CN117514605A - 一种风力发电机的控制方法和相关装置 - Google Patents

一种风力发电机的控制方法和相关装置 Download PDF

Info

Publication number
CN117514605A
CN117514605A CN202210909604.2A CN202210909604A CN117514605A CN 117514605 A CN117514605 A CN 117514605A CN 202210909604 A CN202210909604 A CN 202210909604A CN 117514605 A CN117514605 A CN 117514605A
Authority
CN
China
Prior art keywords
target
acceleration
driven generator
yaw
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210909604.2A
Other languages
English (en)
Inventor
孙涛
陈勇
黄晓芳
孙兆冲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Original Assignee
Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Goldwind Science and Creation Windpower Equipment Co Ltd filed Critical Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Priority to CN202210909604.2A priority Critical patent/CN117514605A/zh
Priority to PCT/CN2023/072756 priority patent/WO2024021545A1/zh
Publication of CN117514605A publication Critical patent/CN117514605A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0296Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

本申请实施例公开了一种风力发电机的控制方法和相关装置,可以基于实时获取目标风力发电机对应的加速度参数,确定该目标风力发电机是否满足风况因素判定条件,该风况因素判定条件用于判断风力发电机出现偏航振动超限的原因。若该目标风力发电机满足风况因素判定条件,则可以确定该风力发电机因风况因素导致加速度有效值超过振动超限阈值;若目标风力发电机不满足风况因素判定条件,则可以确定该目标风力发电机因偏航刹车盘系统因素导致加速度有效值超过振动超限阈值。从而可以基于较为准确分析出的超限原因的基础上对风力发电机进行控制,避免针对由于风况因素导致的超限也进行频繁的停机操作,降低了风力发电机的启停频率,降低损耗。

Description

一种风力发电机的控制方法和相关装置
技术领域
本申请涉及风力发电技术领域,特别是涉及一种风力发电机的控制方法和相关装置。
背景技术
风力发电机偏航是指风力发电机的朝向发生变化的情况,在风力发电机偏航的过程中,可能会由于多种因素导致异常的振动情况,这些异常的振动情况有可能会影响风力发电机的正常运行,带来一定的危害。
因此,在相关技术中,需要对风力发电机的偏航过程进行监控和保护。目前,偏航过程机组振动超限的保护方案为,当机组处于偏航过程中且安装在机舱的加速度传感器检测的加速度有效值超过预设故障阈值后就立即故障停机。
然而,相关技术中的振动超限保护方案容易造成风力发电机的频繁停机,影响机组发电量的同时增加了机组启停机带来的疲劳载荷。
发明内容
为了解决上述技术问题,本申请提供了一种风力发电机的控制方法,处理设备可以基于对偏航振动的准确分析结果进行针对性的控制,在保障风力发电机稳定运行的同时降低了停机频率,提高机组的发电量,降低了启停机损耗。
本申请实施例公开了如下技术方案:
第一方面,本申请实施例公开了一种风力发电机的控制方法,所述方法包括:
实时获取目标风力发电机对应的加速度参数;
响应于所述目标风力发电机处于偏航状态,且所述加速度参数对应的加速度有效值超过振动超限阈值,确定所述目标风力发电机是否满足风况因素判定条件;
若所述目标风力发电机满足所述风况因素判定条件,确定所述目标风力发电机因风况因素导致所述加速度有效值超过所述振动超限阈值;
若所述目标风力发电机不满足所述风况因素判定条件,确定所述目标风力发电机因偏航刹车盘系统因素导致所述加速度有效值超过所述振动超限阈值;
响应于所述加速度有效值超过所述振动超限阈值的因素为风况因素或偏航刹车盘系统因素,控制所述目标风力发电机的运行状态。
在一种可能的实现方式中,所述风况因素判定条件包括所述目标风力发电机在目标时刻前第一预设时段对应的加速度绝对值最大值大于加速度瞬时阈值,所述方法还包括:
确定所述目标发电机目标时刻前第一预设时段对应的加速度绝对值最大值,所述目标时刻为所述加速度有效值超过振动超限阈值的时刻。
在一种可能的实现方式中,所述风况因素判定条件包括所述目标风力发电机在目标时刻前第二预设时段对应的振动主导方向加速度变化率的绝对值最大值大于第一变化率阈值,或所述目标风力发电机在目标时刻前第三预设时段对应的振动主导方向加速度变化率的绝对值均值大于第二变化率阈值,所述第三预设时段小于所述第二预设时段,所述方法还包括:
确定所述目标发电机在目标时刻前第二预设时段对应的振动主导方向加速度变化率的绝对值,以及确定所述目标风力发电机在目标时刻前第三预设时段对应的振动主导方向加速度变化率的绝对值均值,所述目标时刻为所述加速度有效值超过振动超限阈值的时刻。
在一种可能的实现方式中,所述风况因素判定条件包括所述目标风力发电机在目标时刻前第四预设时段对应的加速度有效值均值小于有效值均值阈值,所述方法还包括:
确定所述目标风力发电机在目标时刻前第四预设时段对应的加速度有效值均值,所述目标时刻为所述加速度有效值超过振动超限阈值的时刻。
在一种可能的实现方式中,所述风况因素判定条件包括所述目标风力发电机对应的目标时长大于第一时长阈值,所述方法还包括:
确定所述目标风力发电机对应的目标时长,所述目标时长为在目标时刻前振动主导方向加速度最后一次过零点时刻到所述目标时刻之间的时长,所述目标时刻为所述加速度有效值超过振动超限阈值的时刻,所述第一时长阈值是基于所述目标风力发电机对应的塔架一阶频率和转频确定的。
在一种可能的实现方式中,所述风况因素判定条件包括所述目标风力发电机对应的振动主导方向加速度主导频率小于频率阈值,所述方法还包括:
确定所述目标风力发电机对应的振动主导方向加速度主导频率。
在一种可能的实现方式中,所述响应于所述加速度有效值超过所述振动超限阈值的因素为风况因素或偏航刹车盘系统因素,控制所述目标风力发电机的运行状态包括:
响应于所述目标风力发电机因风况因素导致所述加速度有效值超过所述振动超限阈值,将所述目标风力发电机对应的风况异常次数加1;
响应于目标时段内所述目标风力发电机对应的风况异常次数达到预设阈值,对所述目标风力发电机进行降载控制;
响应于所述目标风力发电机因偏航刹车盘系统因素导致所述加速度有效值超过所述振动超限阈值,对所述目标风力发电机进行停机处理。
在一种可能的实现方式中,所述方法还包括:
以预设偏航时段为单位,获取所述目标风力发电机在N个所述预设偏航时段中分别对应的加速度参数,所述N为正整数;
基于所述N个预设偏航时段分别对应的加速度参数,确定所述N个预设偏航时段中的异常偏航时段;
响应于所述N个预设偏航时段中异常偏航时段的占比大于占比阈值,生成偏航告警信息,所述偏航告警信息用于标识所述目标风力发电机存在故障风险。
在一种可能的实现方式中,所述N个预设偏航时段中包括目标预设偏航时段,所述基于所述N个预设偏航时段分别对应的加速度参数,确定所述N个预设偏航时段中的异常偏航时段,包括:
响应于所述目标预设偏航时段对应的加速度绝对值均值大于绝对值均值阈值,确定所述目标预设偏航时段为异常偏航时段;
和/或,响应于所述目标预设偏航时段内前后方向或左右方向加速度两次相邻过零点间隔时长大于第二时长阈值,确定所述目标预设偏航时段为异常偏航时段;
和/或,响应于所述目标预设时段内加速度过零点次数不超过1次,确定所述目标预设偏航时段为异常偏航时段。
第二方面,本申请实施例公开了一种风力发电机的控制装置,所述装置包括第一获取单元、第一确定单元、第二确定单元、第三确定单元和控制单元:
所述第一获取单元,用于实时获取目标风力发电机对应的加速度参数;
所述第一确定单元,用于响应于所述目标风力发电机处于偏航状态,且所述加速度参数对应的加速度有效值超过振动超限阈值,确定所述目标风力发电机是否满足风况因素判定条件;
所述第二确定单元,用于若所述目标风力发电机满足所述风况因素判定条件,确定所述目标风力发电机因风况因素导致所述加速度有效值超过所述振动超限阈值;
所述第三确定单元,用于若所述目标风力发电机不满足所述风况因素判定条件,确定所述目标风力发电机因偏航刹车盘系统因素导致所述加速度有效值超过所述振动超限阈值;
所述控制单元,用于响应于所述加速度有效值超过所述振动超限阈值的因素为风况因素或偏航刹车盘系统因素,控制所述目标风力发电机的运行状态。
在一种可能的实现方式中,所述风况因素判定条件包括所述目标风力发电机在目标时刻前第一预设时段对应的加速度绝对值最大值大于加速度瞬时阈值,所述装置还包括第四确定单元:
所述第四确定单元,用于确定所述目标发电机目标时刻前第一预设时段对应的加速度绝对值最大值,所述目标时刻为所述加速度有效值超过振动超限阈值的时刻。
在一种可能的实现方式中,所述风况因素判定条件包括所述目标风力发电机在目标时刻前第二预设时段对应的振动主导方向加速度变化率的绝对值最大值大于第一变化率阈值,或所述目标风力发电机在目标时刻前第三预设时段对应的振动主导方向加速度变化率的绝对值均值大于第二变化率阈值,所述第三预设时段小于所述第二预设时段,所述装置还包括第五确定单元:
所述第五确定单元,用于确定所述目标发电机在目标时刻前第二预设时段对应的振动主导方向加速度变化率的绝对值,以及确定所述目标风力发电机在目标时刻前第三预设时段对应的振动主导方向加速度变化率的绝对值均值,所述目标时刻为所述加速度有效值超过振动超限阈值的时刻。
在一种可能的实现方式中,所述风况因素判定条件包括所述目标风力发电机在目标时刻前第四预设时段对应的加速度有效值均值小于有效值均值阈值,所述装置还包括第六确定单元:
所述第六确定单元,用于确定所述目标风力发电机在目标时刻前第四预设时段对应的加速度有效值均值,所述目标时刻为所述加速度有效值超过振动超限阈值的时刻。
在一种可能的实现方式中,所述风况因素判定条件包括所述目标风力发电机对应的目标时长大于第一时长阈值,所述装置还包括第七确定单元:
所述第七确定单元,用于确定所述目标风力发电机对应的目标时长,所述目标时长为在目标时刻前振动主导方向加速度最后一次过零点时刻到所述目标时刻之间的时长,所述目标时刻为所述加速度有效值超过振动超限阈值的时刻,所述第一时长阈值是基于所述目标风力发电机对应的塔架一阶频率和转频确定的。
在一种可能的实现方式中,所述风况因素判定条件包括所述目标风力发电机对应的振动主导方向加速度主导频率小于频率阈值,所述装置还包括第八确定单元:
所述第八确定单元,用于确定所述目标风力发电机对应的振动主导方向加速度主导频率。
在一种可能的实现方式中,所述控制单元具体用于:
响应于所述目标风力发电机因风况因素导致所述加速度有效值超过所述振动超限阈值,将所述目标风力发电机对应的风况异常次数加1;
响应于目标时段内所述目标风力发电机对应的风况异常次数达到预设阈值,对所述目标风力发电机进行降载控制;
响应于所述目标风力发电机因偏航刹车盘系统因素导致所述加速度有效值超过所述振动超限阈值,对所述目标风力发电机进行停机处理。
在一种可能的实现方式中,所述装置还包括第二获取单元、第八确定单元和生成单元:
所述第二获取单元,用于以预设偏航时段为单位,获取所述目标风力发电机在N个所述预设偏航时段中分别对应的加速度参数;
所述第八确定单元,用于基于所述N个预设偏航时段分别对应的加速度参数,确定所述N个预设偏航时段中的异常偏航时段;
所述生成单元,用于响应于所述N个预设偏航时段中异常偏航时段的占比大于占比阈值,生成偏航告警信息,所述偏航告警信息用于标识所述目标风力发电机存在故障风险。
在一种可能的实现方式中,所述N个预设偏航时段中包括目标预设偏航时段,所述第八确定单元具体用于:
响应于所述目标预设偏航时段对应的加速度绝对值均值大于绝对值均值阈值,确定所述目标预设偏航时段为异常偏航时段;
和/或,响应于所述目标预设偏航时段内前后方向或左右方向加速度两次相邻过零点间隔时长大于第二时长阈值,确定所述目标预设偏航时段为异常偏航时段;
和/或,响应于所述目标预设时段内加速度过零点次数不超过1次,确定所述目标预设偏航时段为异常偏航时段。
第三方面,本申请实施例公开了一种处理设备,所述处理设备包括处理器以及存储器:
所述存储器用于存储程序代码,并将所述程序代码传输给所述处理器;
所述处理器用于根据所述程序代码中的指令执行第一方面中任意一项所述的风力发电机的控制方法。
第四方面,本申请实施例公开了一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序用于执行第一方面中任意一项所述的风力发电机的控制方法。
第五方面,本申请实施例公开了一种包括指令的计算机程序产品,当其在处理设备上运行时,使得所述处理设备执行第一方面中任意一项所述的风力发电机的控制方法。
由上述技术方案可以看出,本申请提供了一种风力发电机的控制方法,在实时获取目标风力发电机对应的加速度参数,响应于目标风力发电机处于偏航状态,且该加速度参数对应的加速度有效值超过振动超限阈值,可以确定该目标风力发电机是否满足风况因素判定条件,该风况因素判定条件用于判断风力发电机出现偏航振动超限的原因。若该目标风力发电机满足风况因素判定条件,则可以确定该风力发电机因风况因素导致加速度有效值超过振动超限阈值;若目标风力发电机不满足风况因素判定条件,则可以确定该目标风力发电机因偏航刹车盘系统因素导致加速度有效值超过振动超限阈值。响应于所述加速度有效值超过所述振动超限阈值的因素为风况因素或偏航刹车盘系统因素,可以控制该目标发电机的运行状态,从而可以基于较为准确分析出的超限原因的基础上对风力发电机进行控制,避免针对由于风况因素导致的超限也进行频繁的停机操作,降低了风力发电机的启停频率,从而提高了风力发电机的发电量,降低了因风力发电机启停机带来的损耗。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种风力发电机的控制方法的流程图;
图2为本申请实施例提供的一种风力发电机的控制方法的示意图;
图3为本申请实施例提供的一种风力发电机的控制方法的示意图;
图4为本申请实施例提供的一种风力发电机的控制方法的示意图;
图5为本申请实施例提供的一种风力发电机的控制方法的示意图;
图6为本申请实施例提供的一种实际应用场景中风力发电机的控制方法的示意图;
图7为本申请实施例提供的一种实际应用场景中风力发电机的控制方法的示意图;
图8为本申请实施例提供的一种风力发电机的控制装置的结构框图。
具体实施方式
下面结合附图,对本申请的实施例进行描述。
造成偏航过程振动的因素主要有复杂风况因素、偏航刹车盘过度磨损或污染两种。当前的偏航过程中振动保护策略没有对导致振动的因素进一步区分,因此机组无法根据问题根因实行自适应控制。无法在偏航刹车盘过度磨损或污染不严重时(即未导致振动超限故障停机前)发出预警,指导运维人员制定小风天气运维计划,也无法对复杂风况因素导致的振动超限进行识别进而执行故障穿越和短时降载控制。偏航过程振动超限时直接进行故障停机,既影响机组发电量又增加机组启停机带来的疲劳载荷。
为了解决上述技术问题,本申请实施例提供了一种风力发电机的控制方法,处理设备可以基于对偏航振动的准确分析结果进行针对性的控制,在保障风力发电机稳定运行的同时降低了停机频率,提高机组的发电量,降低了启停机损耗。
可以理解的是,该方法可以应用于处理设备上,该处理设备为能够进行风力发电机控制的处理设备,在一个示例中,上述处理设备可以为具有风力发电机控制功能的终端设备或服务器。该方法可以通过终端设备或服务器独立执行,也可以应用于终端设备和服务器通信的网络场景,通过终端设备和服务器配合执行。其中,终端设备可以为台式计算机、笔记本等设备。服务器可以理解为是应用服务器,也可以为Web服务器,在实际部署时,该服务器可以为独立服务器,也可以为集群服务器,还可以是云平台。在另一个示例中,上述处理设备可以是风力发电机的控制器,该控制器可以基于计算机程序来执行下述任意一个实施例中所述的风力发电机的控制方法。
接下来,将结合附图,对本申请实施例提供的一种风力发电机的控制方法进行介绍。
参见图1,图1为本申请实施例提供的一种风力发电机的控制方法的流程图,该方法包括:
S101:实时获取目标风力发电机对应的加速度参数。
该目标风力发电机可以为任意一台需要进行控制的风力发电机,该加速度参数用于体现目标风力发电机的振动情况,其中,加速度参数可以包括目标风力发电机前后方向的加速度x和左右方向的加速度y。可选地,上述加速度参数可以通过加速度传感器获取。
S102:响应于目标风力发电机处于偏航状态,且加速度参数对应的加速度有效值超过振动超限阈值,确定目标风力发电机是否满足风况因素判定条件。
为了实现对目标风力发电机的合理控制,处理设备需要准确分析目标风力发电机在偏航状态下发生振动超限的原因进行准确分析。处理设备可以实时检测目标风力发电机是否处于偏航状态,并预设一个振动超限阈值,该振动超限阈值用于判断目标风力发电机是否出现异常的振动情况。
响应于目标风力发电机处于偏航状态,且加速度参数对应的加速度有效值超过振动超限阈值,处理设备可以判定该目标风力发电机处于偏航振动超限状态,此时处理设备可以确定该目标风力发电机是否满足风况因素判定条件,该风况因素判定条件用于判断偏航振动超限是否是由于风况因素导致的,风况因素是指环境中的风力因素,由于短时间内的风力过大等原因可能会导致风力发电机在某一方向上振动过大从而超限。其中,该加速度有效值可以是前后方向和左右方向合成的加速度值,合成公式为:
A为加速度有效值。
S103:若目标风力发电机满足风况因素判定条件,确定目标风力发电机因风况因素导致加速度有效值超过振动超限阈值。
S104:若目标风力发电机不满足风况因素判定条件,确定目标风力发电机因偏航刹车盘系统因素导致加速度有效值超过所述振动超限阈值。
S105:响应于加速度有效值超过振动超限阈值的因素为风况因素或偏航刹车盘系统因素,控制目标风力发电机的运行状态。
处理设备可以基于上述步骤中所确定出的导致振动超限的因素,有针对性的对目标风力发电机进行控制,从而可以避免针对任何振动超限因素都进行停机处理,降低启停机损耗。
具体的,响应于所述目标风力发电机因风况因素导致加速度有效值超过振动超限阈值,处理设备可以针对该目标风力发电机进行故障穿越,即处理设备可以将目标风力发电机对应的风况异常次数加1,然后统计目标时段内目标风力发电机对应的风况异常次数。响应于目标时段内目标风力发电机对应的风况异常次数达到预设阈值,则说明当前目标风力发电机处于异常的风况中,处理设备可以对目标风力发电机进行降载控制,保障风力发电机的运行安全。
响应于目标风力发电机因偏航刹车盘系统因素导致加速度有效值超过振动超限阈值,处理设备可以对目标风力发电机进行停机处理,以避免目标风力发电机造成更加严重的设备故障。
由上述技术方案可以看出,本申请提供了一种风力发电机的控制方法,在实时获取目标风力发电机对应的加速度参数,响应于目标风力发电机处于偏航状态,且该加速度参数对应的加速度有效值超过振动超限阈值,可以确定该目标风力发电机是否满足风况因素判定条件,该风况因素判定条件用于判断风力发电机出现偏航振动超限的原因。若该目标风力发电机满足风况因素判定条件,则可以确定该风力发电机因风况因素导致加速度有效值超过振动超限阈值;若目标风力发电机不满足风况因素判定条件,则可以确定该目标风力发电机因偏航刹车盘系统因素导致加速度有效值超过振动超限阈值。响应于所述加速度有效值超过所述振动超限阈值的因素为风况因素或偏航刹车盘系统因素,可以控制该目标发电机的运行状态,从而可以基于较为准确分析出的超限原因的基础上对风力发电机进行控制,避免针对由于风况因素导致的超限也进行频繁的停机操作,降低了风力发电机的启停频率,从而提高了风力发电机的发电量,降低了因风力发电机启停机带来的损耗。
具体的,在设定风况因素判定条件时,处理设备可以先对两种引起偏航振动超限的因素所对应的数据特点进行分析。
如附图2~附图5所示。示意图标题中k代表左侧信号线,b代表右侧信号线,power代表机组功率,yawposition代表偏航位置,accx代表前后方向加速度,accy代表左右方向加速度,fftaccx代表前后方向加速度频谱,fftaccy代表左右方向加速度频谱,横坐标轴0代表振动超限时刻,横坐标轴大于0代表振动超限前时刻。
图2所示特征为偏航过程中复杂风况导致的机组转频振动,非偏航刹车系统磨损或污染导致,可以看出振动超限前accx幅值大于accy幅值。复杂风况导致的振动,振动主导方向的振动频率主要为3倍转频或者塔架一阶频率均小于1.2Hz,且加速度曲线相对光滑。
图3为一种典型的偏航刹车系统磨损或污染导致的振动超限特征,可以看出振动主导方向为accy,振动超限前accy凸起严重,且曲线极不光滑,相应的accy变化率绝对值较复杂风况导致的振动超限更大。
图4是另外一种偏航刹车系统磨损或污染导致的振动超限特征,可以看出accx或accy瞬时值会比较大,这也是一种诊断特征。
图5也是一种偏航刹车系统磨损或污染导致的振动超限特征,可以看出振动主导方向为左右方向,即accy。accy信号的正常周期为t1,t2相当于0.5个周期,由此可以看出加速度过零点的时间延长了,即相当于周期变长,使用这种方法也是判断偏航刹车系统磨损或污染导致的振动超限的一种方法。
基于此,处理设备可以通过如下多种方式进行条件判断。
在一种可能的实现方式中,该风况因素判定条件包括目标风力发电机在目标时刻前第一预设时段对应的加速度绝对值最大值大于加速度瞬时阈值,处理设备可以确定目标发电机目标时刻前第一预设时段对应的加速度绝对值最大值,目标时刻为加速度有效值超过振动超限阈值的时刻。其中,加速度绝对值最大值为左右或前后方向的加速度最大值,第一预设时段可以参考30s~90s范围,加速度瞬时阈值的取值应当大于振动超限阈值。即,若目标风力发电机在目标时刻前第一预设时段对应的加速度绝对值最大值大于加速度瞬时阈值,则可以确定因素为风况因素,若目标风力发电机在目标时刻前第一预设时段对应的加速度绝对值最大值不大于加速度瞬时阈值,则可以确定因素为偏航刹车盘系统因素。
在一种可能的实现方式中,风况因素判定条件包括目标风力发电机在目标时刻前第二预设时段对应的振动主导方向加速度变化率的绝对值最大值大于第一变化率阈值,或目标风力发电机在目标时刻前第三预设时段对应的振动主导方向加速度变化率的绝对值均值大于第二变化率阈值,第三预设时段小于第二预设时段。
处理设备可以确定目标发电机在目标时刻前第二预设时段对应的振动主导方向加速度变化率的绝对值,以及确定目标风力发电机在目标时刻前第三预设时段对应的振动主导方向加速度变化率的绝对值均值,目标时刻为加速度有效值超过振动超限阈值的时刻。其中,振动主导频率为对加速度信号进行快速傅里叶变换,得到频谱,频谱幅值最大点对应的频率值即为振动主导频率。
振动主导方向为特定时间段内,如前后方向加速度波峰或波谷值得绝对值最大值大于左右方向加速度波峰或波谷的绝对值最大值,则判断振动主导方向为前后方向,反之则判断振动主导方向为左右方向。
加速度变化率为(期检测的accx-上周期检测到的accx)/检测周期,检测周期的单位为时间单位(秒);accy变化率同理。
其中,第二预设时段可以设定为30s~90s,第一变化率阈值为常数,可以取值为4,第三预设时段可以参考10s~60s范围,第二变化率阈值为常数,取值需要大于0.3。
在一种可能的实现方式中,风况因素判定条件包括目标风力发电机在目标时刻前第四预设时段对应的加速度有效值均值小于有效值均值阈值,在判定之前,处理设备可以确定目标风力发电机在目标时刻前第四预设时段对应的加速度有效值均值,目标时刻为加速度有效值超过振动超限阈值的时刻。其中,第四预设时段可以设定为10s~60s范围,有效值均值阈值可以取值为0.02。
在一种可能的实现方式中,风况因素判定条件包括目标风力发电机对应的目标时长大于第一时长阈值,在判定之前,处理设备可以确定目标风力发电机对应的目标时长,目标时长为在目标时刻前振动主导方向加速度最后一次过零点时刻到目标时刻之间的时长,目标时刻为加速度有效值超过振动超限阈值的时刻,第一时长阈值是基于目标风力发电机对应的塔架一阶频率和转频确定的。其中,过零点时刻是指目标风力发电机的加速度方向发生反向变化的时刻。塔架一阶频率是指塔架一阶固有模态频率,范围在0.1Hz-0.3Hz之间。机组转频是指机组转速/60*n,当n=1时为1倍转频,机组转频振动主要是1倍转频,3倍转频,6倍转频,频率范围为0.08Hz-1.2Hz之间。
在一种可能的实现方式中,风况因素判定条件包括目标风力发电机对应的振动主导方向加速度主导频率小于频率阈值。在进行因素判定之前,处理设备可以先确定目标风力发电机对应的振动主导方向加速度主导频率。若目标风力发电机对应的振动主导方向加速度主导频率小于频率阈值,则可以判定因素为风况因素,否则为偏航刹车盘系统因素。其中,频率阈值为常数,取值范围需大于转频范围。
可以理解的是,基于不同的控制精确度需求,上述多个判定条件可以单独使用,也可以组合使用。例如,在一种实际应用场景中,参见图6,处理设备可以先判断风力发电机是否处于加速度有效值>振动超限阈值a,且机组处于偏航过程中,则处理设备可以风力发电机处于偏航振动超限状态,然后处理设备可以判断加速度超限前第一预设时段Ta时间统计的加速度x或y绝对值最大值是否>加速度瞬时阈值b,加速度超限前Ta时间统计的震动主导方向加速度变化率的绝对值是否>第一变化率阈值c或加速度超限前第三预设时段Tb时间统计的振动主导方向加速度变化率的绝对值均值是否>第二变化率阈值d,以及加速度超限前Tb时间内加速度有效值均值是否<有效值均值阈值e,振动超限前,振动主导方向加速度最后1次过零点时刻到振动超限时刻时间是否>第一时长阈值Tc,振动主导方向加速度主导频率是否<频率阈值g,若以上条件均满足,则确定因素为风况因素,处理设备可以进行一定频次内的故障穿越,限功率降载控制;若以上条件有任意一条未满足,则判定因素为偏航刹车盘系统磨损或污染,处理设备可以进行偏航过程中机舱加速度超限故障保护停机。
此外,在一种可能的实现方式中,处理设备还可以在未出现偏航超限前提前预警。处理设备可以以预设偏航时段为单位,获取目标风力发电机在N个预设偏航时段中分别对应的加速度参数,然后基于N个预设偏航时段分别对应的加速度参数,确定N个预设偏航时段中的异常偏航时段,异常偏航时段是指加速度参数较为异常的偏航时段。
响应于N个预设偏航时段中异常偏航时段的占比大于占比阈值,说明该目标风力发电机在较长时间中都处于加速度参数较为异常的状态。此时,虽然加速度参数并不满足超限故障阈值,处理设备仍然可以生成偏航告警信息,偏航告警信息用于标识目标风力发电机存在故障风险。
具体的,在一种可能的实现方式中,N个预设偏航时段中包括目标预设偏航时段,针对该目标预设偏航时段,在分析是否为异常偏航时段时,处理设备可以基于目标预设偏航时段对应的加速度参数,判断该目标预设偏航时段对应的加速度绝对值均值是否大于绝对值均值阈值,响应于目标预设偏航时段对应的加速度绝对值均值大于绝对值均值阈值,确定目标预设偏航时段为异常偏航时段;和/或,响应于目标预设偏航时段内前后方向或左右方向加速度两次相邻过零点间隔时长大于第二时长阈值,确定目标预设偏航时段为异常偏航时段;和/或,响应于目标预设时段内加速度过零点次数不超过1次,确定目标预设偏航时段为异常偏航时段。
参见图7,响应于机组处于偏航过程中且机组处于发电状态,处理设备可以判断预设偏航时段Td时间统计的x或y绝对值均值是否>绝对值均值阈值h,若大于则判定该预设偏航时段为异常偏航时段,若否,则判断Td时间统计到加速度x或y两次相邻过零点持续时长大于第二时长阈值Tc或仅检测到1次过零点或未检测到过零点或未检测到过零点,若是,则判断为异常偏航时段。每次判断出异常偏航时段,处理设备可以将偏航刹车系统磨损或污染风险频次+1,响应于累计偏航时长大于Te,且偏航刹车系统磨损或污染风险频次/(Te/Td)>i),说明在Te时段内的多个预设偏航时段中,有较多预设偏航时段都出现了异常,处理设备可以输出偏航刹车系统磨损或污染高风险预警,预警完毕后偏航刹车系统磨损或污染风险频次和累计偏航时长清零。
此时,维护人员可以待小风天气(不损失发电量)及时维护,避免严重磨损了直接停机,损失电量;如果磨损严重,则只能故障停机。
另外,本申实施例提供的风力发电机的控制方法,可以对偏航过程振动根因进行自行诊断,处理设备可以依据诊断结果提前预警,或者进行自适应控制,减少发电量损失,提高收益,提升运维效率。
基于上述实施例提供的一种风力发电机的控制方法,本申请实施例还提供了一种风力发电机的控制装置,参见图8,图8为本申请实施例提供的一种风力发电机的控制装置800的结构框图,所述装置800包括第一获取单元801、第一确定单元802、第二确定单元803、第三确定单元804和控制单元805:
所述第一获取单元801,用于实时获取目标风力发电机对应的加速度参数;
所述第一确定单元802,用于响应于所述目标风力发电机处于偏航状态,且所述加速度参数对应的加速度有效值超过振动超限阈值,确定所述目标风力发电机是否满足风况因素判定条件;
所述第二确定单元803,用于若所述目标风力发电机满足所述风况因素判定条件,确定所述目标风力发电机因风况因素导致所述加速度有效值超过所述振动超限阈值;
所述第三确定单元804,用于若所述目标风力发电机不满足所述风况因素判定条件,确定所述目标风力发电机因偏航刹车盘系统因素导致所述加速度有效值超过所述振动超限阈值;
所述控制单元805,用于响应于所述加速度有效值超过所述振动超限阈值的因素为风况因素或偏航刹车盘系统因素,控制所述目标风力发电机的运行状态。
在一种可能的实现方式中,所述风况因素判定条件包括所述目标风力发电机在目标时刻前第一预设时段对应的加速度绝对值最大值大于加速度瞬时阈值,所述装置还包括第四确定单元:
所述第四确定单元,用于确定所述目标发电机目标时刻前第一预设时段对应的加速度绝对值最大值,所述目标时刻为所述加速度有效值超过振动超限阈值的时刻。
在一种可能的实现方式中,所述风况因素判定条件包括所述目标风力发电机在目标时刻前第二预设时段对应的振动主导方向加速度变化率的绝对值最大值大于第一变化率阈值,或所述目标风力发电机在目标时刻前第三预设时段对应的振动主导方向加速度变化率的绝对值均值大于第二变化率阈值,所述第三预设时段小于所述第二预设时段,所述装置还包括第五确定单元:
所述第五确定单元,用于确定所述目标发电机在目标时刻前第二预设时段对应的振动主导方向加速度变化率的绝对值,以及确定所述目标风力发电机在目标时刻前第三预设时段对应的振动主导方向加速度变化率的绝对值均值,所述目标时刻为所述加速度有效值超过振动超限阈值的时刻。
在一种可能的实现方式中,所述风况因素判定条件包括所述目标风力发电机在目标时刻前第四预设时段对应的加速度有效值均值小于有效值均值阈值,所述装置还包括第六确定单元:
所述第六确定单元,用于确定所述目标风力发电机在目标时刻前第四预设时段对应的加速度有效值均值,所述目标时刻为所述加速度有效值超过振动超限阈值的时刻。
在一种可能的实现方式中,所述风况因素判定条件包括所述目标风力发电机对应的目标时长大于第一时长阈值,所述装置还包括第七确定单元:
所述第七确定单元,用于确定所述目标风力发电机对应的目标时长,所述目标时长为在目标时刻前振动主导方向加速度最后一次过零点时刻到所述目标时刻之间的时长,所述目标时刻为所述加速度有效值超过振动超限阈值的时刻,所述第一时长阈值是基于所述目标风力发电机对应的塔架一阶频率和转频确定的。
在一种可能的实现方式中,所述风况因素判定条件包括所述目标风力发电机对应的振动主导方向加速度主导频率小于频率阈值,所述装置还包括第八确定单元:
所述第八确定单元,用于确定所述目标风力发电机对应的振动主导方向加速度主导频率。
在一种可能的实现方式中,所述控制单元805具体用于:
响应于所述目标风力发电机因风况因素导致所述加速度有效值超过所述振动超限阈值,将所述目标风力发电机对应的风况异常次数加1;
响应于目标时段内所述目标风力发电机对应的风况异常次数达到预设阈值,对所述目标风力发电机进行降载控制;
响应于所述目标风力发电机因偏航刹车盘系统因素导致所述加速度有效值超过所述振动超限阈值,对所述目标风力发电机进行停机处理。
在一种可能的实现方式中,所述装置还包括第二获取单元、第八确定单元和生成单元:
所述第二获取单元,用于以预设偏航时段为单位,获取所述目标风力发电机在N个所述预设偏航时段中分别对应的加速度参数;
所述第八确定单元,用于基于所述N个预设偏航时段分别对应的加速度参数,确定所述N个预设偏航时段中的异常偏航时段;
所述生成单元,用于响应于所述N个预设偏航时段中异常偏航时段的占比大于占比阈值,生成偏航告警信息,所述偏航告警信息用于标识所述目标风力发电机存在故障风险。
在一种可能的实现方式中,所述N个预设偏航时段中包括目标预设偏航时段,所述第八确定单元具体用于:
响应于所述目标预设偏航时段对应的加速度绝对值均值大于绝对值均值阈值,确定所述目标预设偏航时段为异常偏航时段;
和/或,响应于所述目标预设偏航时段内前后方向或左右方向加速度两次相邻过零点间隔时长大于第二时长阈值,确定所述目标预设偏航时段为异常偏航时段;
和/或,响应于所述目标预设时段内加速度过零点次数不超过1次,确定所述目标预设偏航时段为异常偏航时段。
本申请实施例还提供了一种处理设备,该处理设备恩所包括的处理器还具有以下功能:
实时获取目标风力发电机对应的加速度参数;
响应于所述目标风力发电机处于偏航状态,且所述加速度参数对应的加速度有效值超过振动超限阈值,确定所述目标风力发电机是否满足风况因素判定条件;
若所述目标风力发电机满足所述风况因素判定条件,确定所述目标风力发电机因风况因素导致所述加速度有效值超过所述振动超限阈值;
若所述目标风力发电机不满足所述风况因素判定条件,确定所述目标风力发电机因偏航刹车盘系统因素导致所述加速度有效值超过所述振动超限阈值;
响应于所述加速度有效值超过所述振动超限阈值的因素为风况因素或偏航刹车盘系统因素,控制所述目标风力发电机的运行状态。
该处理设备还包括存储器,存储器用于存储程序代码,并将程序代码传输给处理器,该处理器用于根据程序代码中的指令执行上述实施例中任意一项所述的风力发电机的控制方法。
描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定。
另外,本申请实施例还提供了一种存储介质,所述存储介质用于存储计算机程序,所述计算机程序用于执行上述实施例提供的风力发电机的控制方法。
本申请实施例还提供了一种包括指令的计算机程序产品,当其在处理设备上运行时,使得处理设备执行上述实施例提供的风力发电机的控制方法。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质可以是下述介质中的至少一种:只读存储器(英文:read-only memory,缩写:ROM)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于设备及系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的设备及系统实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述,仅为本申请的一种具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (13)

1.一种风力发电机的控制方法,其特征在于,所述方法包括:
实时获取目标风力发电机对应的加速度参数;
响应于所述目标风力发电机处于偏航状态,且所述加速度参数对应的加速度有效值超过振动超限阈值,确定所述目标风力发电机是否满足风况因素判定条件;
若所述目标风力发电机满足所述风况因素判定条件,确定所述目标风力发电机因风况因素导致所述加速度有效值超过所述振动超限阈值;
若所述目标风力发电机不满足所述风况因素判定条件,确定所述目标风力发电机因偏航刹车盘系统因素导致所述加速度有效值超过所述振动超限阈值;
响应于所述加速度有效值超过所述振动超限阈值的因素为风况因素或偏航刹车盘系统因素,控制所述目标风力发电机的运行状态。
2.根据权利要求1所述的方法,其特征在于,所述风况因素判定条件包括所述目标风力发电机在目标时刻前第一预设时段对应的加速度绝对值最大值大于加速度瞬时阈值,所述方法还包括:
确定所述目标发电机目标时刻前第一预设时段对应的加速度绝对值最大值,所述目标时刻为所述加速度有效值超过振动超限阈值的时刻。
3.根据权利要求1所述的方法,其特征在于,所述风况因素判定条件包括所述目标风力发电机在目标时刻前第二预设时段对应的振动主导方向加速度变化率的绝对值最大值大于第一变化率阈值,或所述目标风力发电机在目标时刻前第三预设时段对应的振动主导方向加速度变化率的绝对值均值大于第二变化率阈值,所述第三预设时段小于所述第二预设时段,所述方法还包括:
确定所述目标发电机在目标时刻前第二预设时段对应的振动主导方向加速度变化率的绝对值,以及确定所述目标风力发电机在目标时刻前第三预设时段对应的振动主导方向加速度变化率的绝对值均值,所述目标时刻为所述加速度有效值超过振动超限阈值的时刻。
4.根据权利要求1所述的方法,其特征在于,所述风况因素判定条件包括所述目标风力发电机在目标时刻前第四预设时段对应的加速度有效值均值小于有效值均值阈值,所述方法还包括:
确定所述目标风力发电机在目标时刻前第四预设时段对应的加速度有效值均值,所述目标时刻为所述加速度有效值超过振动超限阈值的时刻。
5.根据权利要求1所述的方法,其特征在于,所述风况因素判定条件包括所述目标风力发电机对应的目标时长大于第一时长阈值,所述方法还包括:
确定所述目标风力发电机对应的目标时长,所述目标时长为在目标时刻前振动主导方向加速度最后一次过零点时刻到所述目标时刻之间的时长,所述目标时刻为所述加速度有效值超过振动超限阈值的时刻,所述第一时长阈值是基于所述目标风力发电机对应的塔架一阶频率和转频确定的。
6.根据权利要求1所述的方法,其特征在于,所述风况因素判定条件包括所述目标风力发电机对应的振动主导方向加速度主导频率小于频率阈值,所述方法还包括:
确定所述目标风力发电机对应的振动主导方向加速度主导频率。
7.根据权利要求1所述的方法,其特征在于,所述响应于所述加速度有效值超过所述振动超限阈值的因素为风况因素或偏航刹车盘系统因素,控制所述目标风力发电机的运行状态包括:
响应于所述目标风力发电机因风况因素导致所述加速度有效值超过所述振动超限阈值,将所述目标风力发电机对应的风况异常次数加1;
响应于目标时段内所述目标风力发电机对应的风况异常次数达到预设阈值,对所述目标风力发电机进行降载控制;
响应于所述目标风力发电机因偏航刹车盘系统因素导致所述加速度有效值超过所述振动超限阈值,对所述目标风力发电机进行停机处理。
8.根据权利要求1所述的方法,其特征在于,所述方法还包括:
以预设偏航时段为单位,获取所述目标风力发电机在N个所述预设偏航时段中分别对应的加速度参数,所述N为正整数;
基于所述N个预设偏航时段分别对应的加速度参数,确定所述N个预设偏航时段中的异常偏航时段;
响应于所述N个预设偏航时段中异常偏航时段的占比大于占比阈值,生成偏航告警信息,所述偏航告警信息用于标识所述目标风力发电机存在故障风险。
9.根据权利要求8所述的方法,其特征在于,所述N个预设偏航时段中包括目标预设偏航时段,所述基于所述N个预设偏航时段分别对应的加速度参数,确定所述N个预设偏航时段中的异常偏航时段,包括:
响应于所述目标预设偏航时段对应的加速度绝对值均值大于绝对值均值阈值,确定所述目标预设偏航时段为异常偏航时段;
和/或,响应于所述目标预设偏航时段内前后方向或左右方向加速度两次相邻过零点间隔时长大于第二时长阈值,确定所述目标预设偏航时段为异常偏航时段;
和/或,响应于所述目标预设时段内加速度过零点次数不超过1次,确定所述目标预设偏航时段为异常偏航时段。
10.一种风力发电机的控制装置,其特征在于,所述装置包括第一获取单元、第一确定单元、第二确定单元、第三确定单元和控制单元:
所述第一获取单元,用于实时获取目标风力发电机对应的加速度参数;
所述第一确定单元,用于响应于所述目标风力发电机处于偏航状态,且所述加速度参数对应的加速度有效值超过振动超限阈值,确定所述目标风力发电机是否满足风况因素判定条件;
所述第二确定单元,用于若所述目标风力发电机满足所述风况因素判定条件,确定所述目标风力发电机因风况因素导致所述加速度有效值超过所述振动超限阈值;
所述第三确定单元,用于若所述目标风力发电机不满足所述风况因素判定条件,确定所述目标风力发电机因偏航刹车盘系统因素导致所述加速度有效值超过所述振动超限阈值;
所述控制单元,用于响应于所述加速度有效值超过所述振动超限阈值的因素为风况因素或偏航刹车盘系统因素,控制所述目标风力发电机的运行状态。
11.一种处理设备,其特征在于,所述处理设备包括处理器以及存储器:
所述存储器用于存储程序代码,并将所述程序代码传输给所述处理器;
所述处理器用于根据所述程序代码中的指令执行权利要求1-9中任意一项所述的风力发电机的控制方法。
12.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,所述计算机程序用于执行权利要求1-9中任意一项所述的风力发电机的控制方法。
13.一种包括指令的计算机程序产品,当其在处理设备上运行时,使得所述处理设备执行权利要求1-9任意一项所述的风力发电机的控制方法。
CN202210909604.2A 2022-07-29 2022-07-29 一种风力发电机的控制方法和相关装置 Pending CN117514605A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210909604.2A CN117514605A (zh) 2022-07-29 2022-07-29 一种风力发电机的控制方法和相关装置
PCT/CN2023/072756 WO2024021545A1 (zh) 2022-07-29 2023-01-18 一种风力发电机的控制方法和相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210909604.2A CN117514605A (zh) 2022-07-29 2022-07-29 一种风力发电机的控制方法和相关装置

Publications (1)

Publication Number Publication Date
CN117514605A true CN117514605A (zh) 2024-02-06

Family

ID=89705185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210909604.2A Pending CN117514605A (zh) 2022-07-29 2022-07-29 一种风力发电机的控制方法和相关装置

Country Status (2)

Country Link
CN (1) CN117514605A (zh)
WO (1) WO2024021545A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4939286B2 (ja) * 2007-04-10 2012-05-23 三菱重工業株式会社 風力発電装置及びその制御方法
CN201747522U (zh) * 2010-08-09 2011-02-16 重庆科凯前卫风电设备有限责任公司 风电机组安全控制装置
CN110685869B (zh) * 2019-11-19 2021-03-23 中国船舶重工集团海装风电股份有限公司 一种风电机组的故障诊断方法、装置及设备
CN111706464B (zh) * 2020-06-30 2022-07-05 新疆金风科技股份有限公司 风力发电机组的控制方法、装置及介质
CN114061743A (zh) * 2020-08-03 2022-02-18 新疆金风科技股份有限公司 风力发电机组的振动监测方法、装置、设备及介质

Also Published As

Publication number Publication date
WO2024021545A1 (zh) 2024-02-01

Similar Documents

Publication Publication Date Title
EP2665925B1 (en) A method for diagnostic monitoring of a wind turbine generator system
EP2609326B1 (en) Method of operating a wind turbine and wind turbine
CN109642542B (zh) 用于风力涡轮机的诊断系统和方法
CN109312716A (zh) 用于控制风力涡轮机以管理缘向叶片振动的方法和系统
CN104019000A (zh) 风力发电机组的载荷谱测定与前瞻性维护系统
CN107514337A (zh) 风力发电机组的控制方法、装置及风电场群控系统
US20170153286A1 (en) Methods and systems for real-time monitoring of the insulation state of wind-powered generator windings
CN110492497B (zh) 一种发电机组功率振荡综合诊断方法及系统
CN110987166A (zh) 旋转机械健康状态的预测方法、装置、设备及存储介质
CN105043770A (zh) 一种风电机组振动异常的判断方法及其装置
CN109840666A (zh) 一种预测未来风电机组发生故障的模型构建方法及系统
CN107633661A (zh) 抽水蓄能机组振摆报警方法及装置
CN114061743A (zh) 风力发电机组的振动监测方法、装置、设备及介质
CN107630785B (zh) 一种多种工况下的风电机组保护控制系统
CN112483334B (zh) 基于边缘计算的风电机组智能控制方法
CN117514605A (zh) 一种风力发电机的控制方法和相关装置
CN109209781B (zh) 风力发电机组的故障定位方法及装置
EP4345298A1 (en) Detection method for wind driven generator, and related apparatus
CN115929569A (zh) 一种风电机组变桨系统故障诊断方法
KR101468627B1 (ko) 풍력발전기 데이터 분류 시스템
CN114778116A (zh) 一种风力发电机组变桨轴承故障预警方法及系统
CN108825449A (zh) 风力发电机组飞车预警方法和装置
WO2016157503A1 (ja) 風車および風車の疲労劣化診断方法、風車の運転制御方法
CN115698503A (zh) 用于风能设备的动力总成或塔的状态监控的方法和风能设备
CN105424259B (zh) 风力发电机组主轴制动器的制动力矩的测量装置和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination