CN113161758A - 基于金属与石墨烯的可调控超宽带太赫兹吸收器 - Google Patents

基于金属与石墨烯的可调控超宽带太赫兹吸收器 Download PDF

Info

Publication number
CN113161758A
CN113161758A CN202110462438.1A CN202110462438A CN113161758A CN 113161758 A CN113161758 A CN 113161758A CN 202110462438 A CN202110462438 A CN 202110462438A CN 113161758 A CN113161758 A CN 113161758A
Authority
CN
China
Prior art keywords
graphene
layer
metal
dielectric layer
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110462438.1A
Other languages
English (en)
Inventor
谢桐
杨俊波
张振荣
陈丁博
徐艳红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202110462438.1A priority Critical patent/CN113161758A/zh
Publication of CN113161758A publication Critical patent/CN113161758A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/007Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with means for controlling the absorption

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明涉及吸波器领域,具体是基于金属与石墨烯的可调控超宽带太赫兹吸收器,其包括由下至上依次设置的理想电导体层、介质层和双金属圆环,介质层内设置石墨烯层,双金属圆环由同心的第一金属圆环和第二金属圆环构成。石墨烯的表面电导率随费米能级变化,当改变石墨烯的化学势时,本发明可以实现宽带可调性,从而达到可调谐吸收的目的;本发明将双金属圆环和石墨烯层结合设计了一种超材料吸波体,使其不仅具有金属超材料吸波体的高吸收率,又具有石墨烯超材料的调控特性,具有宽带高吸收的特性。本发明结构简单,通过尺寸的比例变换,也可以实现其他波段的电磁波吸收。

Description

基于金属与石墨烯的可调控超宽带太赫兹吸收器
技术领域
本发明涉及吸波器领域,具体是基于金属与石墨烯的可调控超宽带太赫兹吸收器。
背景技术
超材料具有超越天然材料电磁特性,是继高分子材料和纳米材料之后最具影响力的新材料,是实现完美透镜和负折射率等光学器件的基础,也因其可行性受到隐身、通信等领域专家的广泛关注。然而完美吸波器又是超材料一个重要分支。自Landy等人在2008年首次提出薄而近乎完美的吸波超材料后,超材料吸收体(MAs)开始了蓬勃的发展。由于很难找到强频率选择性太赫兹吸收器,以至于MAs在太赫兹波段受到重点关注。
太赫兹是指0.1GHz-10THz,太赫兹的频率高、脉冲短,具有很高的时域频谱信噪比,且光子能量低、穿透性强对物质与人体的破坏较小,所以与X射线相比,太赫兹成像技术更具优势,独特的性质在医学成像、安全检查、宽带通信等方面具有广阔的前景。因此,发展研究工作于太赫兹波段相关的功能器件具有重要意义。在太赫兹波段,石墨烯电磁波支持表面等离子体激元(Surface Plasmon Polaritons,SPPs),因此基于石墨烯的超材料有望成为完美吸收太赫兹波的候选材料。更重要的是,与传统的金属超材料结构相比,石墨烯的表面电导率随费米能级变化,可以通过施加偏置电压、化学掺杂或外加电场、磁场来实现动态调节,从而达到可调谐吸收的目的。然而,石墨烯的费米能级越高,所需的外加偏置电压也越高,仅利用石墨烯本身的性质无法获得高吸收、高调制深度的效果,且基于石墨烯超材料的吸波器大多都存在带宽较窄的问题。
发明内容
本发明要解决的技术问题是现有吸波器无法获得高吸收、高调制深度的效果,且存在带宽较窄的问题,为了解决该问题,本发明提供基于金属与石墨烯的可调控超宽带太赫兹吸收器,其可以实现宽带可调性,从而达到可调谐吸收的目的,还具有宽带高吸收的特性。
本发明的内容为基于金属与石墨烯的可调控超宽带太赫兹吸收器,包括由下至上依次设置的理想电导体层、介质层和双金属圆环,介质层内设置石墨烯层,双金属圆环由同心的第一金属圆环和第二金属圆环构成。
进一步地,所述的介质层有第一介质层和第二介质层,第一介质层与理想电导体层相触,第二介质层与双金属圆环相触,石墨烯层位于第一介质层和第二介质层之间。
进一步地,所述的石墨烯层有正方形的第一石墨烯层和四个长条形的第二石墨烯层。
进一步地,所述的四个长条形的第二石墨烯层的一端均与第一石墨烯层连接,四个长条形的第二石墨烯层的另一端端面均与介质层的外边缘平齐。
进一步地,所述的理想电导体层的中心、介质层的中心、石墨烯层的中心和双金属圆环的中心位于同一条竖直的直线上。
进一步地,所述的介质层为二氧化硅或其它在太赫兹波段损耗角正切小于0.01的介质材料。
进一步地,所述的理想电导体层和介质层均为边长L5=18~22μm的正方形,介质层的厚度H1=8~12μm,石墨烯层的厚度H3=0.34~0.5nm。
进一步地,所述的第二介质层的厚度H2=2~4μm。
进一步地,所述的第一金属圆环的半径R1=5.5~7μm,环宽L3=0.15~0.25μm,第二金属圆环的半径R2=4~5μm,环宽L3=0.45~0.55μm,第一金属圆环和第二金属圆环的厚度H4=0.05~0.15μm。
进一步地,所述的第一石墨烯层的边长L1=9~11μm,第二石墨烯层的宽度L2=1.5~2μm。
本发明的有益效果是,石墨烯的表面电导率随费米能级变化,当改变石墨烯的化学势时,本发明可以实现宽带可调性,从而达到可调谐吸收的目的;本发明将双金属圆环和石墨烯层结合设计了一种超材料吸波体,使其不仅具有金属超材料吸波体的高吸收率,又具有石墨烯超材料的调控特性,具有宽带高吸收的特性。本发明结构简单,通过尺寸的比例变换,也可以实现其他波段的电磁波吸收。本发明还具有超宽带、小型化制造和可调节自由度等优点,在传感、光通信、探测、光学器件等方面具有重要的应用前景,验证了金属和石墨烯混合吸波器优越性。
附图说明
由于石墨烯层的厚度与其他部件的厚度相差较大,故将下列附图中石墨烯层的厚度进行了夸大处理。
附图1为本发明的主视图;
附图2为附图1的俯视图;
附图3为本发明的立体图;
附图4为附图3的爆炸图;
附图5为本发明的石墨烯层结构示意图;
附图6为本发明在正入射下的光谱图,其中A是吸收宽带响应线,R是反射宽带响应线,T是透射宽带响应线,其位于底部并与底部边框重合。
在图中,1、理想电导体层 2、第一金属圆环 3、第二金属圆环 4、第一介质层 5、第二介质层 6、第一石墨烯层 7、第二石墨烯层。
具体实施方式
如附图1-4所示,基于金属与石墨烯的可调控超宽带太赫兹吸收器,包括由下至上依次设置的理想电导体层1、介质层和双金属圆环,介质层内设置石墨烯层,双金属圆环由同心的第一金属圆环2和第二金属圆环3构成。双金属圆环和石墨烯层均构建在介质层上。入射波不能达到介质层上,所以对吸收特性没有影响。石墨烯的表面电导率随费米能级变化,当改变石墨烯的化学势时,本发明可以实现宽带可调性,从而达到可调谐吸收的目的;本发明将双金属圆环和石墨烯层结合设计了一种超材料吸波体,使其不仅具有金属超材料吸波体的高吸收率,又具有石墨烯超材料的调控特性,具有宽带高吸收的特性。本发明结构简单,通过尺寸的比例变换,也可以实现其他波段的电磁波吸收。本发明还具有超宽带、小型化制造和可调节自由度等优点,在传感、光通信、探测、光学器件等方面具有重要的应用前景,验证了金属和石墨烯混合吸波器优越性。
如附图1-4所示,所述的介质层有第一介质层4和第二介质层5,第一介质层4与理想电导体层1相触,第二介质层5与双金属圆环相触,石墨烯层位于第一介质层4和第二介质层5之间。这种结构能够便于向介质层内放置石墨烯层。
如附图4和附图5所示,所述的石墨烯层有正方形的第一石墨烯层6和四个长条形的第二石墨烯层7。这种结构利用了石墨烯十字形状带宽间的等离子体杂化效应,进一步拓展了带宽。
如附图1、附图3、附图4和附图5所示,所述的四个长条形的第二石墨烯层7的一端均与第一石墨烯层6连接,四个长条形的第二石墨烯层7的另一端端面均与介质层的外边缘平齐。
如附图3和附图4所示,所述的理想电导体层1的中心、介质层的中心、石墨烯层的中心和双金属圆环的中心位于同一条竖直的直线上。
所述的介质层为二氧化硅或其它在太赫兹波段损耗角正切小于0.01的介质材料。所述的介质层介电常数为2.88。
由于石墨烯是透明的,为了根据相邻单元细胞的相互效应获得高吸收率,如附图1和附图2所示,所述的理想电导体层1和介质层均为边长L5=18~22μm的正方形,介质层的厚度H1=8~10μm,石墨烯层的厚度H3=0.34~0.5nm。理想电导体层1和介质层均为边长L5=18μm的正方形,介质层的厚度H1=8μm,石墨烯层的厚度H3=0.34nm。理想电导体层1和介质层还可以均为边长L5=22μm的正方形,介质层的厚度H1=10μm,石墨烯层的厚度H3=0.45nm。优选的理想电导体层1和介质层均为边长L5=20μm的正方形,介质层的厚度H1=9.5μm,石墨烯层的厚度H3=0.5nm,费米能级对应为0.72eV。
如附图1所示,所述的第二介质层5的厚度H2=2~4μm。所述的第二介质层5的厚度H2可以为2μm。所述的第二介质层5的厚度H2也可以为4μm。优选的第二介质层5的厚度H2=3.5μm。
如附图1和附图2所示,所述的第一金属圆环2的半径R1=5.5~7μm,环宽L3=0.15~0.25μm,第二金属圆环3的半径R2=4~5μm,环宽L3=0.45~0.55μm,第一金属圆环2和第二金属圆环3的厚度H4=0.05~0.15μm。所述的第一金属圆环2的半径R1可以为5.5μm,环宽L3可以为0.15μm,第二金属圆环3的半径R2可以为4μm,环宽L3可以为0.45μm,第一金属圆环2和第二金属圆环3的厚度H4可以为0.05μm。所述的第一金属圆环2的半径R1还可以为7μm,环宽L3可以为0.25μm,第二金属圆环3的半径R2可以为5μm,环宽L3可以为0.55μm,第一金属圆环2和第二金属圆环3的厚度H4可以为0.15μm。优选的第一金属圆环2的半径R1=6.5μm,环宽L3=0.2μm,第二金属圆环3的半径R2=4.5μm,环宽L3=0.5μm,第一金属圆环2和第二金属圆环3的厚度H4=0.1μm。本实验仿真使用金属模型是Brendel-Bormann model。
如附图5所示,所述的第一石墨烯层6的边长L1=9~11μm,第二石墨烯层7的宽度L2=1.5~2μm。所述的第一石墨烯层6的边长L1可以为9μm,第二石墨烯层7的宽度L2可以为1.5μm。所述的第一石墨烯层6的边长L1还可以为11μm,第二石墨烯层7的宽度L2还可以为1.8μm。优选的第一石墨烯层6的边长L1=10μm,第二石墨烯层7的宽度L2=2μm。
本发明通过偏压离子-凝胶顶栅电介质,改变石墨烯费米能级控制电磁波共振的振幅,金属和石墨烯超表面在这种结构中可以实现宽带高吸收。基于有限元方法的电磁仿真软件模拟响应频率,本发明在2.68THz-7.48THz实现超过80%的吸收率,中心频率fc=5.08THz,相对带宽94.5%。实现从0到90°调谐偏振角(Φ),证明本发明极化不敏感性;从0到45°大角度斜入射,对TE和TM极化吸收模式基本保持一致,本发明具有超宽带、小型化制造和可调节自由度等优点。
石墨烯的电导率由久保方程提供,久保方程由两者共同确定带内和带间跃迁。
σg(ω,μc,τ,T)=σintrainter
Figure BDA0003042787770000041
Figure BDA0003042787770000042
Figure BDA0003042787770000043
在太赫兹波段,当Ef>>2kBT时,主要是带内跃迁做贡献,而石墨烯电导率的带间跃迁被忽略,则电导率化简为:
Figure BDA0003042787770000044
Figure BDA0003042787770000051
可知,KB是玻耳兹曼常数,
Figure BDA0003042787770000053
简化后的Plabck常数,h是Plabck常数,T是开尔文温度,ω角频率,e电荷,μc=104cm2=V,石墨烯费米能级Ef,速度υf=106m/s,弛豫时间
Figure BDA0003042787770000052
εO是真空的介电常数,εd是介质层的相对介电常数,εr为石墨烯层上的介电常数,c是真空中的光速。
上述理论充分展现了吸波材料施加偏置电压或化学掺杂来实现动态调节,从而达到可调谐吸收的目的,这过程定性改变表面等离子体激元激发的特性的频率,从而影响吸波材料的工作频率。在仿真中,以周期结构中的一个单元作为计算对象,选择X、Y方向的周期性单元边界条件,Z方向设置为开放边界条件,吸收率是由相应的S参数可知:
A(ω)=1-T(ω)-R(ω)
其中T(ω)和R(ω)分别为透射系数和反射系数,选择频域求解器,导出吸收率。由上述方程可知,通过减小透射和反射系数,可以获得较高的吸收光谱。
附图6显示了本发明在Ef=0.72eV时TE极化下的吸收光谱。从吸收光谱可以看出,TE极化的吸收带宽在2.68-7.48THz范围内(>80%)吸收率,其中中心频率fc=5.08THz,利用Δf=fc计算相对带宽94.5%,如附图6中的A。作为对称结构,反射R(ω)几乎趋向0,在相对较多的带宽中反射也极其小,因此入射波的总反射小,大部分反射波是入射波消耗,如附图6中的R。利用理想电导体作为一层金属薄膜反射层接地面,以使透射系数最小化。结果表明,金属层的透射系数为0,即A(ω)=1-R(ω),如附图6中的T。
为了测试本发明的性能,研究了介质层和第二介质层5不同厚度时对吸收光谱的影响。仿真结果表明,当介质层的厚度H1=9.5μm,第二介质层5的厚度H2=3.5μm时,可获得最佳的吸收性能。随着介质层的厚度H1的增大,吸收带宽逐渐减小。当介质层的厚度H1超过10μm时,6THz-7THz波段的吸收速率逐渐减小,9-10μm波段的吸收效果最好。而第二介质层5的厚度H2对吸收率的影响不大。经过实验表明,第二介质层5的厚度H2在3.5μm处的吸收效率和带宽最好。通过实验分析介质层和第二介质层5的厚度,金属-石墨烯超材料之间的介质层参数对本发明的吸收特性非常重要。石墨烯作为可调控材料,改变了金属在结构固定后特性不变的现状,通过施加偏置电压来实现动态调节,使得本发明有更大的自由度。通过调节石墨烯超表面的化学势,可以进一步调制所提出的吸收体的吸收带宽。随着费米能级的调整,谐振频率略有增加,吸收效果越来越好,费米能级0.1eV-1eV调整后,吸收共振峰位置变宽,吸收更有效。当化学势从0.1eV-0.7eV改变时,2THz-3THz和7THz-8THz的吸收显著增加到80%,在0.72eV处吸收效果最佳。通过使用仿真软件进行数值模拟,调谐偏振角(Φ)从0到90°的吸收对TE和TM模式保持不变。结果表明,由于本发明的吸波结构是对称结构,在正常入射情况下,吸收率与极化完全无关,即该吸波结构对偏振角不敏感。在实际应用中,入射光通常以斜入射角照射,本发明模拟仿真斜入射角度从0到45°,对TE和TM极化吸收模式基本保持一致。模拟仿真结果表明,本发明的结构是高度优化的大角度入射的TE和TM极化波,具有良好的吸收性能和稳定的工作带宽。综上所述,本发明提出了一种基于金属与石墨烯混合谐振器实现超宽带、超薄、可调控的超表面太赫兹吸收器。本发明在2.68THz-7.48THz范围内实现(>80%)吸收率,其中中心频率fc=5.08THz,相对带宽94.5%,利用表面等离子共振的电场分析了吸波器的物理机制,金属和石墨烯图案的杂化增强了超表面场,由于设计结构呈现几何对称,偏振角度和大角度入射都呈现较好的优势。通过调节偏置电压改变石墨烯费米能级,能够有效地控制超材料吸收强度和谐振频率,实现了超材料吸收体的动态调谐。

Claims (10)

1.基于金属与石墨烯的可调控超宽带太赫兹吸收器,其特征在于:包括由下至上依次设置的理想电导体层(1)、介质层和双金属圆环,介质层内设置石墨烯层,双金属圆环由同心的第一金属圆环(2)和第二金属圆环(3)构成。
2.如权利要求1所述的基于金属与石墨烯的可调控超宽带太赫兹吸收器,其特征在于:所述的介质层有第一介质层(4)和第二介质层(5),第一介质层(4)与理想电导体层(1)相触,第二介质层(5)与双金属圆环相触,石墨烯层位于第一介质层(4)和第二介质层(5)之间。
3.如权利要求1或2所述的基于金属与石墨烯的可调控超宽带太赫兹吸收器,其特征在于:所述的石墨烯层有正方形的第一石墨烯层(6)和四个长条形的第二石墨烯层(7)。
4.如权利要求3所述的基于金属与石墨烯的可调控超宽带太赫兹吸收器,其特征在于:所述的四个长条形的第二石墨烯层(7)的一端均与第一石墨烯层(6)连接,四个长条形的第二石墨烯层(7)的另一端端面均与介质层的外边缘平齐。
5.如权利要求3所述的基于金属与石墨烯的可调控超宽带太赫兹吸收器,其特征在于:所述的理想电导体层(1)的中心、介质层的中心、石墨烯层的中心和双金属圆环的中心位于同一条竖直的直线上。
6.如权利要求1所述的基于金属与石墨烯的可调控超宽带太赫兹吸收器,其特征在于:所述的介质层为二氧化硅或其它在太赫兹波段损耗角正切小于0.01的介质材料。
7.如权利要求1或2所述的基于金属与石墨烯的可调控超宽带太赫兹吸收器,其特征在于:所述的理想电导体层(1)和介质层均为边长L5=18~22μm的正方形,介质层的厚度H1=8~10μm,石墨烯层的厚度H3=0.34~0.5nm。
8.如权利要求7所述的基于金属与石墨烯的可调控超宽带太赫兹吸收器,其特征在于:所述的第二介质层(5)的厚度H2=2~4μm。
9.如权利要求1所述的基于金属与石墨烯的可调控超宽带太赫兹吸收器,其特征在于:所述的第一金属圆环(2)的半径R1=5.5~7μm,环宽L3=0.15~0.25μm,第二金属圆环(3)的半径R2=4~5μm,环宽L3=0.45~0.55μm,第一金属圆环(2)和第二金属圆环(3)的厚度H4=0.05~0.15μm。
10.如权利要求4所述的基于金属与石墨烯的可调控超宽带太赫兹吸收器,其特征在于:所述的第一石墨烯层(6)的边长L1=9~11μm,第二石墨烯层(7)的宽度L2=1.5~2μm。
CN202110462438.1A 2021-04-27 2021-04-27 基于金属与石墨烯的可调控超宽带太赫兹吸收器 Pending CN113161758A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110462438.1A CN113161758A (zh) 2021-04-27 2021-04-27 基于金属与石墨烯的可调控超宽带太赫兹吸收器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110462438.1A CN113161758A (zh) 2021-04-27 2021-04-27 基于金属与石墨烯的可调控超宽带太赫兹吸收器

Publications (1)

Publication Number Publication Date
CN113161758A true CN113161758A (zh) 2021-07-23

Family

ID=76871720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110462438.1A Pending CN113161758A (zh) 2021-04-27 2021-04-27 基于金属与石墨烯的可调控超宽带太赫兹吸收器

Country Status (1)

Country Link
CN (1) CN113161758A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764897A (zh) * 2021-09-01 2021-12-07 中国计量大学 基于单层石墨烯辅助超材料的宽带微波吸收器
CN114918425A (zh) * 2022-06-20 2022-08-19 杭州电子科技大学富阳电子信息研究院有限公司 一种具有宽带可调吸收特性的金纳米棒及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764897A (zh) * 2021-09-01 2021-12-07 中国计量大学 基于单层石墨烯辅助超材料的宽带微波吸收器
CN114918425A (zh) * 2022-06-20 2022-08-19 杭州电子科技大学富阳电子信息研究院有限公司 一种具有宽带可调吸收特性的金纳米棒及其制备方法
CN114918425B (zh) * 2022-06-20 2023-07-14 杭州电子科技大学富阳电子信息研究院有限公司 一种具有宽带可调吸收特性的金纳米棒及其制备方法

Similar Documents

Publication Publication Date Title
Wu et al. A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity
CN110441842B (zh) 一种基于vo2及石墨烯混合超材料的多功能器件
Zhou et al. Tunable broadband terahertz absorber based on graphene metamaterials and VO2
Li et al. Polarization independent tunable bandwidth absorber based on single-layer graphene
Yao et al. Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency
Liu et al. Multifunctional terahertz device with active switching between bimodal perfect absorption and plasmon-induced transparency
Nejat et al. Design, theory, and circuit model of wideband, tunable and polarization-insensitive terahertz absorber based on graphene
CN113078474B (zh) 一种石墨烯-二氧化钒超材料吸收器及可调谐太赫兹器件
CN113161758A (zh) 基于金属与石墨烯的可调控超宽带太赫兹吸收器
CN211123332U (zh) 一种基于石墨烯的宽带可调太赫兹吸波器
Li et al. Polarization-sensitive multi-frequency switches and high-performance slow light based on quadruple plasmon-induced transparency in a patterned graphene-based terahertz metamaterial
CN110658571A (zh) 一种基于石墨烯的宽带可调太赫兹吸波器
Liu et al. A compact metamaterial broadband THz absorber consists of graphene crosses with different sizes
Lv et al. Broadband terahertz metamaterial absorber and modulator based on hybrid graphene-gold pattern
Li et al. Broadband and tunable terahertz absorption via photogenerated carriers in undoped silicon
Ding et al. Ultra-broadband tunable terahertz absorber based on graphene metasurface with multi-square rings
Xing et al. Numerical analysis on ribbon-array-sheet coupled graphene terahertz absorber
Song et al. Terahertz absorber based on vanadium dioxide with high sensitivity and switching capability between ultra-wideband and ultra-narrowband
Chen et al. A dual ultra-broadband switchable high-performance terahertz absorber based on hybrid graphene and vanadium dioxide
Zhang et al. A tunable ultra-wideband cross-polarization conversion based on the band splicing technology
Mo et al. Strong and broadband terahertz absorber using SiO2-based metamaterial structure
Dong et al. Tunable ultrathin ultrabroadband metamaterial absorber with graphene-stack-based structure at lower terahertz frequency
CN214898884U (zh) 基于金属与石墨烯的可调控超宽带太赫兹吸收器
Xia et al. Graphene terahertz amplitude modulation enhanced by square ring resonant structure
Wu et al. Vanadium dioxide-based ultra-broadband metamaterial absorber for terahertz waves

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination