CN117562923A - 负载M2巨噬细胞外泌体的GelMA水凝胶及其制备方法和应用 - Google Patents

负载M2巨噬细胞外泌体的GelMA水凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN117562923A
CN117562923A CN202311531711.7A CN202311531711A CN117562923A CN 117562923 A CN117562923 A CN 117562923A CN 202311531711 A CN202311531711 A CN 202311531711A CN 117562923 A CN117562923 A CN 117562923A
Authority
CN
China
Prior art keywords
macrophage
exosomes
exosome
macrophages
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311531711.7A
Other languages
English (en)
Inventor
杨佳曼
范运龙
谢玉霖
夏志宽
杨蓉娅
蔡媛媛
王聪敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
7th Medical Center of PLA General Hospital
Original Assignee
7th Medical Center of PLA General Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 7th Medical Center of PLA General Hospital filed Critical 7th Medical Center of PLA General Hospital
Publication of CN117562923A publication Critical patent/CN117562923A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0645Macrophages, e.g. Kuepfer cells in the liver; Monocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2304Interleukin-4 (IL-4)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本发明公开了一种负载M2巨噬细胞外泌体的GelMA水凝胶及其制备方法和应用,其属于生物医学技术领域,该制备方法包括以下步骤:将甲基丙烯酸酐加入明胶溶液中,搅拌反应后,再依次进行透析和冷冻干燥处理,得到水凝胶前体;往水凝胶前体中加入光引发剂和M2巨噬细胞外泌体,然后置于紫外光下交联形成负载M2巨噬细胞外泌体的Ge1MA水凝胶。本发明成功诱导了M2巨噬细胞,成功提取了M2巨噬细胞外泌体并验证其重编程M1巨噬细胞、促进血管形成和增强成纤维细胞迁移的能力;另外,本发明成功建立M2巨噬细胞外泌体‑水凝胶载药系统,实现M2巨噬细胞外泌体在创面的缓释,延长其作用时间,丰富了目前治疗创面的手段。

Description

负载M2巨噬细胞外泌体的GelMA水凝胶及其制备方法和应用
技术领域
本发明涉及生物医学技术领域,具体是一种负载M2巨噬细胞外泌体的Gel MA水凝胶及其制备方法和应用。
背景技术
皮肤作为人体最大的器官及免疫防线,容易受到外界物理性、生物性及化学性伤害而形成创面。创面分为急性创面和慢性创面。急性创面包括:意外损伤,如烧伤、创伤;医源性损伤,如手术切口;生物源性损伤,如动物咬伤;感染源性损伤等。慢性创面包括:压疮、血管性溃疡、糖尿病足病、外科术后难愈性切口、自身免疫系统疾病创面等。
事实上,急性创面常出现于外科手术中。慢性创面常出现在患有糖尿病和肥胖症患者或长年卧病在床的老年人身上。随着人们生活质量的提高,糖尿病及肥胖症患者人数正在快速增长。治疗慢性创面的负担正在迅速增加。创面护理的费用、患者和照顾患者的家庭的生产力下降,以及他们生活质量的下降对社会而言都是巨大的代价。
创面治疗护理给患者的经济及社会公共卫生造成严峻的负担,创面的愈合修复也成为被关注的热点。创面愈合是一个高度程序化的过程,涉及一系列精准的细胞和细胞因子参与的反应:止血、炎症、增殖和重塑。目前创面治疗的方法主要是在控制病因的基础上,根据创面的具体情况选择合适的治疗手段。如创面较小可以给予物理治疗,如红光照射,还有负压创面治疗、外用含碘或银盐的抗菌剂、生长因子的敷料。若创面较大,感染严重,还需进行创面清创、游离皮瓣移植等。以上传统的治疗方法虽可在一定程度上促进创面愈合,但仍存在一部分人经受着创面难以愈合的痛苦。患者及社会都在呼吁更先进、更有效的治疗方法来解决这一难题。
创面愈合均会经历炎症期,皮肤的免疫细胞会迁移到创面并分泌大量的促炎因子。炎症反应是机体的免疫应答反应,可清除病原体及坏死细胞,对创面愈合至关重要。随后从最初的炎症阶段到增殖阶段的转变是决定伤口愈合结果的关键调节点。创面愈合后期的增殖期及重塑期主要是毛细血管再生及结缔组织增生形成的肉芽组织填补创面的缺损,减少出血以及上皮细胞不断爬行、分裂直到完全覆盖创面。而大部分难以愈合的创面存在炎症期延长或炎症过度,导致创面微环境紊乱,影响血管内皮细胞、成纤维细胞及上皮细胞的正常功能,最终导致创面愈合不良。因此抑制炎症反应并减少在炎症反应过程中产生的细胞因子对改善皮肤创面的免疫微环境具有重要意义。
目前细胞技术快速发展,已有大量试验表明,M2巨噬细胞具有抗炎特性。在创面中的免疫细胞中,巨噬细胞是促进炎症增殖阶段转变的关键参与者。巨噬细胞分为两种主要亚型:具有促炎性质的M1巨噬细胞和具有抗炎性质的M2巨噬细胞。在特定时间点使得巨噬细胞表型从M1到M2,从炎症过渡到伤口修复的增殖阶段是促进创面愈合的关键。
现有研究表明多种细胞,包括巨噬细胞,通过旁分泌外泌体参与到机体免疫应答、抗原提呈、细胞迁移、细胞分化、肿瘤侵袭等。外泌体是一种大小为40-160nm的囊性小泡,携带大量的蛋白质、脂质及遗传物质,可调控不同的生理活动。已有研究发现M2巨噬细胞衍生的外泌体不仅含有细胞重编程因子,可将M1巨噬细胞转化为M2巨噬细胞,还含有多种促进创面修复的细胞因子和生长因子,可促进血管生成、再上皮化和胶原沉积,从而加快创面愈合。与直接细胞治疗相比,外泌体具有低免疫原性、稳定、可量产及可工程化等优点。
随着对外泌体研究不断深入,外泌体治疗创面也成为一大热点。目前市面上尚无抗炎外泌体用于治疗创面,而且外泌体治疗皮肤创面的方法通常为注射,但通过注射给药的外泌体会被机体快速清除代谢,导致治疗效果大打折扣。因此,结合难以愈合创面过度炎症特点及M2巨噬细胞外泌体抗炎、促进组织修复的特性,有必要提供一种M2巨噬细胞外泌体的制备方法,再通过简单、无创、有效的水凝胶载药系统促进创面愈合具有重要意义。
发明内容
本发明的目的在于提供一种负载M2巨噬细胞外泌体的GelMA水凝胶的制备方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明实施例提供如下技术方案:
一种负载M2巨噬细胞外泌体的GelMA水凝胶的制备方法,其包括以下步骤:
将甲基丙烯酸酐加入明胶溶液中,搅拌反应后,再依次进行透析和冷冻干燥处理,得到水凝胶前体;
往水凝胶前体中加入光引发剂和M2巨噬细胞外泌体,然后置于紫外光下交联形成负载M2巨噬细胞外泌体的GelMA水凝胶;
所述M2巨噬细胞外泌体的制备方法包括以下步骤:
用佛波酯诱导THP-1细胞,得到M0巨噬细胞;
用白细胞介素-4诱导M0巨噬细胞,得到M2巨噬细胞;
从M2巨噬细胞中提取得到M2巨噬细胞外泌体。
优选地,从M2巨噬细胞中提取得到M2巨噬细胞外泌体的步骤,具体包括:
将M2巨噬细胞用缓冲液润洗,并加入基础培养基进行培养后,再取其富集外泌体的上清液;
利用差速离心法对上清液进行处理后,再经过滤和超速离心处理,得到M2巨噬细胞外泌体。
优选地,所述明胶溶液中明胶的浓度为0.05-0.15g/mL;所述甲基丙烯酸酐与明胶溶液的体积比为(0.6-1):10。
优选地,所述光引发剂为LAP光引发剂。
优选地,每1mL的负载M2巨噬细胞外泌体的GelMA水凝胶中含有150-250μg的M2巨噬细胞外泌体。
优选地,诱导时,佛波酯的终浓度为80-120ng/mL。
优选地,诱导时,白细胞介素-4的终浓度为10-30ng/mL。
本发明实施例的另一目的在于提供一种采用上述的制备方法制得的负载M2巨噬细胞外泌体的Ge1MA水凝胶。
本发明实施例的另一目的在于提供一种上述的负载M2巨噬细胞外泌体的Ge1MA水凝胶在制备用于治疗皮肤创面的药物中的应用。
本发明提供的负载M2巨噬细胞外泌体的GelMA水凝胶的制备方法,成功诱导了M2巨噬细胞,成功提取了M2巨噬细胞外泌体并验证其重编程M1巨噬细胞、促进血管形成和增强成纤维细胞迁移的能力;另外,本发明成功建立M2巨噬细胞外泌体-水凝胶载药系统,实现M2巨噬细胞外泌体在创面的缓释,延长其作用时间,丰富了目前治疗创面的手段,为皮肤创面治疗提供新思路。
附图说明
图1为本发明实施例提供的一种负载M2巨噬细胞外泌体的GelMA水凝胶的制备方法的流程示意图。
图2为本发明实施例利用NTA检测M2巨噬细胞外泌体大小的结果示意图。
图3为本发明实施例利用TEN检测M2巨噬细胞外泌体形态的结果示意图。
图4为本发明实施例利用qRT-PCR检测M1巨噬细胞及M2巨噬细胞iNOS、CD206相对表达量的结果示意图。
图5为本发明实施例利用qRT-PCR检测成纤维细胞及血管内皮细胞MMP-2、VEGF相对表达量的结果示意图。
图6为本发明实施例制得的负载M2巨噬细胞外泌体的GelMA水凝胶进行糖尿病小鼠创面试验的结果示意图。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的一个实施例中,一种负载M2巨噬细胞外泌体的GelMA水凝胶的制备方法,其包括以下步骤:
S1、将甲基丙烯酸酐加入明胶溶液中,搅拌反应后,再依次进行透析和冷冻干燥处理,得到水凝胶前体;
S2、往水凝胶前体中加入光引发剂和M2巨噬细胞外泌体,然后置于紫外光下交联形成负载M2巨噬细胞外泌体的GelMA水凝胶;
所述M2巨噬细胞外泌体的制备方法包括以下步骤:
S21、用佛波酯诱导THP-1细胞,得到M0巨噬细胞;
S22、用白细胞介素-4诱导M0巨噬细胞,得到M2巨噬细胞;
S23、从M2巨噬细胞中提取得到M2巨噬细胞外泌体。
本发明实施例提供的方法可将巨噬细胞诱导成具有抗炎特性的M2亚型,其分泌的外泌体具有抗炎、促进修复的功能;另外,水凝胶可作为缓释药物的载体,保护创面免受外界不良刺激,维持创面湿润,提高药物利用率,该方法可实现外泌体的智能缓释,延长局部作用时间。
在本发明的一个优选实施例中,从M2巨噬细胞中提取得到M2巨噬细胞外泌体的步骤,具体包括:
S231、将M2巨噬细胞用缓冲液润洗,并加入基础培养基进行培养后,再取其富集外泌体的上清液;
S232、利用差速离心法对上清液进行处理后,再经过滤和超速离心处理,得到M2巨噬细胞外泌体。
在本发明的一个优选实施例中,所述明胶溶液中明胶的浓度为0.05-0.15g/mL;所述甲基丙烯酸酐与明胶溶液的体积比为(0.6-1):10。
在本发明的一个优选实施例中,所述光引发剂为LAP光引发剂。
在本发明的一个优选实施例中,每1mL的负载M2巨噬细胞外泌体的GelMA水凝胶中含有150-250μg的M2巨噬细胞外泌体。
在本发明的一个优选实施例中,诱导时,佛波酯的终浓度为80-120ng/mL。
在本发明的一个优选实施例中,诱导时,白细胞介素-4的终浓度为10-30ng/mL。
在本发明的另一个实施例中,还提供了一种上述的负载M2巨噬细胞外泌体的GelMA水凝胶在制备用于治疗皮肤创面的药物中的应用。
在本发明的另一个实施例中,还提供了一种急性创面模型的建立方法:6-8周小鼠腹腔麻醉后,在小鼠脊柱两侧制备全层皮肤创面可得到高度还原人体急性创面的模型。
下述实施例为本发明在实际应用中的部分具体实施案例,但不局限于此。
实施例1:如附图1所示,该实施例提供了一种负载M2巨噬细胞外泌体的GelMA水凝胶的制备方法,其包括以下步骤:
(1)诱导M1、M2巨噬细胞:THP-1细胞为悬浮细胞,具有分化为巨噬细胞的能力。将THP-1细胞分成三组,以6×105/mL的密度分别培养于T25培养瓶中,每组加入3mL完全培养基(89%RPMI-1640+10%胎牛血清+1%青霉素/链霉素)及终浓度为100ng/mL的佛波酯(PMA),放入5%CO2、37℃细胞培养箱,诱导48h,悬浮的THP-1细胞分化成贴壁的M0巨噬细胞。取出诱导完毕的M0巨噬细胞,其中两组在旧培养基的基础上加入终浓度为100ng/mL脂多糖(LPS)继续诱导48h得到M1巨噬细胞;第三组M0巨噬细胞中加入终浓度为20ng/mL的白细胞介素-4(IL-4),同样继续诱导48h得到M2巨噬细胞,弃去旧培养基,用移液枪吸取1mL的PBS润洗细胞,重复3次,以完全去除非贴壁细胞和旧培养基。两组M1巨噬细胞各加入3mL新鲜完全培养基,放入5%CO2、37℃细胞培养箱中继续培养,M2巨噬细胞则进行外泌体的提取。
(2)M2巨噬细胞外泌体的提取:M2巨噬细胞用PBS润洗后加入3mL的RPMI-1640基础培养基,继续培养12h后,移液枪取上清液,转移至15mL离心管中,离心机在4℃、300g条件下离心10min,以去除死细胞;将上清液转移到新的离心管再次离心,4℃下2000g离心10min,以去除细胞碎片及其他杂质;得到浓缩上清液;浓缩上清液经过0.22μm滤膜过滤后,超速离心机4℃、120000g离心90min,弃去上清,最终获得高浓度、高纯度的M2巨噬细胞外泌体沉淀。外泌体沉淀用PBS重悬得到浓度为1μg/μL的外泌体悬液,于-80℃冰箱储存。M2巨噬细胞进行q-PCR检测其细胞标记物。
(3)水凝胶前体的合成:称取10g明胶于烧杯中,加入100mL现配的PBS磷酸盐缓冲液,水浴锅中水浴加热至60℃,磁力搅拌溶解至明胶完全溶解。明胶溶解成无颗粒黏稠状液体时,加入8mL甲基丙烯酸酐,以1mL/min的速度滴加到明胶溶液中,滴加过程中温度维持在50℃,持续搅拌3h。待搅拌完成后,加入4倍体积的PBS磷酸盐缓冲溶液稀释,继续搅拌10min以终止反应。将得到的溶液装入透析袋中,室温下在超纯水中透析7d,每隔12h换一次超纯水。透析结束后,将透析溶液装入烧杯中置于60℃水浴锅中加热10min,用孔径为0.22μm的微孔滤膜趁热过滤,将所得滤液在冷冻干燥机中冻干,得到泡沫状水凝胶前体(GelMA前体)。
(4)0.25%(w/v)光引发剂标准溶液的配制:取20mL的PBS直接加入装有0.05g LAP的棕色瓶中,在水浴锅中以40-50℃水浴加热溶解15min,期间不断震荡瓶身,混匀后4℃避光条件下保存。
(5)建立M2巨噬细胞外泌体-Ge1MA水凝胶载药系统:取所需质量的水凝胶前体置于离心管中,加入PBS溶液配制30%(w/v)的GelMA溶液,取相应量(参考现有GelMA水凝胶制备所需的光引发剂用量即可)的0.25%(w/v)光引发剂标准溶液加入离心管,40-50℃避光水浴加热溶解30min,不断振荡使Ge1MA充分浸润溶解,待溶解后立刻用0.22μm的无菌针头过滤器将溶液过滤至新的无菌离心管中,即得到GelMA混合溶液;接着,将上述GelMA混合溶液经55℃水浴加热30min后,立刻在室温下加入上述所提取的M2巨噬细胞外泌体,使得每1mL的GelMA水凝胶含有200μg外泌体;然后将混合溶液置于紫外光照射下照射1min进行交联,形成负载M2巨噬细胞外泌体的GelMA水凝胶。
实施例2:该实施例利用纳米颗粒跟踪分析技术(NTA)检测上述实施例1制得的M2巨噬细胞外泌体的大小,具体如下:纳米颗粒追踪分析(NTA)是一种检测纳米颗粒粒径分布和运动轨迹的技术,它利用激光束对悬浮液中的纳米颗粒进行照射,通过分析颗粒运动轨迹和光散射现象,根据爱因斯坦方程式(<X,Y>2=KBTts/3πηdh,其中,<X,Y>2/ts:扩散系数;T:测量温度;KB:玻尔兹曼常数;η:介质粘度;dh:液体力学直径)来计算出颗粒的粒径和形状等信息。检测步骤和现有技术中常规检测步骤相同,结果如图2所示,从图中可以看出,本发明实施例所提取的M2巨噬细胞外泌体直径在100nm左右,在外泌体直径范围内。
实施例3:该实施例利用透射电子显微镜(TEN)检测上述实施例1制得的M2巨噬细胞外泌体的形态,其中,双层囊膜结构是外泌体重要标志之一,透射电镜把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。透射电子显微镜的分辨率为0.1-0.2nm,放大倍数为几万-百万倍,用于观察超微结构,即小于0.2μm、光学显微镜下无法看清的结构,因此TEM是表征纳米颗粒尺寸和形态的重要方法,比较适合观察外泌体的形态。具体检测步骤如下:将新鲜的外泌体滴在备好的封口膜洁面,将载网的膜面放在外泌体液滴上,悬浮10min,用滤纸缓慢吸干。转移载网到2.5%戊二醛液滴上以固定外泌体,悬浮5min后用滤纸吸干载网上的2.5%戊二醛。将载网转移到去离子水液滴上,每次2min,共10次,每次均用滤纸吸干。转移载网到40g/1的乙酸双氧铀,液滴10min后用滤纸吸干,再转移到10g/1的甲基纤维素,液滴5min后用滤纸吸干,完成外泌体的染色。载网常温干燥数分钟后80kV下检测成像。获得成像结果,如图3所示,透射电子显微镜下的M2巨噬细胞外泌体呈均匀、球形的双层膜囊泡。
实施例4:该实施例利用实时荧光定量PCR(qRT-PCR)检测上述实施例1制得的M2巨噬细胞外泌体重编程功能;其中,M1巨噬细胞的标记物为iNOS,M2巨噬细胞的标记物为CD206。将诱导的M1巨噬细胞及M2巨噬细胞分为三组:M1巨噬细胞组、M2巨噬细胞组、M1巨噬细胞+M2巨噬细胞外泌体组。M1巨噬细胞组及M2巨噬细胞组均加入3mL完全培养基,M1巨噬细胞+M2巨噬细胞外泌体组加入3mL完全培养基及50μg/mL的M2巨噬细胞外泌体,三组细胞放入细胞培养箱中培养24h。再通过Trizol试剂处理提取出三组巨噬细胞总mRNA,并使用cDNA合成试剂盒逆转录成cDNA。然后进行qRT-PCR,得到M1巨噬细胞的标记物iNOS,M2巨噬细胞的标记物CD206基因表达情况差异。具体操作流程如下:
1、分组处理巨噬细胞:将诱导的M1巨噬细胞及M2巨噬细胞分为三组:M1巨噬细胞组、M2巨噬细胞组、M1巨噬细胞+M2巨噬细胞外泌体组。弃去旧培养基,M1巨噬细胞组及M2巨噬细胞组各加入3mL完全培养基,M1巨噬细胞+M2巨噬细胞外泌体组加入3mL完全培养基及150μg的M2巨噬细胞外泌体(50μg/mL),于5%CO2、37℃细胞培养箱培养24h。24h后去除旧培养基,移液枪吸取1mL的PBS润洗,重复3次后,加入1mL胰酶消化细胞2min,待镜下观察到细胞变圆变亮,用1mL的完全培养基终止消化,并用移液枪吹打细胞贴壁的培养瓶底部,确保所有细胞均消化为细胞悬液。将细胞悬液转移到新的离心管中,以300g离心5min,弃上清,得到的细胞沉淀进行qRT-PCR。
2、qRT-PCR实验过程:
2.1、RNA提取:三组巨噬细胞细胞沉淀中加入1mL的Trizol试剂,反复吹打,室温裂解10min,将裂解液转移至1.5mLEP管中,每个样本加入200μL氯仿,涡旋振荡器振荡,使Trizol和氯仿充分混匀,静止1-2分钟使溶液重新分层。4℃,12000rpm的条件下离心15min,离心后液体分为三层,上层为含有RNA的氯仿,中间白色层是蛋白和细胞碎片,下层为Triz01试剂。用移液枪小心转移上层RN A至新的1.5mL的EP管中,再加入500μL异丙醇,上下颠倒混匀,室温静置10min后4℃,12000rpm离心10min,可得到位于离心管底部的白色RNA沉淀。弃去上清液,轻柔加入1mL的75%乙醇,上下颠倒洗去残留在RNA沉淀表面的异丙醇后4℃,7500rpm离心10min。小心吸去上清液,将EP管倒扣在吸水纸上,室温晾干至RNA沉淀从白色变成透明。加入40μL的DEPC水,重悬RNA沉淀后即可进行下一步。
2.2、测RNA浓度:
打开酶标仪后,清洗样本板后在第一个孔加入2μL的DD水作为对照,其他孔加2μL的RNA样本,进行检测。测试结果OD260/280在1.8-2.0范围内表明所提RNA纯度较高,越接近2说明纯度越高。
2.3、RNA逆转录合成cDNA:
使用逆转录试剂盒,将500ng的RNA逆转录为CDNA,全程冰上操作。
去除基因组DNA:4×DN Master Mix与gDNA Remover按1∶50体积混合后,按下表1配制去除基因组DNA的反应体系。
表1
将配好的反应体系放入PCR仪中,设置反应程序为:37℃5min,4℃维持。
逆转录反应:将去除基因组DNA的8μL反应液按下表2配制逆转录反应的反应体系。
表2
将配好的反应体系放入PCR仪中,设置反应程序为:37℃15min,50℃5min,98℃5min,4℃维持。
2.4、qRT-PCR反应:
将逆转录反应得到的cDNA,配制如下表3的20μL的反应体系,全程冰上操作。
表3
上述反应体系混匀后,设置qRT-PCR仪反应程序:95℃1min Cycle 1;95℃5s,55℃10s,72℃15s Cycle 40;4℃维持。用GAPDH定量各mRNA的相对水平,并以相对比率表达。
上述实验结果如图4所示,从图中可以看出,M1巨噬细胞组iNOS及M2巨噬细胞组CD206的表达明显增加,说明本发明实施例成功诱导出M1、M2巨噬细胞。另外,M1巨噬细胞+M2巨噬细胞外泌体组较M1巨噬细胞组iNOS表达下降,CD206表达升高,且差异具有统计意义,说明本发明实施例所提取的M2巨噬细胞外泌体具有将M1巨噬细胞转化为M2巨噬细胞的细胞重编程功能,在创面愈合中起到抗炎、调节免疫、改善创面微环境的作用。
实施例5:该实施例利用实时荧光定量PCR(qRT-PCR)检测上述实施例1制得的M2巨噬细胞外泌体促进血管形成和胶原生成的功能:MMP-2是基质金属蛋白酶基因家族的成员,是一种能够切割细胞外基质的成分的酶。成纤维细胞依赖于MMP-2介导的蛋白水解来增强其迁移能力,加快创面修复。血管内皮生长因子(VEGF)是一种高度特异性的促血管内皮细胞生长因子,具有促进血管内皮细胞迁移、增殖和血管形成等作用。通过检测成纤维细胞MMP-2及血管内皮细胞VEGF的表达情况,可反映M2巨噬细胞外泌体增强成纤维细胞迁移和血管内皮细胞血管形成的能力。具体如下:
将成纤维细胞和血管内细胞各分为外泌体组及对照组,培养在6孔板中,外泌体组的细胞加入3mL完全培养基+100μg/mL的M2巨噬细胞外泌体,对照组只加3mL完全培养基(89%DMEM基础培养基+10%胎牛血清+1%青霉素/链霉素),于细胞培养箱培养12h后弃去培养基,用1mL的PBS润洗1次后,用1mL胰酶消化成纤维细胞和血管内皮细胞。2min后加入1mL完全培养基终止消化。移液枪将细胞吹打成细胞悬液,300g离心3min,弃上清,得到的细胞沉淀进行qRT-PCR检测成纤维细胞外泌体组MMP-2、成纤维细胞对照组中MMP-2、血管内皮细胞外泌体组VEGF及血管内皮细胞对照组VEGF的表达情况。qRT-PCR的操作流程同上。
上述实验结果如图5所示,从图中可以看出,MMP-2在成纤维细胞外泌体组的表达高于成纤维细胞对照组,同样的,VEGF在血管内皮细胞外泌体组的表达高于血管内皮细胞对照组。充分说明本发明实施例提取的M2巨噬细胞外泌体还具有促进血管形成,增强成纤维细胞迁移的功能,是治疗创面理想的新药物。
实施例6:该实施例提供了一种小鼠创面模型建立方法,具体如下:
将6只6-8周小鼠分成2组:外泌体-水凝胶组及对照组,一次性注射器抽取0.4mL戊巴比妥钠,腹腔麻醉小鼠后,用剃毛器剃去小鼠背部毛发,并使用脱毛膏于背部进行脱毛处理至无毛。在小鼠脊柱旁腰背部,左右对称,制备直径8mm全层皮肤缺损创面,记第0天。
实施例7:M2巨噬细胞外泌体治疗小鼠创面:创面第1、3、5天,外泌体-水凝胶组在创面表面覆盖200μL负载了200μg/mL的M2巨噬细胞外泌体的Gel MA水凝胶,对照组创面表面覆盖200μL的GelMA凝胶(未负载外泌体),并对两组小鼠创面拍照。第7天对小鼠创面拍照,对比创面面积、愈合速度。如图5所示,外泌体-水凝胶组小鼠创面愈合速度明显快于对照组,其表明本发明实施例制得的负载M2巨噬细胞外泌体的GelMA水凝胶可显著促进创面愈合。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容。

Claims (9)

1.一种负载M2巨噬细胞外泌体的GelMA水凝胶的制备方法,其特征在于,包括以下步骤:
将甲基丙烯酸酐加入明胶溶液中,搅拌反应后,再依次进行透析和冷冻干燥处理,得到水凝胶前体;
往水凝胶前体中加入光引发剂和M2巨噬细胞外泌体,然后置于紫外光下交联形成负载M2巨噬细胞外泌体的GelMA水凝胶;
所述M2巨噬细胞外泌体的制备方法包括以下步骤:
用佛波酯诱导THP-1细胞,得到M0巨噬细胞;
用白细胞介素-4诱导M0巨噬细胞,得到M2巨噬细胞;
从M2巨噬细胞中提取得到M2巨噬细胞外泌体。
2.根据权利要求1所述的负载M2巨噬细胞外泌体的GelMA水凝胶的制备方法,其特征在于,从M2巨噬细胞中提取得到M2巨噬细胞外泌体的步骤,具体包括:
将M2巨噬细胞用缓冲液润洗,并加入基础培养基进行培养后,再取其富集外泌体的上清液;
利用差速离心法对上清液进行处理后,再经过滤和超速离心处理,得到M2巨噬细胞外泌体。
3.根据权利要求1所述的负载M2巨噬细胞外泌体的GelMA水凝胶的制备方法,其特征在于,所述明胶溶液中明胶的浓度为0.05-0.15g/mL;所述甲基丙烯酸酐与明胶溶液的体积比为(0.6-1)∶10。
4.根据权利要求1所述的负载M2巨噬细胞外泌体的GelMA水凝胶的制备方法,其特征在于,所述光引发剂为LAP光引发剂。
5.根据权利要求1所述的负载M2巨噬细胞外泌体的GelMA水凝胶的制备方法,其特征在于,每1mL的负载M2巨噬细胞外泌体的GelMA水凝胶中含有150-250μg的M2巨噬细胞外泌体。
6.根据权利要求1所述的负载M2巨噬细胞外泌体的GelMA水凝胶的制备方法,其特征在于,诱导时,佛波酯的终浓度为80-120ng/mL。
7.根据权利要求1所述的负载M2巨噬细胞外泌体的GelMA水凝胶的制备方法,其特征在于,诱导时,白细胞介素-4的终浓度为10-30ng/mL。
8.一种采用权利要求1-7中任一项所述的制备方法制得的负载M2巨噬细胞外泌体的GelMA水凝胶。
9.一种如权利要求8所述的负载M2巨噬细胞外泌体的GelMA水凝胶在制备用于治疗皮肤创面的药物中的应用。
CN202311531711.7A 2023-09-12 2023-11-16 负载M2巨噬细胞外泌体的GelMA水凝胶及其制备方法和应用 Pending CN117562923A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2023111755752 2023-09-12
CN202311175575 2023-09-12

Publications (1)

Publication Number Publication Date
CN117562923A true CN117562923A (zh) 2024-02-20

Family

ID=89891171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311531711.7A Pending CN117562923A (zh) 2023-09-12 2023-11-16 负载M2巨噬细胞外泌体的GelMA水凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117562923A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118178714A (zh) * 2024-02-27 2024-06-14 中国人民解放军陆军军医大学第二附属医院 一种促进糖尿病创面愈合的敷料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118178714A (zh) * 2024-02-27 2024-06-14 中国人民解放军陆军军医大学第二附属医院 一种促进糖尿病创面愈合的敷料及其制备方法

Similar Documents

Publication Publication Date Title
Yang et al. Sustained release of magnesium and zinc ions synergistically accelerates wound healing
Lou et al. Extracellular vesicle-based therapeutics for the regeneration of chronic wounds: current knowledge and future perspectives
Chen et al. Sustained release of dermal papilla-derived extracellular vesicles from injectable microgel promotes hair growth
JP2022502032A (ja) 誘導されたエキソソームを含む皮膚再生及び創傷治癒用組成物
CN117562923A (zh) 负载M2巨噬细胞外泌体的GelMA水凝胶及其制备方法和应用
Parkinson et al. The effect of nano-scale topography on keratinocyte phenotype and wound healing following burn injury
Tian et al. Repair of urethral defects by an adipose mesenchymal stem cell‑porous silk fibroin material
Tan et al. In situ formed scaffold with royal jelly-derived extracellular vesicles for wound healing
Ding et al. Hydrogel forming microneedles loaded with VEGF and Ritlecitinib/polyhydroxyalkanoates nanoparticles for mini-invasive androgenetic alopecia treatment
Ma et al. 3D printing of diatomite incorporated composite scaffolds for skin repair of deep burn wounds
RU2574017C1 (ru) Средство для лечения ожогов и ран на основе цитокинов и факторов роста, секретируемых мезенхимными клетками человека, способ получения средства и способ лечения ожогов и ран
Pu et al. Injectable human decellularized adipose tissue hydrogel containing stem cells enhances wound healing in mouse
Li et al. Umbilical cord derived mesenchymal stem cell-GelMA microspheres for accelerated wound healing
Liu et al. Capturing cerium ions via hydrogel microspheres promotes vascularization for bone regeneration
Kong et al. Melt electrowriting (MEW)-PCL composite Three-Dimensional exosome hydrogel scaffold for wound healing
Liu et al. Bioactive self-healing umbilical cord blood exosomes hydrogel for promoting chronic diabetic wound healing
Liu et al. Concentrated growth factor promotes wound healing potential of HaCaT Cells by activating the RAS signaling pathway
Zhang et al. Rapid adhesion and proliferation of keratinocytes on the gold colloid/chitosan film scaffold
Chen et al. Three-dimensional poly lactic-co-glycolic acid scaffold containing autologous platelet-rich plasma supports keloid fibroblast growth and contributes to keloid formation in a nude mouse model
Qi et al. Study of the effect epidermal growth factor nanoparticles in the treatment of diabetic rat ulcer skin and regeneration
Wu et al. Lipoaspirate fluid derived factors and extracellular vesicles accelerate wound healing in a rat burn model
CN116162590A (zh) 一种基于plga包裹的人脐带间充质干细胞外泌体及其应用
CN117547503A (zh) 负载抗炎外泌体的GelMA水凝胶及其制备方法和应用
CN117482110A (zh) 一种负载小白菊内酯的抗炎外泌体及其制备方法和应用
Hu et al. Enhanced wound healing and hemostasis with exosome-loaded gelatin sponges from human umbilical cord mesenchymal stem cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination