CN117512595A - 一种制备大长径比和小尺寸椭圆形磁性纳米线的方法 - Google Patents

一种制备大长径比和小尺寸椭圆形磁性纳米线的方法 Download PDF

Info

Publication number
CN117512595A
CN117512595A CN202410022468.4A CN202410022468A CN117512595A CN 117512595 A CN117512595 A CN 117512595A CN 202410022468 A CN202410022468 A CN 202410022468A CN 117512595 A CN117512595 A CN 117512595A
Authority
CN
China
Prior art keywords
template
small size
magnetic
nanowire
aspect ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410022468.4A
Other languages
English (en)
Other versions
CN117512595B (zh
Inventor
倪侠
王新艳
王文涛
付笑婵
李佳佳
王翰彬
俞文博
马晓文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN202410022468.4A priority Critical patent/CN117512595B/zh
Priority claimed from CN202410022468.4A external-priority patent/CN117512595B/zh
Publication of CN117512595A publication Critical patent/CN117512595A/zh
Application granted granted Critical
Publication of CN117512595B publication Critical patent/CN117512595B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

本发明涉及一种制备大长径比和小尺寸椭圆形磁性纳米线的方法,该方法包括以下步骤:⑴将模板经重离子束辐照、敏化后,得到具有潜径迹模板;⑵采用5M NaOH溶液对所述具有潜径迹模板进行蚀刻,得到重离子径迹模板;⑶所述重离子径迹模板裁剪后使用拉伸仪进行拉伸,通过控制拉伸率获得具有不同椭偏率的模板;⑷在具有不同椭偏率的模板的一侧先溅射金导电层,再以铜为电极,在喷金一侧再沉积一层铜,然后在另一侧电化学沉积椭圆形镍纳米线,最后对金层和铜层进行剥离,即得大长径比和小尺寸椭圆形磁性纳米线。本发明简便易行,首次实现了大长径比椭圆形磁性纳米线阵列的可控制备,成功制备出小尺寸椭圆形磁性纳米线阵列。

Description

一种制备大长径比和小尺寸椭圆形磁性纳米线的方法
技术领域
本发明涉及磁性纳米材料技术领域,尤其涉及一种制备大长径比和小尺寸椭圆形磁性纳米线的方法。
背景技术
近年来,由于磁性纳米材料在高密度存储、微波吸收等方面具有优异的性能,受到了国内外研究人员的广泛关注。椭圆形磁性纳米线作为一维纳米材料,除了具有大的长径比外,在降低对称性的同时带来了新的调节参数——椭偏率。这无疑将带来新的磁结构与性能。
众所周知,当磁性材料尺寸小于或接近于交换长度时,磁性质受到量子效应的影响,将会导致磁效应的量子化现象;磁性材料尺寸越小,越有利于形成单畴结构,这些伴随着尺寸减小而出现的独特性质对于实现高密度磁存储器件具有重大意义。截止目前,仍然缺乏一种简单高效的手段制备椭圆形金属磁性纳米线,尤其是对小尺寸椭圆形金属磁性纳米线的制备。
化学气相沉积法是在某个晶体衬底上生成新的外延单晶层,一般用来制备硅和外延化合物半导体层。它在金属单晶薄膜(如W、Mo、Pt、Ir 等)以及个别化合物单晶薄膜(如铁酸镍薄膜、钇铁石榴石薄膜、钴铁氧体薄膜等)的制备上比较常见。这类方法由于晶体动力学生长机制,在制备纳米线过程中晶粒会沿着晶面生长,得到的磁性纳米线是多边形截面的,而非椭圆形。
模板法是制备一维纳米材料最广泛、最有效的方法之一。其主要特点是不管是液相还是气态反应都会被局域在特定空腔中,因此相比于其他方法更具有可控性。然而,模板法多用于圆形截面纳米线的制备。比如AAO(阳极氧化铝)模板法是一种常见的硬模板法,用于制备高度有序结构的圆形截面纳米材料。由于AAO模板对于椭圆形截面曲率的控制非常难,因此无法用来制备椭圆形纳米线。
目前用于制备椭圆形纳米线的方法主要以光刻法为主。然而光刻法流程繁琐,费时长,成本高,且材料受限,一般仅用于制备硅纳米线。综上所述,目前尚缺乏一种有效制备椭圆形磁性纳米线的方法,相关的研究和应用也因此受到极大的局限,其磁学性能未知。因此,亟需开发一种相对简便并且可控的方法用于椭圆形磁性纳米线的制备。
发明内容
本发明所要解决的技术问题是提供一种简便、可控的制备大长径比和小尺寸椭圆形磁性纳米线的方法。
为解决上述问题,本发明所述的一种制备大长径比和小尺寸椭圆形磁性纳米线的方法,包括以下步骤:
⑴将模板经重离子束辐照、敏化后,得到具有潜径迹模板;
⑵采用5M NaOH溶液对所述具有潜径迹模板进行蚀刻,得到重离子径迹模板;
⑶所述重离子径迹模板裁剪后使用拉伸仪进行拉伸,通过控制拉伸率获得具有不同椭偏率的椭圆形纳米孔道模板;
⑷在椭圆形纳米孔道模板的一侧先溅射金导电层,再以铜为电极,在金层一侧沉积一层铜,然后在椭圆形纳米孔道模板的另一侧电化学沉积椭圆形镍纳米线,最后对金层和铜层进行剥离,即得大长径比和小尺寸椭圆形磁性纳米线。
所述步骤⑴中模板的材质是指聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)、聚酰亚胺中的一种,其厚度为6~20 μm。
所述步骤⑴中重离子束辐照的条件是指重离子为氙离子,86Kr,铋离子或钽离子,注量为1×106~1×1010 ions/cm2
所述步骤⑴中敏化的条件是指在紫外敏化灯下正反面各敏化两个小时,敏化功率为50 mW/cm2
所述步骤⑵中蚀刻的条件是指超声功率为100~200 W,温度为50 ℃,蚀刻速率为20 nm/min ~30 nm/min。
所述步骤⑷中铜的沉积液浓度为75 g/L CuSO4·5H2O、30 g/L H2SO4,沉积电压为0.7 V。
所述步骤⑷中电化学沉积椭圆形镍纳米线的条件是指采用浓度为250 g/LNiSO4·6H2O、50 g/L NiCl2·6H2O、15 g/L明胶和30 g/L H3BO3的混合沉积液,以镍电极为阳极,室温下施加1.35 V恒定电压。
采用如上方法制备的一种大长径比和小尺寸椭圆形磁性纳米线。
该磁性纳米线的长径比为150~750,短轴最小为25nm,长轴最小为50 nm。
本发明与现有技术相比具有以下优点:
1、本发明中重离子束注量可调控,注量可直接影响模板孔道密度,从而对于电化学沉积后纳米材料的生长密度起到了决定性作用。椭圆形磁性纳米线阵列的生长密度直接影响磁偶极相互作用,从而影响材料的磁学性能,因此可以通过改变注量大小直接调控磁性。
2、本发明中电化学沉积过程中可以实时监控电流-时间曲线,在防止过度沉积的同时,实现对Ni纳米线长度的控制。
3、本发明中所用模板具有良好的塑性,可进行不同程度的拉伸,具有可控的拉伸率,从而确保了椭圆形纳米线椭偏率的可调。
4、本发明首次实现了大长径比椭圆形磁性纳米线阵列的可控制备,成功制备出小尺寸椭圆形磁性纳米线阵列。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1为本发明的制备流程图。
图2为本发明的模板拉伸过程示意图。
图3为本发明不同椭偏率镍纳米线阵列的扫描电镜图。其中:(a)为低倍率下椭圆形镍纳米线阵列扫描电镜图;(b)为较高倍率下椭圆形镍纳米线阵列扫描电镜图;(c)为椭偏率E=3,长度12 μm,短轴60 nm的椭圆形镍纳米线阵列SEM图;(d) 椭偏率E=2,长度12 μm,短轴100 nm的椭圆形镍纳米线阵列SEM图。
图4为本发明PC模板表面接触角随沉积液中明胶浓度变化曲线图。
图5为本发明为长轴55 nm,短轴25 nm的椭圆形镍纳米线的TEM图(a)和SEM图(b)。
图6为本发明不同椭偏率镍纳米线阵列的磁滞回线。其中:(a)、(b)、(c)分别为椭偏率E=1、E=2和E=3椭圆形镍纳米线阵列的磁滞回线;(d)为面内测试位形图。
具体实施方式
如图1所示,一种制备大长径比和小尺寸椭圆形磁性纳米线的方法,包括以下步骤:
⑴将模板经重离子束辐照、敏化后,得到具有潜径迹模板。
其中:模板的材质是指聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)、聚酰亚胺中的一种,其厚度为6~20 μm。优选聚碳酸酯膜,厚度为12 μm。
重离子束辐照的条件是指重离子为氙离子,86Kr,铋离子或钽离子,注量为1×106~1×1010 ions/cm2
敏化的条件是指在紫外敏化灯下正反面各敏化两个小时,敏化功率为50 mW/cm2
⑵采用5M NaOH溶液对具有潜径迹模板进行蚀刻,超声功率为100~200 W,温度为50 ℃,蚀刻速率为20 nm/min ~30 nm/min,得到重离子径迹模板。
⑶重离子径迹模板裁剪后使用拉伸仪进行拉伸,通过控制拉伸率获得具有不同椭偏率的椭圆形纳米孔道模板。
⑷在椭圆形纳米孔道模板的一侧先溅射金导电层,再以铜为电极,在金层一侧沉积一层铜,铜的沉积液浓度为75 g/L CuSO4·5H2O、30 g/L H2SO4,沉积电压为0.7 V。然后在椭圆形纳米孔道模板的另一侧电化学沉积椭圆形镍纳米线,采用浓度为250 g/LNiSO4·6H2O、50 g/L NiCl2·6H2O、15g/L明胶和30 g/L H3BO3的混合沉积液,以镍电极为阳极,室温下施加1.35 V恒定电压。最后对金层和铜层进行剥离,即得大长径比和小尺寸椭圆形磁性纳米线。
该磁性纳米线的长径比为150~750,短轴最小为25nm,长轴最小为50 nm。
本发明中紫外敏化灯是指MUA-165 紫外线照射装置;重离子加速器采用中国科学院近代物理研究所的重离子加速器装置(HIRFL)。
本发明中重离子径迹模板是指在重离子辐照后经过特定化学试剂蚀刻得到的具有不同纳米孔道的聚合物膜。
下面以PC膜为例进行说明。
实施例
一种制备大长径比和小尺寸椭圆形磁性纳米线的方法,包括以下步骤:
⑴重离子束经过加速器加速后,会表现出高能量、窄脉冲等特点。当它穿过物体时,会造成大量能量损失,并且会改变物质结构。因此,PC膜使用重离子为86Kr束进行辐照,注量为1×108ions/cm2,辐照后会将PC膜内部结构破坏,此区域内的破坏称为潜径迹。
经重离子辐照后的高分子聚合膜,其内部出现高分子键的断裂,为了保证分子键彻底断裂以提高后期蚀刻速率,需要对膜进行敏化,将PC膜放在紫外敏化灯下正反面各敏化两个小时,敏化功率为50 mW/cm2,得到敏化后的具有潜径迹的PC膜。
⑵经敏化后,PC膜在NaOH溶液中会被选择蚀刻成圆柱形孔道。采用5M NaOH溶液对其进行蚀刻,超声功率为100~200 W,温度为50 ℃,蚀刻速率为20 nm/min ~30 nm/min,得到重离子径迹模板。孔道直径的大小与蚀刻时间成正相关。
⑶为了得到具有椭圆形截面的柱形孔道模板,利用聚合物的塑性变形特性,使用拉伸仪对模板进行拉伸,通过控制拉伸率获得具有不同椭偏率的模板,如图2所示。具体操作如下:
将蚀刻好的膜裁成21 mm*14 mm大小的矩形,保证PC膜平整地夹在拉伸仪夹具上,并且尽量使PC膜的拉伸方向与其长度方向一致,以便于得到椭圆纳米孔的长轴方向与PC膜的长度方向一致。为了增加拉伸过程的可控性,在膜表面靠近夹具内侧标记两点记为x1x2,测量其距离记为d1,设定预拉伸率δ1,并将预拉伸距离d1×δ1输入拉伸仪中。待拉伸结束后,测量两标记点距离,记为d2。为了让膜的塑性变形得到稳定,在不松动夹具情况下让膜静置20 min。取下膜以后,再次测量x1x2,记为d3。实际拉伸率便等于δ3=(d3-d1)*100%/d1。将拉伸后的膜在电镜下观察可得椭圆纳米孔的椭偏率(E=a/b,a为椭圆形纳米线的长轴尺寸,b为短轴尺寸)。经过多次实验可得到椭偏率为3时,预拉伸率为130%~150%;椭偏率为2时,预拉伸率为90%~110%。
由图3可以发现,由于溶解模板的过程中纳米线受到表面张力影响,形成了“团簇”现象,制备的椭圆形镍纳米线具有完美的曲率变化以及光滑的表面,良好的形貌对于后续磁学研究十分重要。
⑷金/铜电极:为了增加后期电化学沉积镍椭圆纳米线的阳极作用,需要使用磁控溅射仪在椭圆柱形孔道模板一侧溅射金导电层,由于拉伸之后的PC膜表面变得不平整,因此喷金过程中必须注意膜的平整性。之后以铜为电极,在喷金一侧再沉积一层厚度为10~12μm的铜,铜的沉积液浓度为75 g/L CuSO4·5H2O、30 g/L H2SO4,沉积电压为0.7 V。沉积铜首先是为了增强电极作用,其次是为了后期溶解PC膜后铜能够很好地作为椭圆纳米线的衬底。在后期的测试中如果不需要溶膜但需要去除衬底时,铜的存在还能够确保金层和铜层同时剥离。
电化学沉积椭圆形镍纳米线:在PC膜的另一侧沉积椭圆形镍纳米线,在沉积槽中注入浓度为250 g/L NiSO4·6H2O、50 g/L NiCl2·6H2O、15g/L明胶和30 g/L H3BO3的混合沉积液,以镍电极为阳极,使用美国吉时利公司的6482型皮安表在室温下施加1.35 V恒定电压进行镍椭圆纳米线阵列的电化学沉积。
最后对金层和铜层进行剥离,即得长轴为55 nm、短轴为25 nm的小尺寸椭圆形磁性纳米线,如图5所示。
小尺寸椭圆形镍纳米线阵列的制备,难点在于PC模板孔道极小,镍的沉积液很难完全进入孔道内。因此,需要提高溶液在PC膜表面的浸润性。因此,蚀刻前将膜表面进行等离子体处理,增加膜表面粗糙度,提高活性,以便于溶液更易进入孔道(如图4所示);在沉积液中加入浓度为15 g/L的明胶,明胶是一种表面活性剂,它的加入可大大增强溶液在PC膜表面的浸润性(如图4所示)。
为了研究椭圆形镍纳米线的磁学性能,使用振动样品磁强计(VSM)对相同短轴下不同椭偏率(E=1、E=2和E=3)的样品每隔15°进行了测量,如图6所示。结果表明,椭圆形结构的引入,带来了大的面内各向异性(图6(a)、(c));随着椭偏率的增大,面内各向异性逐渐增强;E=3时表现出了最显著的面内形状各向异性(图6 (c))。这是因为在短轴不变的情况下,随着椭偏率的增大,面内磁矩更易沿着长轴方向排列。当外磁场垂直于纳米线长度方向转动过程中,椭偏率越大,磁矩越难翻转,这无疑需要更大的能量去克服,因此在各类能量的竞争过程中形状各向异性能将占主导地位,本发明椭圆形磁性纳米线具有大的形状各向异性,这对于提高磁传感器敏感度和稳定性具有决定性作用,小尺寸椭圆形磁性纳米线独特的磁学性能优势对实现高密度磁存储器具有重大意义。

Claims (9)

1.一种制备大长径比和小尺寸椭圆形磁性纳米线的方法,包括以下步骤:
⑴将模板经重离子束辐照、敏化后,得到具有潜径迹模板;
⑵采用5M NaOH溶液对所述具有潜径迹模板进行蚀刻,得到重离子径迹模板;
⑶所述重离子径迹模板裁剪后使用拉伸仪进行拉伸,通过控制拉伸率获得具有不同椭偏率的椭圆形纳米孔道模板;
⑷在椭圆形纳米孔道模板的一侧先溅射金导电层,再以铜为电极,在金层一侧沉积一层铜,然后在椭圆形纳米孔道模板的另一侧电化学沉积椭圆形镍纳米线,最后对金层和铜层进行剥离,即得大长径比和小尺寸椭圆形磁性纳米线。
2.如权利要求1所述的一种制备大长径比和小尺寸椭圆形磁性纳米线的方法,其特征在于:所述步骤⑴中模板的材质是指聚碳酸酯、聚对苯二甲酸乙二醇酯、聚酰亚胺中的一种,其厚度为6~20 μm。
3.如权利要求1所述的一种制备大长径比和小尺寸椭圆形磁性纳米线的方法,其特征在于:所述步骤⑴中重离子束辐照的条件是指重离子为氙离子,86Kr,铋离子或钽离子,注量为1×106~1×1010 ions/cm2
4.如权利要求1所述的一种制备大长径比和小尺寸椭圆形磁性纳米线的方法,其特征在于:所述步骤⑴中敏化的条件是指在紫外敏化灯下正反面各敏化两个小时,敏化功率为50 mW/cm2
5.如权利要求1所述的一种制备大长径比和小尺寸椭圆形磁性纳米线的方法,其特征在于:所述步骤⑵中蚀刻的条件是指超声功率为100~200 W,温度为50 ℃,蚀刻速率为20nm/min ~30 nm/min。
6.如权利要求1所述的一种制备大长径比和小尺寸椭圆形磁性纳米线的方法,其特征在于:所述步骤⑷中铜的沉积液浓度为75 g/L CuSO4·5H2O、30 g/L H2SO4,沉积电压为0.7V。
7.如权利要求1所述的一种制备大长径比和小尺寸椭圆形磁性纳米线的方法,其特征在于:所述步骤⑷中电化学沉积椭圆形镍纳米线的条件是指采用浓度为250 g/L NiSO4·6H2O、50 g/L NiCl2·6H2O、15 g/L明胶和30 g/L H3BO3的混合沉积液,以镍电极为阳极,室温下施加1.35 V恒定电压。
8.采用如权利要求1~7之一方法制备的一种大长径比和小尺寸椭圆形磁性纳米线。
9.如权利要求8所述的大长径比和小尺寸椭圆形磁性纳米线,其特征在于:该磁性纳米线的长径比为150~750,短轴最小为25nm,长轴最小为50 nm。
CN202410022468.4A 2024-01-08 一种制备大长径比和小尺寸椭圆形磁性纳米线的方法 Active CN117512595B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410022468.4A CN117512595B (zh) 2024-01-08 一种制备大长径比和小尺寸椭圆形磁性纳米线的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410022468.4A CN117512595B (zh) 2024-01-08 一种制备大长径比和小尺寸椭圆形磁性纳米线的方法

Publications (2)

Publication Number Publication Date
CN117512595A true CN117512595A (zh) 2024-02-06
CN117512595B CN117512595B (zh) 2024-06-07

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110007724A (ko) * 2009-07-17 2011-01-25 한국전자통신연구원 반사방지 나노구조물 및 그의 제조 방법
CN103031583A (zh) * 2012-05-31 2013-04-10 上海理工大学 一维密排六方晶体结构镍纳米线的制备方法
CN104942281A (zh) * 2015-07-01 2015-09-30 清华大学 一种多孔金纳米线及其制备方法和应用
CN107099822A (zh) * 2017-05-12 2017-08-29 信阳师范学院 双极金属纳米线及其制备方法
CN111229049A (zh) * 2020-01-14 2020-06-05 西北工业大学 一种尺寸可控的微纳米孔道隔膜及其制备方法和应用
CN114005912A (zh) * 2021-10-29 2022-02-01 嘉兴学院 一种椭圆纳米棒、发光二极管的制备方法及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110007724A (ko) * 2009-07-17 2011-01-25 한국전자통신연구원 반사방지 나노구조물 및 그의 제조 방법
CN103031583A (zh) * 2012-05-31 2013-04-10 上海理工大学 一维密排六方晶体结构镍纳米线的制备方法
CN104942281A (zh) * 2015-07-01 2015-09-30 清华大学 一种多孔金纳米线及其制备方法和应用
CN107099822A (zh) * 2017-05-12 2017-08-29 信阳师范学院 双极金属纳米线及其制备方法
CN111229049A (zh) * 2020-01-14 2020-06-05 西北工业大学 一种尺寸可控的微纳米孔道隔膜及其制备方法和应用
CN114005912A (zh) * 2021-10-29 2022-02-01 嘉兴学院 一种椭圆纳米棒、发光二极管的制备方法及显示装置

Similar Documents

Publication Publication Date Title
Han et al. Structural and magnetic properties of various ferromagnetic nanotubes
Molares et al. Etched heavy ion tracks in polycarbonate as template for copper nanowires
Thongmee et al. Fabrication and magnetic properties of metal nanowires via AAO templates
Qin et al. The effects of annealing on the structure and magnetic properties of CoNi patterned nanowire arrays
Zdorovets et al. Investigation of phase transformations and corrosion resistance in Co/CoCo2O4 nanowires and their potential use as a basis for lithium-ion batteries
Su et al. Microstructure and magnetic properties of bamboo-like CoPt/Pt multilayered nanowire arrays
Kaniukov et al. Electrochemically deposited copper nanotubes
Kozlovskiy et al. Study of Ni/Fe nanotube properties
Shumskaya et al. Template synthesis and magnetic characterization of FeNi nanotubes
KR20190107476A (ko) 나노스케일 금속 나노선 및 제조방법
Proenca et al. Cylindrical magnetic nanotubes: Synthesis, magnetism and applications
Huang et al. Initial growth of single-crystalline nanowires: from 3D nucleation to 2D growth
Neetzel et al. Uniaxial magnetization reversal process in electrodeposited high-density iron nanowire arrays with ultra-large aspect ratio
Song et al. Growth of single-crystalline Co7Fe3 nanowires via electrochemical deposition and their magnetic properties
CN117512595B (zh) 一种制备大长径比和小尺寸椭圆形磁性纳米线的方法
Proenca et al. Electrochemical synthesis and magnetism of magnetic nanotubes
Duan et al. Magnetic and optical properties of cobalt nanowires fabricated in polycarbonate ion-track templates
CN117512595A (zh) 一种制备大长径比和小尺寸椭圆形磁性纳米线的方法
Nielsch et al. Magnetic properties of 100 nm-period Nickel nanowire arrays obtained from ordered porous-alumina templates
Daub et al. Ni nanowires electrodeposited in single ion track templates
Wodarz et al. Structural control of ultra-fine CoPt nanodot arrays via electrodeposition process
Sharma et al. Synthesis, characterization, and magnetic properties of FeCoNi ternary alloy nanowire arrays
Kozlovskiy et al. Controlled template synthesis and properties of cobalt nanotubes
Chtanko et al. Ion-track based single-channel templates for single-nanowire contacting
Shamaila et al. Fabrication and magnetic characterization of Co x Pt 1− x nanowire arrays

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant