located between the second side and the side of the adjacent second interface defining area 114 as shown in fig. 1, the above structure may be used to arrange at least one acceleration sensor 112 on the surface of the micro-display chip 110 reasonably, so as to better determine whether the display area 111 shakes by sensing whether the micro-display chip 110 shakes.
In some examples, as shown in fig. 3, at least one acceleration sensor 112 is respectively disposed on the surface of the micro display chip 110 where the display area 111 is disposed, and the at least one acceleration sensor 112 is respectively located in at least one interface definition area (specifically, may be located in the first interface definition area 113 and/or located in the second interface definition area 114). Taking the example shown in fig. 2, two acceleration sensors 112 are respectively located in the first interface defining area 113 and the second interface defining area 114, that is, one acceleration sensor 112 is located in the first interface defining area 113 and is aligned with a plurality of metal pads of the first interface defining area 113 along the extending direction of the first side edge, and the other acceleration sensor 112 is located in the second interface defining area 114 and is aligned with a plurality of metal pads of the second interface defining area 114 along the extending direction of the second side edge. In this way, the above structure can be used to make at least one acceleration sensor 112 reasonably arranged on the surface of the micro-display chip 110, so as to better determine whether the display area 111 shakes by sensing whether the micro-display chip 110 shakes, and at the same time, further improve the screen duty ratio of the micro-display chip 100 (i.e. the area duty ratio of the display area 111 on the surface).
In some examples, as shown in fig. 4, at least one acceleration sensor 112 is respectively installed on other surfaces of the micro display chip 110 than the surface on which the display area 111 is provided or built in the micro display chip 110. As shown in fig. 3, an acceleration sensor 112 is provided on the surface on which the first side is located. In this way, the arrangement of the acceleration sensor 112 does not occupy the space on the surface where the display area 111 is arranged, so that at least one acceleration sensor 112 is reasonably arranged on the surface of the micro-display chip 110, so as to better determine whether the display area 111 shakes by sensing whether the micro-display chip 110 shakes, and further improve the screen occupation ratio of the micro-display chip 100 (i.e. the area occupation ratio of the display area 111 on the surface).
In some examples, as shown in fig. 5, the micro display 100 has four acceleration sensors 112, the four acceleration sensors 112 are respectively installed on the surface of the micro display chip 110 where the display area 111 is provided, and the four acceleration sensors 112 are respectively located on four corners of the micro display chip 110. In this way, the corresponding acceleration sensors 112 are disposed on the four corners of the micro-display chip 110, so that the corresponding acceleration sensors 112 can accurately detect the shake of any side of the micro-display chip 110, and whether the shake of the display area 111 occurs can be better determined by sensing whether the shake of the micro-display chip 110 occurs.
In some examples, as shown in fig. 1 to 5, the acceleration sensor 112 may be specifically any one of a capacitive acceleration sensor 112, a piezoresistive acceleration sensor 112, and a gyroscope, so as to better determine whether the display area 111 is dithered by sensing whether the micro-display chip 110 is dithered. Preferably, the acceleration sensor 112 may be specifically a gyroscope. Meanwhile, the acceleration sensor 112 may be combined with a CMOS fabrication process using a mature mes process to better integrate the acceleration sensor 112 on the micro display chip 110.
In one embodiment, the present application provides a smart display device, which may specifically include a device housing and the micro display 100 in the above embodiment, where the micro display 100 may specifically be mounted on the device housing, and the display area 111 of the micro display chip 110 is exposed on the surface of the device housing. The structure and function of the micro-display 100 are detailed above, and will not be described herein.
In this way, through the above configuration, when the acceleration sensor 112 detects the shake of the micro display chip 110 during the use process of the intelligent display device according to the embodiment of the present application, the image comparison circuit unit 121 may respectively obtain the primary image information to be displayed in the display area 111 and the sensor information of at least one acceleration sensor 112, so as to analyze and obtain the image shake condition of the primary image information to be displayed. And according to the picture shaking situation, the picture correction processing is performed on the primary picture information to be displayed by the picture correction circuit unit 122, so that the target picture information without shaking is obtained and output and displayed by the display area 111. Meanwhile, since the anti-shake detection structure (i.e., the acceleration sensor 112) is directly integrated into the micro-display chip 110, the complexity and cost of the respective manufacturing process are reduced, and the component structure of the intelligent display device is reduced, so that the overall convenience of the intelligent display device is improved.
In one embodiment, as shown in fig. 6, an embodiment of the present application provides a picture anti-shake method, which is specifically applicable to the micro display 100 of the above embodiment or the smart display device of the above embodiment, and includes the following steps:
step S110: the primary picture information to be displayed and the sensor information of at least one acceleration sensor are acquired by a picture comparison circuit unit.
Step S120: judging whether the display area shakes according to the sensor information, and analyzing and obtaining the picture shaking condition of the primary picture information to be displayed according to the primary picture information to be displayed and the sensor information when the display area shakes.
Step S130: and according to the picture jitter condition, carrying out picture correction processing on the primary picture information to be displayed through a picture correction circuit unit to obtain and output and display target picture information without jitter through a display area.
It can be understood that, as shown in fig. 1 to 5, when the micro display 100 or the intelligent display device according to the embodiment of the present application performs display, the micro display 100 or the intelligent display device may firstly obtain the primary picture information to be displayed and the sensor information of at least one acceleration sensor 112 through the picture comparison circuit unit 121, then determine whether the display area 111 shakes according to the sensor information, if the surrounding environment does not cause the micro display 100 or the intelligent display device to shake, that is, determine that the display area 111 does not shake according to the sensor information, then directly output the primary picture information to be displayed to the display area 111 through the picture comparison circuit unit 121 for performing corresponding picture display, and if the surrounding environment causes the micro display 100 or the intelligent display device to shake, that is, determine that the display area 111 shakes according to the sensor information, then further analyze and obtain the picture shake condition of the primary picture information to be displayed according to the primary picture information and the sensor information, and feed the picture shake condition back to the picture correction circuit unit 122. Finally, according to the picture jitter condition, the picture correction processing is performed on the primary picture information to be displayed through the picture correction circuit unit 122, so as to obtain and output and display the target picture information without jitter through the display area 111.
In this way, by the image anti-shake method according to the embodiment of the present application, when the micro display 100 of the above embodiment or the intelligent display device of the above embodiment performs image display, the influence of shake of the micro display 100 or the intelligent display device is avoided as much as possible, so as to effectively solve the technical problem that the conventional intelligent display device such as intelligent glasses is easy to shake in the use process, so that the image is unclear.
The foregoing description is only of the preferred embodiments of the present application and is not intended to limit the scope of the claims, and all equivalent structural changes made in the present application and the accompanying drawings or direct/indirect application in other related technical fields are included in the scope of the present application.

Claims (10)

1. The micro display is characterized by comprising a micro display chip with a display area and at least one acceleration sensor and a controller, wherein the controller is integrated in the micro display chip or arranged outside the micro display chip, the controller comprises a picture comparison circuit unit and a picture correction circuit unit, the picture comparison circuit unit is used for receiving primary picture information to be displayed and is respectively and electrically connected with the display area, the at least one acceleration sensor and the picture correction circuit unit, and the picture correction circuit unit is also electrically connected with the display area.
2. The microdisplay of claim 1, further comprising at least one position driving unit;
the at least one position driving unit is arranged outside the micro-display chip respectively, and each position driving unit is arranged opposite to one side edge of the micro-display chip and is in driving connection with the opposite side edge of the micro-display chip;
the controller further includes a position correction circuit unit electrically connected to the at least one acceleration sensor and the at least one position driving unit, respectively.
3. The microdisplay of claim 2, wherein the microdisplay chip includes a first side, a second side, a third side, and a fourth side disposed end-to-end in sequence, the microdisplay including four of the position-driving units;
one of the position driving units is arranged opposite to the first side edge and is in driving connection with the first side edge;
one of the position driving units is arranged opposite to the second side edge and is in driving connection with the second side edge;
one of the position driving units is arranged opposite to the third side edge and is in driving connection with the third side edge;
and one position driving unit is arranged opposite to the fourth side edge and is in driving connection with the fourth side edge.
4. A microdisplay as in claim 3, further comprising four elastic structures, one of said position drive units being drivingly connected to said first side by one of said elastic structure drives, one of said position drive units being drivingly connected to said second side by one of said elastic structure drives, one of said position drive units being drivingly connected to said third side by one of said elastic structure drives, one of said position drive units being drivingly connected to said fourth side by one of said elastic structure drives.
5. A microdisplay according to claim 3, wherein the surface of the microdisplay chip provided with the display area is further provided with at least one interface definition area between the first side and a side of the adjacent display area and/or between the second side and a side of the adjacent display area;
when the controller is integrated in the micro-display chip, the at least one interface definition area is electrically connected with the controller respectively, and the at least one position driving unit is electrically connected with the controller through the at least one interface definition area; or alternatively, the first and second heat exchangers may be,
when the controller is arranged outside the micro-display chip, the controller is electrically connected with the display area of the micro-display chip and the at least one acceleration sensor through the at least one interface definition area.
6. The micro-display as set forth in claim 5, wherein the at least one acceleration sensor is respectively provided on a surface of the micro-display chip on which the display area is provided,
the at least one acceleration sensor is located between the first side and the adjacent side of the interface definition area and/or between the second side and the adjacent side of the interface definition area, respectively; or alternatively, the first and second heat exchangers may be,
the at least one acceleration sensor is located in the at least one interface definition area, respectively.
7. The micro-display according to claim 1, wherein the at least one acceleration sensor is respectively provided on or built in the micro-display chip other than the surface provided with the display area; or alternatively, the first and second heat exchangers may be,
the micro-display chip is provided with four acceleration sensors, the four acceleration sensors are respectively arranged on the surface of the micro-display chip, on which the display area is arranged, and the four acceleration sensors are respectively arranged on four corners of the micro-display chip.
8. The micro-display of any one of claims 1-7, wherein the acceleration sensor is any one of a capacitive acceleration sensor, a piezoresistive acceleration sensor, and a gyroscope.
9. An intelligent display device comprising a device housing and a micro-display according to any one of claims 1-8, wherein the micro-display is mounted on the device housing such that a display area of the micro-display chip is exposed on a surface of the device housing.
10. A picture anti-shake method, for use in the micro-display according to any one of claims 1 to 8 or the intelligent display device according to claim 9, comprising the steps of:
acquiring primary picture information to be displayed and sensor information of the at least one acceleration sensor through the picture comparison circuit unit;
judging whether the display area shakes according to the sensor information, and analyzing and obtaining the picture shaking condition of the primary picture information to be displayed according to the primary picture information to be displayed and the sensor information when the display area shakes;
and according to the picture jitter condition, carrying out picture correction processing on the primary picture information to be displayed through the picture correction circuit unit to obtain and output and display target picture information without jitter through the display area.
CN202410051009.9A 2024-01-15 Micro-display, intelligent display device and picture anti-shake method thereof Active CN117572647B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410051009.9A CN117572647B (en) 2024-01-15 Micro-display, intelligent display device and picture anti-shake method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410051009.9A CN117572647B (en) 2024-01-15 Micro-display, intelligent display device and picture anti-shake method thereof

Publications (2)

Publication Number Publication Date
CN117572647A true CN117572647A (en) 2024-02-20
CN117572647B CN117572647B (en) 2024-04-26

Family

ID=

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566049A (en) * 2010-11-08 2012-07-11 微软公司 Automatic variable virtual focus for augmented reality displays
CN203311119U (en) * 2013-06-28 2013-11-27 合肥京东方光电科技有限公司 Aligning clamp and aligning device
CN104584115A (en) * 2012-08-27 2015-04-29 索尼公司 Image display device and image display method, information communication terminal and information communication method, and image display system
CN108181991A (en) * 2018-01-19 2018-06-19 厦门美图移动科技有限公司 Method for displaying image, device and electronic equipment
CN110012224A (en) * 2019-03-26 2019-07-12 Oppo广东移动通信有限公司 Camera stabilization system, method, electronic equipment and computer readable storage medium
CN110197639A (en) * 2019-05-17 2019-09-03 海纳巨彩(深圳)实业科技有限公司 A kind of brightness control system for small space distance LED display screen
CN209525525U (en) * 2018-01-25 2019-10-22 台湾东电化股份有限公司 Optical element driving mechanism
CN209542965U (en) * 2019-03-12 2019-10-25 苏州车萝卜汽车电子科技有限公司 Image stabilization head up display
US20210201769A1 (en) * 2019-12-27 2021-07-01 Facebook Technologies, Llc Macro-pixel display backplane
CN113489889A (en) * 2021-08-03 2021-10-08 Oppo广东移动通信有限公司 Dual anti-shake system, method, electronic device, and computer-readable storage medium

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566049A (en) * 2010-11-08 2012-07-11 微软公司 Automatic variable virtual focus for augmented reality displays
CN104584115A (en) * 2012-08-27 2015-04-29 索尼公司 Image display device and image display method, information communication terminal and information communication method, and image display system
CN203311119U (en) * 2013-06-28 2013-11-27 合肥京东方光电科技有限公司 Aligning clamp and aligning device
CN108181991A (en) * 2018-01-19 2018-06-19 厦门美图移动科技有限公司 Method for displaying image, device and electronic equipment
CN209525525U (en) * 2018-01-25 2019-10-22 台湾东电化股份有限公司 Optical element driving mechanism
CN209542965U (en) * 2019-03-12 2019-10-25 苏州车萝卜汽车电子科技有限公司 Image stabilization head up display
CN110012224A (en) * 2019-03-26 2019-07-12 Oppo广东移动通信有限公司 Camera stabilization system, method, electronic equipment and computer readable storage medium
CN110197639A (en) * 2019-05-17 2019-09-03 海纳巨彩(深圳)实业科技有限公司 A kind of brightness control system for small space distance LED display screen
US20210201769A1 (en) * 2019-12-27 2021-07-01 Facebook Technologies, Llc Macro-pixel display backplane
CN113489889A (en) * 2021-08-03 2021-10-08 Oppo广东移动通信有限公司 Dual anti-shake system, method, electronic device, and computer-readable storage medium

Similar Documents

Publication Publication Date Title
US11650633B2 (en) Display panel and display apparatus
US7501610B2 (en) Compound-eye imaging device
CN106774689B (en) Display screen, display screen assembly and terminal
US8899112B2 (en) Gyro sensor and electronic device including the same
CN110769151B (en) Image processing method, image processing apparatus, electronic device, and medium
CN112033351B (en) Monocular camera-based distance measuring method and electronic equipment
US20190129570A1 (en) Anti-mistouch apparatus and method of flexible screen
CN109062427A (en) A kind of fingerprint recognition touch display unit and fingerprint identification method
US20150059474A1 (en) Functional device, electronic apparatus, and moving object
CN117572647B (en) Micro-display, intelligent display device and picture anti-shake method thereof
CN102316347A (en) The shooting testing fixture of 3D camera module and shooting check method thereof, 3D camera module and shooting correction method thereof
CN117572647A (en) Micro-display, intelligent display device and picture anti-shake method thereof
CN105372450A (en) Physical quantity sensor, electronic apparatus, and moving body
CN110767140B (en) Display control method and device of display panel and display equipment
CN109309740B (en) Electronic device and control method thereof
CN109561207B (en) Electronic device and control method thereof
CN110033723B (en) Display input delay detection system and method
US9426458B2 (en) Video output supervisor
CN110661972B (en) Image processing method, image processing apparatus, electronic device, and medium
US6791617B1 (en) Distance detecting device and a method for distance detection
JP3216645B2 (en) Range finding field selection device for camera
CN208636850U (en) In vivo detection face identification device
WO2015158258A1 (en) User posture detection method, device and system
CN213768399U (en) Automobile electronic outside rear-view mirror control system
CN110767143A (en) Display control method of display device and display device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant