CN117488295A - 一种高硼系耐磨熔覆粉末 - Google Patents

一种高硼系耐磨熔覆粉末 Download PDF

Info

Publication number
CN117488295A
CN117488295A CN202210884083.XA CN202210884083A CN117488295A CN 117488295 A CN117488295 A CN 117488295A CN 202210884083 A CN202210884083 A CN 202210884083A CN 117488295 A CN117488295 A CN 117488295A
Authority
CN
China
Prior art keywords
percent
cladding
wear
powder
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210884083.XA
Other languages
English (en)
Inventor
任重阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luoyang Jiuqi New Materials Technology Co ltd
Original Assignee
Luoyang Jiuqi New Materials Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luoyang Jiuqi New Materials Technology Co ltd filed Critical Luoyang Jiuqi New Materials Technology Co ltd
Priority to CN202210884083.XA priority Critical patent/CN117488295A/zh
Publication of CN117488295A publication Critical patent/CN117488295A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于材料科学技术领域,涉及一种适用于等离子或激光熔覆工艺的合金粉末材料—高硼系耐磨熔覆粉末,为以Fe、B二元素为基础的合金体系,包括以下质量百分比含量的元素:3.0~5.8%B,0.2~1.0%C,0.4~1.8%Si,0.9~3.5%Mn,1.0~6.0%Cr,0~3.0%Mo,0~3.0%Ni,0~5.0%Ti,0~3.0%V,0~0.8%Ce,0~0.8%La,余量为Fe。本发明通过添加少量其他合金元素进行辅助强化,实现在较低成本下,获得55‑66HRC的高硬度耐磨层,耐磨粒磨损性能优良,且成形平整美观,熔覆工艺性良好。

Description

一种高硼系耐磨熔覆粉末
技术领域
本发明属于材料科学技术领域,涉及一种适用于等离子或激光熔覆工艺的合金粉末材料—高硼系耐磨熔覆粉末。
背景技术
对于农机行业犁尖配件、矿山机械行业煤截齿、砖机螺旋铰刀等强磨损工况下的工件,往往采用合金粉末或耐磨焊丝在工件特定部位进行表面堆焊,形成高硬度耐磨层,从而提高工件使用寿命。在这些应用领域中,市场上常用的耐磨熔覆材料体系有三大类,一是Fe、C、Cr基础合金体系下,W、V、Mo、Nb等合金元素辅助强化;二是镍基合金添加不同比例碳化钨;三是金属基陶瓷复合材料。以上三种合金体系各有特点,但也各有不足之处。第一种材料成本相对较低,但硬度一般在50-60HRC,堆焊硬度一般、耐磨性一般;第二种材料镍基碳化钨耐磨性良好,但成本较高;第三种材料成本介于前两者之间,堆焊硬度可达60HRC以上,耐磨性良好,但熔覆工艺性较差,存在易产生气孔、裂纹、不平整、结合不牢固等缺陷。
发明内容
针对上述问题,本发明摒弃现有常用合金体系,采用以Fe、B二元素为基础的合金体系,通过添加少量其他合金元素进行辅助强化,实现在较低成本下,获得55-66HRC的高硬度耐磨层,耐磨粒磨损性能优良,且成形平整美观,熔覆工艺性良好。
为解决上述技术问题,本发明通过以下技术方案实现:
一种高硼系耐磨熔覆粉末,为以Fe、B二元素为基础的合金体系,其中B元素的质量百分比含量为:3.0~5.8%。
优选的,包括以下质量百分比含量的元素:3.0~5.8%B,0.2~1.0%C,0.4~1.8%Si,0.9~3.5%Mn,1.0~6.0%Cr,0~3.0%Mo,0~3.0%Ni,0~5.0%Ti,0~3.0%V,0~0.8%Ce,0~0.8%La,余量为Fe。
其中各组分主要作用如下:
硼:提高熔覆金属的硬度;形成耐磨硬质相;脱氧。
碳:提高熔覆金属的强度、硬度;形成耐磨硬质相。
硅:提高熔覆金属的硬度;脱氧。
锰:提高熔覆金属的强度;脱氧。
铬:提高熔覆金属的强度、硬度;形成耐磨硬质相。
钼:提高熔覆金属的强度。
镍:提高熔覆金属的强度。
钛:细化晶粒,提高强韧性。
钒:细化晶粒,提高强韧性。
稀土Ce、La:细化晶粒,改善微观组织形态。
与现有技术相比,本发明合金粉末的特点在于以Fe为基础合金,采用高含量B作为主合金化元素,原料来源广泛,价格低廉,与钢铁材料成分接近,热膨胀系数接近,结合强度高,且耐磨性优异。粉末熔覆过程中原位自生TiB、Fe2B、TiC、VC等陶瓷硬质颗粒,除了具有高熔点、高硬度、热稳定性好等优点外,还具有原位生成陶瓷相自有的优点:陶瓷相是从金属基体中原位形核、长大的热力学稳定相,与金属基体微观键合,不存在界面结合问题,不会产生裂纹源;生成的陶瓷相均匀弥散分布,空隙率小。
本发明高硼系耐磨熔覆粉末可用于制备农机入土配件或矿山机械配件。
本发明高硼系耐磨熔覆粉末的制备方法,包括以下步骤:按照上述的元素设计要求,通过配料-熔炼-气雾化-筛分的通用工艺流程,制备100-270目的粉末;也可以通过先制备若干种不同成分粉末,再将其按照比例混合,达到目标设计成分。
气雾化法是目前金属粉末的主要生产方法之一。气雾化法的基本原理是用高速高压气流将液态金属流破碎成小液滴并凝固成粉末的过程。由于气雾化法制备的金属粉末具有纯度高、氧含量低、粉末粒度可控以及成本低等优点,已成为高性能金属粉末制备的主流方法。
与现有技术相比,本发明具有以下优点:
(1)本发明高硼系耐磨熔覆粉末经熔覆后熔覆层硬度高,耐磨粒磨损性能好,角磨机打磨无火花;
(2)本发明高硼系耐磨熔覆粉末熔融金属铺展性好,成型平整美观;
(3)本发明高硼系耐磨熔覆粉末熔融熔覆过程所需熔覆电流/激光功率较小,降低设备能耗;
(4)本发明高硼系耐磨熔覆粉末材料成本较低,节约贵重合金元素,市场应用前景良好。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
采用气雾化工艺制备高硼系耐磨熔覆粉末,粉末成分:B:3.02%,C:0.85%,Si:1.75%,Mn:3.44%,Cr:2.86%,Mo:2.91%,Ni:2.14%,Ti:2.76%,V:1.13%,Ce:0.45%,La:0.71%,余量为Fe。粉末粒度区间控制在100-270目,270目筛下料比例<1%。采用等离子熔覆工艺,将粉末熔覆至Q235低碳钢试板上,熔覆电流120~180A,单层熔覆厚度控制在2~3mm。所得熔覆层硬度、相对耐磨性见表1。
实施例2
采用气雾化工艺制备高硼系耐磨熔覆粉末,粉末成分为:B:3.86%,C:0.52%,Si:1.08%,Mn:2.05%,Cr:3.55%,Mo:2.37%,Ni:2.92%,V:0.88%,Ce:0.73%,La:0.44%,余量为Fe。粉末粒度区间控制在100-270目,270目筛下料比例<1%。采用等离子熔覆工艺,将粉末熔覆至Q235低碳钢试板上,熔覆电流120~180A,单层熔覆厚度控制在2~3mm。所得熔覆层硬度、相对耐磨性见表1。
实施例3
采用气雾化工艺制备高硼系耐磨熔覆粉末,粉末成分为:B:4.51%,C:0.25%,Si:0.75%,Mn:1.56%,Cr:1.04%,Ni:2.12%,Ti:3.98%,La:0.66%,余量为Fe。粉末粒度区间控制在100-270目,270目筛下料比例<1%。采用等离子熔覆工艺,将粉末熔覆至Q235低碳钢试板上,熔覆电流120~180A,所得单层熔覆厚度控制在2~3mm。熔覆层硬度、相对耐磨性见表1。
实施例4
采用气雾化工艺制备高硼系耐磨熔覆粉末,粉末成分为:B:5.76%,C:0.97%,Si:0.41%,Mn:0.95%,Cr:5.97%,Mo:1.88%,Ti:4.94%,V:2.96%,Ce:0.62%,余量为Fe。粉末粒度区间控制在100-270目,270目筛下料比例<1%。采用等离子熔覆工艺,将粉末熔覆至Q235低碳钢试板上,熔覆电流120~180A,单层熔覆厚度控制在2~3mm。所得熔覆层硬度、相对耐磨性见表1。
采用HR-150A洛氏硬度计,对熔覆层横截面取五点进行测试。最后取平均硬度值作为该粉末熔覆层的硬度,数据见表1。
耐磨性实验采用MLG-130干砂橡胶轮摩擦磨损试验机进行。实验参数如下:橡胶轮直径:229mm,橡胶轮厚度:12.7mm,橡胶轮硬度:60(邵尔硬度),载荷:130N,橡胶轮转速:200rpm,磨料:40~70目的石英砂。试验前首先采用丙酮清洗试样,采用以上参数预磨120s,再次用丙酮清洗试样,记录试样重量。然后采用以上参数正式磨损600s,清洗试样并称重。材料的耐磨性能用磨损的失重量来衡量。实验中采用镍基碳化钨(35%WC)熔覆合金作为对比,对比件失重量与测量件失重量之比作为该配方的相对耐磨性。
表1各实施例熔覆层硬度与相对耐磨性
如表1所示,本发明高硼系耐磨熔覆粉末的熔覆层硬度最高可达64HRC以上,其相对耐磨性可以达到镍基碳化钨(35%WC)熔覆合金的2~3倍,耐磨粒磨损性能优良。

Claims (6)

1.一种高硼系耐磨熔覆粉末,其特征在于:为以Fe、B二元素为基础的合金体系,其中B元素的质量百分比含量为:3.0~5.8%。
2.根据权利要求1所述的高硼系耐磨熔覆粉末,其特征在于:包括以下质量百分比含量的元素:3.0~5.8%B,0.2~1.0%C,0.4~1.8%Si,0.9~3.5%Mn,1.0~6.0%Cr,0~3.0%Mo,0~3.0%Ni,0~5.0%Ti,0~3.0%V,0~0.8%Ce,0~0.8%La,余量为Fe。
3.根据权利要求2所述的高硼系耐磨熔覆粉末,其特征在于:包括以下质量百分比含量的元素:4.5~5.8%B,0.2~1.0%C,0.4~0.8%Si,0.9~1.6%Mn,1.0~6.0%Cr,0~1.9%Mo,0~2.2%Ni,3.9~5.0%Ti,0~3.0%V,0~0.7%Ce,0~0.7%La,余量为Fe。
4.根据权利要求3所述的高硼系耐磨熔覆粉末,其特征在于:包括以下质量百分比含量的元素:5.7~5.8%B,0.9~1.0%C,0.4~0.5%Si,0.9~1.0%Mn,5.9~6.0%Cr,1.8~1.9%Mo,4.9~5.0%Ti,2.9~3.0%V,0.6~0.7%Ce,余量为Fe。
5.根据权利要求1所述的高硼系耐磨熔覆粉末,其特征在于:由以下工艺制成:按照元素设计要求,通过配料-熔炼-气雾化-筛分的通用工艺制备。
6.根据权利要求1所述的高硼系耐磨熔覆粉末,其特征在于:所述高硼系耐磨熔覆粉末的粒度为100-270目。
CN202210884083.XA 2022-07-25 2022-07-25 一种高硼系耐磨熔覆粉末 Pending CN117488295A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210884083.XA CN117488295A (zh) 2022-07-25 2022-07-25 一种高硼系耐磨熔覆粉末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210884083.XA CN117488295A (zh) 2022-07-25 2022-07-25 一种高硼系耐磨熔覆粉末

Publications (1)

Publication Number Publication Date
CN117488295A true CN117488295A (zh) 2024-02-02

Family

ID=89676963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210884083.XA Pending CN117488295A (zh) 2022-07-25 2022-07-25 一种高硼系耐磨熔覆粉末

Country Status (1)

Country Link
CN (1) CN117488295A (zh)

Similar Documents

Publication Publication Date Title
CN102076884B (zh) 具有堆焊硬质表面层的耐磨部件
Hsieh et al. Diamond tool bits with iron alloys as the binding matrices
CN111607789B (zh) 激光熔覆原位自生碳化物颗粒增强铁基熔覆层及其制备方法
EP1944461A2 (en) Reinforcing overlay for matrix bit bodies
CN101126135B (zh) 纳米金属陶瓷基金属陶瓷的制备方法
CN106929735B (zh) 高强度钼铁硼三元硼化物材料及其制作制备方法
CN101403085A (zh) 一种WC-FeNiCr超硬无磁涂层复合材料及其制备方法
US20110262295A1 (en) Method for fabricating hard particle-dispersed composite materials
CN108842106B (zh) 一种保径环及其制备方法和应用
CN106868374A (zh) 一种硬质合金复合材料、其制备方法及应用
CN111041398A (zh) 一种利用陶瓷纳米颗粒增强镍基涂层摩擦学性能的方法
CN106834872A (zh) 一种高强韧高耐磨TiN钢结硬质合金的制备方法
Dai et al. Mechanical properties and microstructural characteristics of WC-bronze-based impregnated diamond composite reinforced by nano-NbC
CN103243252B (zh) 一种粘结相的碳化钨硬质合金及其制备方法
CN101653883A (zh) 合金粉粒埋弧堆焊用合金混合粉末
Long et al. Research on interface structure and performance of diamond brazed coating based on non-vacuum environment
CN117488295A (zh) 一种高硼系耐磨熔覆粉末
CN106811655A (zh) 一种高强韧高耐磨vc钢结硬质合金的制备方法
Kuo et al. Microstructure and wear characteristics of hypoeutectic, eutectic and hypereutectic (Cr, Fe) 23C6 carbides in hardfacing alloys
CN106591674A (zh) 一种高强韧耐热TiN钢结硬质合金的制备方法
CN117484014A (zh) 一种高硼系耐磨堆焊药芯焊丝及其药芯粉末
Zhu et al. Microstructure and properties of TiC–Fe36Ni cermet coatings by reactive plasma spraying using sucrose as carbonaceous precursor
CN111705289B (zh) 一种自润滑功能抗高温磨蚀硬面材料及其制备方法
CN109735842A (zh) 一种等离子熔覆用合金粉末
CN114559031B (zh) 高速激光熔覆合金粉末、其制备方法、涂层及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination