CN117559147A - 一种宽带和双频段可调谐的太赫兹吸波器 - Google Patents

一种宽带和双频段可调谐的太赫兹吸波器 Download PDF

Info

Publication number
CN117559147A
CN117559147A CN202311709225.XA CN202311709225A CN117559147A CN 117559147 A CN117559147 A CN 117559147A CN 202311709225 A CN202311709225 A CN 202311709225A CN 117559147 A CN117559147 A CN 117559147A
Authority
CN
China
Prior art keywords
broadband
vanadium dioxide
layer
dual
wave absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311709225.XA
Other languages
English (en)
Inventor
刘厚权
张婧
苑立波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202311709225.XA priority Critical patent/CN117559147A/zh
Publication of CN117559147A publication Critical patent/CN117559147A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/007Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with means for controlling the absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/002Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices being reconfigurable or tunable, e.g. using switches or diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/0026Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/004Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective using superconducting materials or magnetised substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0086Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single discontinuous metallic layer on an electrically insulating supporting structure, e.g. metal grid, perforated metal foil, film, aggregated flakes, sintering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明提供的是一种宽带和双频段可调谐的太赫兹吸波器;其特征是:这是一种宽带吸收和双频段吸收可调谐的吸波器,从下向上依次为金属层(1)、介质层1(2)、由3个大小不一的空心正方形二氧化钒旋转45°组成的二氧化钒层(3)、介质层2(4)以及由空心正方形和十字形的石墨烯组成的石墨烯层(5)堆叠而成;本发明可用于太赫兹吸波器件的开发,在使用过中,通过改变温度来调节相变材料二氧化钒的电导率,同时可以通过化学掺杂或施加外部偏置电压来调节石墨烯的费米能级,就能实现吸收特性的调谐和吸收率的改变,解决了传统太赫兹吸波器吸收特性不可调谐的技术问题,可广泛应用于太赫兹探测、传感、隐身等领域。

Description

一种宽带和双频段可调谐的太赫兹吸波器
技术领域
本发明涉及太赫兹吸波器技术领域,具体涉及一种宽带和双频段可调谐的太赫兹吸波器。
背景技术
太赫兹波的频率范围一般在0.1THz到10THz,波长范围大概在0.03mm到3mm,介于微波与红外之间,该波处于低能量电子学与高能量光子学之间的过渡波段,是目前公认具有优良特性的电磁波段。
太赫兹吸波器是一种重要的太赫兹功能器件,依照其吸波特性可以大致分为窄带吸波器、宽带吸波器和多频带吸波器。太赫兹吸波器在热发射器、太阳能电池和隐形斗篷方面显示出了广阔的应用前景。
太赫兹吸波器通常被设计为周期性排列的顶部金属图案-中间介质层-金属底板层的三层结构,并且通常使用金、银等作为金属的材料,但是传统的太赫兹吸波器存在吸收波段窄以及吸收波段不可调的问题,在应用上会受到限制。因此近年来,有大量的研究人员在太赫兹吸波器中加入石墨烯、二氧化钒、液晶等可调材料,致力于研发出吸收频段宽,以及吸收频段可调的太赫兹吸波器。
石墨烯作为一种优良的活性材料二维材料,由六边形晶格中的碳原子周期性阵列组成,可以通过化学掺杂或施加外部偏置电压来改变其表面电导率,从而具有优异的动态可调谐性,为设计太赫兹多功能吸波器提供了新的思路。
二氧化钒作为一种活性材料,可以在约340K时从绝缘状态变为金属状态,其电导率随温度的升高,可从20S/m变化到2×105S/m,且状态可逆,所以二氧化钒对于实现可切换和可调功能器件具有显著的吸引力。
文献CN 114498060 A公开了一种基于石墨烯和二氧化钒的宽窄带可切换太赫兹吸波器,实现了宽带6.06THz-10.28THz的吸收以及宽带窄带的切换,但该文献不能实现双频段吸收。
文献CN 113078474 A公开了一种石墨烯-二氧化钒超材料吸波器及可调谐太赫兹器件,实现了宽带吸收,但该文献不能实现宽带吸收和双频带吸收的转换,且吸收带宽小于本发明的4.12THz。
文献CN 114498060 A公开了一种集窄带和宽带于一体二点石墨烯-二氧化钒可调谐吸波器,可以实现宽带吸收和窄带吸收的转换,但该文献不能实现宽带吸收和双频段吸收的转换。
文献CN 214849067 U公开了一种基于宽带太赫兹吸波器实现了1.5THz-3.5THz的宽带吸收,但该实用新型不能实现宽带到双频段的转换,且宽带吸收性能弱于本发明。
本发明提出的一种宽带和双频段可调谐的太赫兹吸波器具有结构简单,易于加工,并且二氧化钒层(3)可通过改变温度来调节电导率,同时石墨烯层(5)还可以通过化学掺杂或施加外部偏置电压来调节费米能级,实现宽带和双频段可调谐的太赫兹吸波器。
发明内容
针对目前吸波器结构复杂,吸收频段窄和吸收频段调控难的缺点,本发明提供了一种宽带和双频段可调谐的太赫兹吸波器。
本发明提供的一种宽带和双频段可调谐的太赫兹吸波器是这样实现的:
所述的是一种宽带和双频段可调谐的太赫兹吸波器。其特征是:一种宽带吸收和双频段吸收可调谐的吸波器,从下向上依次为金属层(1)、介质层1(2)、由3个大小不一的空心正方形二氧化钒旋转45°组成的二氧化钒层(3)、介质层2(4)以及由空心正方形和十字形的石墨烯组成的石墨烯层(5)堆叠而成。
所述的一种宽带和双频段可调谐的太赫兹吸波器的周期p=33.5μm。
所述的金属层(1)的材料为金,电导率为4.561e7S/m,厚度d1=0.1μm。该金属作为一个反射层,可以确保所有入射的电磁波都被反射。
所述的所述介质层1(2)和介质层2(4)的介电常数都为ε=2.41,介质层的材料为聚乙烯环烯烃共聚物(Topas),Topas是一种透明、坚硬的非晶热塑性共聚物,具有优越的光学性能,适用于先进的太赫兹应用,厚度分别为d2=13.5μm,d4=14μm。
所述的二氧化钒层(3)由3个大小不一的空心正方形二氧化钒旋转45°组成,外围空心正方形二氧化钒外侧长度w1=23μm,内侧长度g1=20μm,中间空心正方形二氧化钒外侧长度w2=14μm,内侧长度g2=11μm,内部空心正方形二氧化钒的外侧长度w3=6μm,内侧长度g3=2.5μm,所述的二氧化钒层(3)厚度d3=0.6μm。其介电常数在THz波段可以由Drude模型描述,其公式为:
式中ε=12是高频下的介电常数,ωp(σ)是与传导相关的等离子体频率,γ=5.75×1013rad/s是碰撞频率,σ为电导率。ωp和σ的关系为:
式中ωp0)=1.4×1015rad/s,σ0=3×105S/m,与电导率σ无关。
所述的二氧化钒层(3)的电导率σ=2×105S/m,且石墨烯层(5)的费米能级Ef=0eV时,在1.36THz-5.48THz范围内有宽达4.12THz的宽带吸收,并且有超过90%的吸收率。此外,在1.61THz,3.75THz和5.22THz处有接近100%的吸收峰。由于金属层(1)的存在,该发明能够在较宽的频率范围内实现吸收器和反射器的调谐。
所述的石墨烯层(5)由空心正方形和十字形的石墨烯组成,空心正方形外侧长度l1=29μm,内侧长度l2=17μm,十字形长度p=33.5μm,l3=6μm,石墨烯层(5)的电导率可以用Kubo公式表示:
σ=σintrainter (3)
其中,kB为玻尔兹曼常数,为简化的普朗克常数,T为开尔文温度,ω为角频率,Ef为费米能级,τ为弛豫时间,τ=0.1ps。
当石墨烯层(5)费米能级为Ef=1eV,且二氧化钒层(3)的电导率σ=20S/m时,可以实现双频段吸收。第一个频带的吸收范围是1.38THz-2.47THz,第二个频带的吸收范围是5.03THz-5.63THz,其中在2THz和5.3THz的频率下,有两个完美的吸收峰。
与现有技术相比,本发明具有如下优点:
1、所述吸波器二氧化钒的电导率σ=2×105S/m时,石墨烯的费米能级Ef=0eV,在1.36THz-5.48THz波段实现宽度为4.12THz的大于90%的电磁波吸收,相比于现有的宽带吸波器,具有吸收效率高,吸收带宽的特点。
2、所述吸波器石墨烯费米能级为Ef=1eV,二氧化钒的电导率σ=20S/m时,可以实现双频段吸收,第一个频带的范围是1.38THz-2.47THz,第二个频带是5.03THz-5.63THz,其中在2THz和5.3THz的频率下,有两个完美的吸收峰。
3、所述吸波器通过改变二氧化钒电导率和石墨烯的费米能级,从而实现宽带吸收和双频带吸收的转换,具有可调性。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中所需要使用的附图作简要地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明单元结构示意图。
图2是本发明的侧视图。
图3是本发明二氧化钒层(3)的结构示意图。
图4是本发明石墨烯层(5)的结构示意图。
图5是本发明在电磁波垂直入射下,石墨烯费米能级Ef=0eV,二氧化钒电导率σ分别为20S/m、2×105S/m时,用仿真软件CST STUDIO SUITE 2019仿真得到的吸波器宽带吸收频谱示意图。
图6是本发明电磁波垂直入射下,二氧化钒电导率σ=20S/m,石墨烯费米能级分别为0eV、1eV时,用仿真软件CST STUDIO SUITE 2019仿真得到的吸波器双频带吸收频谱示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实例,都属于本发明保护的范围。
本发明提出的一种宽带和双频段可调谐的太赫兹吸波器的示意图,参见图1,从下向上依次为金属层(1)、介质层1(2)、由3个大小不一的空心正方形二氧化钒旋转45°组成的二氧化钒层(3)、介质层2(4)以及由空心正方形和十字形的石墨烯组成的石墨烯层(5)堆叠而成。
图2是本发明的侧视图,金属层(1)材料为金,电导率为4.561e7S/m,厚度d1=0.1μm,该金属作为一个反射层,可以确保所有入射的电磁波都被反射。介质层1(2)和介质层2(4)介电常数都为ε=2.41,介质层的材料为聚乙烯环烯烃共聚物(Topas),Topas是一种透明、坚硬的非晶热塑性共聚物,具有优越的光学性能,适用于先进的太赫兹应用,厚度分别为d2=13.5μm,d4=14μm。二氧化矾层(3)由3个大小不一的空心正方形二氧化钒旋转45°组成,厚度d3=0.6μm,由空心正方形和十字形的石墨烯层(5)为单层石墨烯。
图3是二氧化矾层(3)的结构详细尺寸示意图,由3个大小不一的空心正方形二氧化钒旋转45°组成,外围空心正方形二氧化钒外侧长度w1=23μm,内侧长度g1=20μm,中间空心正方形二氧化钒外侧长度w2=14μm,内侧长度g2=11μm,内部空心正方形二氧化钒的外侧长度w3=6μm,内侧长度g3=2.5μm,所述的二氧化钒层(3)厚度d3=0.6μm。
图4是单层石墨烯层(5),由空心正方形和十字形的石墨烯组成,空心正方形外侧长度l1=29μm,内侧长度l2=17μm,十字形长度p=33.5μm,l3=6μm。
本发明的原理如下:
吸波器吸收效率的计算公式为:
A(ω)=1-R(ω)-T(ω) (6)
T(ω)=|S21|2 (7)
R(ω)=|S11|2 (8)
式中A(ω)为吸收率,R(ω)为反射率,T(ω)为透射率,S21为透射系数,S11为反射系数。
金属层(1)作为整个单元结构的基底,当其厚度大于电磁波的趋肤深度时,电磁波便无法穿过,使整个单元结构的透射率为0。故上述公式(1)可简化为:
A(ω)=1-R(ω) (9)
因此对于所述吸波器的吸收率,只需考虑其反射率即可。
图5中为本实施例在石墨烯费米能级Ef=0eV的状态下,二氧化钒电导率σ为20S/m、2×105S/m时的吸收谱,二氧化钒电导率σ=2×105S/m该吸波器在1.36THz-5.48THz范围内有宽达4.12THz的宽带吸收,并且有超过90%的吸收率。此外,在1.61THz,3.75THz和5.22THz处有接近100%的吸收峰。由于金属层(1)的存在,该发明能够在较宽的频率范围内实现吸收器和反射器的调谐。
图6中为本实施例在二氧化钒电导率σ=20S/m,石墨烯费米能级Ef为0eV、1eV的状态下吸收谱,当石墨烯费米能级Ef=1eV时,该吸波器实现双频带吸收,第一个频带的范围是1.38THz-2.47THz,第二个频带是5.03THz-5.63THz,其中在2THz和5.3THz的频率下,有两个完美的吸收峰。
综上所述,本发明提出了一种宽带和双频带可调谐的太赫兹吸波器。通过使用石墨烯和二氧化钒两种可调材料,实现了吸波器的宽带和双频带两种功能。所述吸波器具有吸收频率宽、可动态调谐吸收性能的优点。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (6)

1.一种宽带和双频段可调谐的太赫兹吸波器,其特征是:一种宽带吸收和双频段吸收可调谐的吸波器,从下向上依次为金属层(1)、介质层1(2)、由3个大小不一的空心正方形二氧化钒旋转45°组成的二氧化钒层(3)、介质层2(4)以及由空心正方形和十字形的石墨烯组成的石墨烯层(5)堆叠而成。
2.根据权利要求1所述的一种宽带和双频段可调谐的太赫兹吸波器,其特征是:一种宽带和双频段可调谐太赫兹吸波器的周期p=33.5μm。
3.根据权利要求1所述的一种宽带和双频带可调谐的太赫兹吸波器,其特征是:所述金属层(1)的材料为金,电导率为4.561e7S/m,厚度d1=0.1μm,该金属作为一个反射层,可以确保所有入射的电磁波都被反射。
4.根据权利要求1所述的一种宽带和双频段可调谐的太赫兹吸波器,其特征是:所述介质层1(2)和介质层2(4)的介电常数都为ε=2.41,介质层的材料为聚乙烯环烯烃共聚物(Topas),Topas是一种透明、坚硬的非晶热塑性共聚物,具有优越的光学性能,适用于先进的太赫兹应用,厚度分别为d2=13.5μm,d4=14μm。
5.根据权利要求1所述的一种宽带和双频段可调谐的太赫兹吸波器,其特征是:所述的二氧化钒层(3)由3个大小不一的空心正方形二氧化钒旋转45°组成,外围空心正方形二氧化钒外侧长度w1=23μm,内侧长度g1=20μm,中间空心正方形二氧化钒外侧长度w2=14μm,内侧长度g2=11μm,内部空心正方形二氧化钒的外侧长度w3=6μm,内侧长度g3=2.5μm,所述的二氧化钒层(3)厚度d3=0.6μm。
6.根据权利要求1所述的一种宽带和双频段可调谐的太赫兹吸波器,其特征是:所述的石墨烯层(5)由空心正方形和十字形的石墨烯组成,空心正方形外侧长度l1=29μm,内侧长度l2=17μm,十字形长度p=33.5μm,l3=6μm。
CN202311709225.XA 2023-12-13 2023-12-13 一种宽带和双频段可调谐的太赫兹吸波器 Pending CN117559147A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311709225.XA CN117559147A (zh) 2023-12-13 2023-12-13 一种宽带和双频段可调谐的太赫兹吸波器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311709225.XA CN117559147A (zh) 2023-12-13 2023-12-13 一种宽带和双频段可调谐的太赫兹吸波器

Publications (1)

Publication Number Publication Date
CN117559147A true CN117559147A (zh) 2024-02-13

Family

ID=89812679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311709225.XA Pending CN117559147A (zh) 2023-12-13 2023-12-13 一种宽带和双频段可调谐的太赫兹吸波器

Country Status (1)

Country Link
CN (1) CN117559147A (zh)

Similar Documents

Publication Publication Date Title
CN112292014B (zh) 基于相变材料和石墨烯的微波透射通带可调高透光光窗
CN112332100B (zh) 一种反射频带可电控调节的高透光微波吸收光窗
CN111446551B (zh) 一种基于石墨烯超表面的多频带可调太赫兹吸波器
CN110441842A (zh) 一种基于vo2及石墨烯混合超材料的多功能器件
CN113078474B (zh) 一种石墨烯-二氧化钒超材料吸收器及可调谐太赫兹器件
CN111525277A (zh) 一种二氧化钒超材料加载于介质层的宽带可调吸波器
CN110854546A (zh) 一种石墨烯可调的双频带超材料吸收器
CN113809544B (zh) 一种砷化镓/石墨烯复合超材料太赫兹宽带吸收器
Cui et al. A tunable terahertz broadband absorber based on patterned vanadium dioxide
Zhou et al. Independently controllable dual-band terahertz metamaterial absorber exploiting graphene
Lv et al. Broadband terahertz metamaterial absorber and modulator based on hybrid graphene-gold pattern
CN110658571A (zh) 一种基于石墨烯的宽带可调太赫兹吸波器
CN113161758A (zh) 基于金属与石墨烯的可调控超宽带太赫兹吸收器
CN111525272B (zh) 基于三“飞镖”形石墨烯的宽带太赫兹吸波器
CN109638471B (zh) 一种基于费米狄拉克材料的可调二频段THz吸收器
Dong et al. Full-space terahertz metasurface based on thermally tunable InSb
Wulan et al. Salisbury screen absorbers using epsilon-near-zero substrate
Lian et al. Vanadium dioxide based bifunctional metasurface for broadband absorption and cross-polarization conversion in THz range
CN211126084U (zh) 一种石墨烯可调的双频带超材料吸收器
CN116742359A (zh) 一种石墨烯可调谐的太赫兹超材料吸收器
Zhao et al. Multi-functional vanadium dioxide integrated metamaterial for terahertz wave manipulation
CN117559147A (zh) 一种宽带和双频段可调谐的太赫兹吸波器
Wei et al. Graphene-based active tunable metasurfaces for dynamic terahertz absorption and polarization conversion
Li et al. Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Li et al. Dual-function dynamically tunable metamaterial absorber and its sensing application in the terahertz region

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination