CN117477332A - 一种序列脉冲激光强度可编辑方法 - Google Patents

一种序列脉冲激光强度可编辑方法 Download PDF

Info

Publication number
CN117477332A
CN117477332A CN202311343714.8A CN202311343714A CN117477332A CN 117477332 A CN117477332 A CN 117477332A CN 202311343714 A CN202311343714 A CN 202311343714A CN 117477332 A CN117477332 A CN 117477332A
Authority
CN
China
Prior art keywords
intensity
pulse
laser
pumping
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311343714.8A
Other languages
English (en)
Inventor
臧庆
周健
金风文
任梦芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beamtech Optronics Co ltd
Hefei Institutes of Physical Science of CAS
Original Assignee
Beamtech Optronics Co ltd
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beamtech Optronics Co ltd, Hefei Institutes of Physical Science of CAS filed Critical Beamtech Optronics Co ltd
Priority to CN202311343714.8A priority Critical patent/CN117477332A/zh
Publication of CN117477332A publication Critical patent/CN117477332A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • H01S3/10046Pulse repetition rate control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/0933Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of a semiconductor, e.g. light emitting diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10061Polarization control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/115Q-switching using intracavity electro-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/117Q-switching using intracavity acousto-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/121Q-switching using intracavity mechanical devices

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lasers (AREA)

Abstract

本发明提供一种序列脉冲激光强度可编辑方法,通过使得泵浦脉冲可任意编辑强度,从而影响子脉冲的储能时间,这样在调Q以后,子脉冲的强度可实现任意可调。本发明对IGBT电源的放电波形进行强度编辑,IGBT电源通过负载氙灯放电的泵浦光强度波形也随之可以编辑,从而使得泵浦增益介质上能级储能可编辑。在上述步骤下谐振腔进行多次调Q,从而输出的序列脉冲强度是可以调制。本发明可以用于精密加工,激光诊断等领域,本发明降低单脉冲能量,可以有效防止脉冲串重复作用同一区域时出现热效应累积现象。

Description

一种序列脉冲激光强度可编辑方法
技术领域
本发明属于激光技术领域,具体涉及一种序列脉冲激光强度可编辑方法,广泛应用于等离子体诊断、脉冲激光照明等科研分析仪器中。
背景技术
目前离子体诊断和脉冲激光照明这两种应用要求激光脉冲间隔为100微秒-300微秒之间可调,目前广泛使用的激光器是采用脉冲串调Q技术,这种技术的缺陷是各子脉冲之间的强度不可调。
一般脉冲调制技术是根据使用需求和材料特性,确定需要调制的特定参数,如脉冲宽度、脉冲能量、脉冲repetition频率等。根据调制目标,选择合适的调制方式,如调制泵浦源、使用脉冲选择器、调制腔体损耗、使用声光调制器等。通过控制电源、设置定时电路、编写控制代码等方式,实现对调制设备的精确控制,让它按需进行参数调节。被调制过的参数反馈调控激光腔,影响激光脉冲的形成,输出经过调制的脉冲。激光腔体的储能属性决定了脉冲间隔期的能量恢复过程。一旦泵浦源激光腔的参数确定,输出脉冲的平均能量就是固定的。泵浦源的重复频率稳定性高。通常激光泵浦源采用质量稳定的晶体管或光学方法产生极为稳定的脉冲序列,难以在短时间内对其重复频率进行调制。脉冲调制技术侧重单脉冲调节。现有的调制技术如脉冲选择器、声光调制器等,都是针对单个脉冲的调节,不便于调整整个脉冲串。
发明内容
为解决上述技术问题,本发明提供一种序列脉冲激光强度可编辑方法,通过使得泵浦脉冲的可任意编辑强度,从而影响子脉冲的储能时间,这样在调Q以后,子脉冲的强度可实现任意可调。
本发明通过对IGBT电源的放电波形可进行强度编辑。IGBT电源通过负载氙灯放电的泵浦光强度波形也随之可以编辑,从而泵浦增益介质上能级储能可编辑。在上述步骤下谐振腔进行多次调Q,从而输出序列脉冲强度是可以调制。本发明可以用于精密加工,激光诊断等领域,例如,传统激光器的所有脉冲能量固定,很难针对不同材料或不同加工要求进行调节,使用单脉冲调制技术可以在同一加工过程中动态调节每一下脉冲的能量,实现更精细的加工控制。本发明可以仅对目标区域的脉冲进行能量调制,而不影响其他区域,实现了选择性激光加工。本发明降低单脉冲能量,可以有效防止脉冲串重复作用同一区域时出现热效应累积现象。
为达到上述目的,本发明采用如下技术方案:
一种序列脉冲激光强度可编辑方法,包括如下步骤:
步骤1、对IGBT电源的放电波形进行强度编辑,包括:
在泵浦源的脉冲宽度内,通过调节对调Q晶体的施加电压次数和时间间隔,控制输出激光脉冲的数量和重复频率;通过控制程序实现对IGBT电源放电波形的脉宽调制;通过调节PWM占空比控制每次放电的能量;通过控制程序实现多脉冲激光输出,并且每个脉冲的能量均可编程调节,或者通过控制放电频率调节多脉冲之间的时间间隔,从而实现脉冲能量可调;
步骤2、IGBT电源通过负载的氙灯放电的泵浦光强度波形的可编辑也随之可编辑,从而实现泵浦增益介质上能级储能可编辑;
步骤3、根据步骤1、步骤2,谐振腔进行多次调Q,从而输出可编辑的序列脉冲强度。
有益效果:
本发明通过理论和实验,实现序列脉冲中的子脉冲强度任意可调,具有根据应用实验需求任意调整子脉冲强度的优点。相比使用多个固定参数激光器,单台可调脉冲激光器可以完成多种功能,降低了系统成本。
附图说明
图1为串脉冲谐振腔的结构图;
图2为串脉冲泵浦可编辑(单调斜率)时序关系图;
图3为串脉冲泵浦可编辑(离散)时序关系图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,本发明的一种序列脉冲激光强度可编辑方法采用直接输出串脉冲的谐振腔,所述谐振腔包括后镜1,电光调Q开关2,四分之一波片3,偏振片4,泵浦腔5和输出镜6。所述后镜1构成谐振腔的一端;所述泵浦腔5包括激光晶体和闪光灯或者二极管,用于提供激光器所需要的能源;所述输出镜6构成谐振腔的另一端用于输出激光。光线通过后镜1,依次经过电光调Q开关2、四分之一波片3、偏振片4、泵浦腔5和输出镜6。
所述输出镜6放大晶体发射的激光脉冲并反射出腔外。输出镜6的反射率会影响激光脉冲的输出能量。泵浦光源(如氙灯)为激光晶体提供激励,激光上能级充足的电子数量。泵浦光源的工作参数会影响激光脉冲输出的稳定性。所述后镜1实现光的正反馈,保证激光振荡的相干性。所述电光调Q开关2(如电光晶体或者声光晶体)控制激光脉冲的输出时间,其参数会影响单脉冲的脉宽。
本发明的一种序列脉冲激光强度可编辑方法包括如下步骤:
步骤1、对IGBT电源的放电波形进行强度编辑,包括:
泵浦源开始工作,但不对调Q晶体加电压,此时氙灯激光腔内无激光产生;向调Q晶体施加电压,使泵浦光子在经过调Q晶体时发生相位变化π后进入激光晶体;激发激光晶体中的高能级电子跃迁释放大量光子,形成激光脉冲后输出;停止对调Q晶体的施加电压,重复上述过程。
在泵浦源的脉冲宽度内,可以通过调节对调Q晶体的施加电压次数和时间间隔,控制输出激光脉冲的数量和重复频率。
施加到调Q晶体上的电压为高压,量级约为千伏级。通过控制程序实现对IGBT电源放电波形的pulse width modulation(PWM),即脉宽调制。通过调节PWM占空比可以控制每次放电的能量。将IGBT电源连接到氙灯激光腔的两端。放电时氙灯两端的电压差形成激励电场,使得激光介质原子被激发。每次IGBT电源放电形成一个脉冲波形,控制放电波形的PWM占空比即可调节每次激光脉冲的输出能量。通过控制程序可以实现多脉冲激光输出,并且每个脉冲的能量都是可编程调节的。还可以通过控制放电频率来调节多脉冲之间的时间间隔。如此实现脉冲能量可调。
在IGBT电源施加脉冲电压激励时,激光晶体被激发,位于激光上能级的电子跃迁到下能级,发射出激光光子。随着IGBT脉冲电压参数(幅值、脉宽等)的改变,激光晶体发射的激光脉冲光子数量和能量也会变化。
步骤2、IGBT电源通过负载的氙灯放电的泵浦光强度波形也随之可以编辑,从而泵浦增益介质上能级储能可编辑;
步骤3、根据步骤1、步骤2,谐振腔进行多次调Q,从而输出可编辑的序列脉冲强度。
本发明通过使得泵浦光的时间波形强度可编辑,这样可以调节子脉冲的储能,从而实现子脉冲能量的调节,使子脉冲能量可以任意编辑调节。
如图2,图3所示,泵浦腔完成整体长脉宽的泵浦(大约在2-15ms),子脉冲泵浦的强度可以编辑,从而实现增益介质上能级储能可编辑,然后再进行子脉冲调Q,输出可编辑子脉冲的序列激光。子脉冲强度为单调斜率、离散强度分布等。
优选的,泵浦光的时间波形可以任意可调,包括单调斜率可调,离散任意可调。
优选的,谐振腔的调Q方式不限制,可以是机械调Q、电光调Q、声光调Q等。
优选的,泵浦光可以是氙灯泵浦、也可以是二极管泵浦等。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种序列脉冲激光强度可编辑方法,其特征在于,包括如下步骤:
步骤1、对IGBT电源的放电波形进行强度编辑,包括:
在泵浦源的脉冲宽度内,通过调节对调Q晶体的施加电压次数和时间间隔,控制输出激光脉冲的数量和重复频率;通过控制程序实现对IGBT电源放电波形的脉宽调制;通过调节PWM占空比控制每次放电的能量;通过控制程序实现多脉冲激光输出,并且每个脉冲的能量均可编程调节,或者通过控制放电频率调节多脉冲之间的时间间隔,从而实现脉冲能量可调;
步骤2、IGBT电源通过负载的氙灯放电的泵浦光强度波形的可编辑也随之可编辑,从而实现泵浦增益介质上能级储能可编辑;
步骤3、根据步骤1、步骤2,谐振腔进行多次调Q,从而输出可编辑的序列脉冲强度。
2.根据权利要求1所述的一种序列脉冲激光强度可编辑方法,其特征在于,泵浦光的时间波形任意可调,包括单调斜率可调或离散任意可调。
3.根据权利要求1所述的一种序列脉冲激光强度可编辑方法,其特征在于,谐振腔的调Q方式为电光调Q。
4.根据权利要求1所述的一种序列脉冲激光强度可编辑方法,其特征在于,谐振腔的调Q方式为机械调Q或声光调Q。
5.根据权利要求1所述的一种序列脉冲激光强度可编辑方法,其特征在于,泵浦光是氙灯泵浦或二极管泵浦。
6.根据权利要求3所述的一种序列脉冲激光强度可编辑方法,其特征在于,采用直接输出串脉冲的谐振腔进行调Q,所述谐振腔包括后镜,电光调Q开关,四分之一波片,偏振片,泵浦腔和输出镜;所述后镜构成谐振腔的一端;所述泵浦腔包括激光晶体、闪光灯或者二极管,用于提供激光器所需要的能源;所述输出镜构成谐振腔的另一端用于输出激光;光线通过后镜,依次经过电光调Q开关、四分之一波片、偏振片、泵浦腔和输出镜。
CN202311343714.8A 2023-10-17 2023-10-17 一种序列脉冲激光强度可编辑方法 Pending CN117477332A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311343714.8A CN117477332A (zh) 2023-10-17 2023-10-17 一种序列脉冲激光强度可编辑方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311343714.8A CN117477332A (zh) 2023-10-17 2023-10-17 一种序列脉冲激光强度可编辑方法

Publications (1)

Publication Number Publication Date
CN117477332A true CN117477332A (zh) 2024-01-30

Family

ID=89633895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311343714.8A Pending CN117477332A (zh) 2023-10-17 2023-10-17 一种序列脉冲激光强度可编辑方法

Country Status (1)

Country Link
CN (1) CN117477332A (zh)

Similar Documents

Publication Publication Date Title
Skorczakowski et al. Mid-infrared Q-switched Er: YAG laser for medical applications
US5621745A (en) Intracavity modulated pulsed laser and methods of using the same
JP5232782B2 (ja) 精密に制御された波長変換平均出力を有する光源の制御方法、および波長変換システム
JP4175544B2 (ja) パルス列生成のためのqスイッチ方法
US9640939B2 (en) Short pulse laser with amplifier and adjustable pulse sequence
US4752931A (en) Pulse shaper for an electro-optically Q-switched seeded laser
US6038240A (en) Method and solid-state laser system for generating laser pulses with a variable pulse repetition frequency and constant beam characteristics
US9306368B2 (en) Laser apparatus using cavity dumping and active mode locking
US6654391B2 (en) Method for operating Q-switched lasers with intracavity frequency conversion
KR101682593B1 (ko) 단일 펄스 레이저 장치
US20100303105A1 (en) Generating pulse trains in q-switched lasers
US6188704B1 (en) Diode-pumped laser drive
US6529540B1 (en) Variable output coupling laser
Will et al. Feedback-stabilized Nd: YLF amplifier system for generation of picosecond pulse trains of an exactly rectangular envelope
CN117477332A (zh) 一种序列脉冲激光强度可编辑方法
CN115377786B (zh) 一种提高激光脉冲时域对比度的系统及方法
KR20200118565A (ko) 레이저 발생 장치
US6980574B1 (en) Short pulse separation laser
JP2012038895A (ja) ファイバレーザ光源およびそれを用いた波長変換レーザ光源
US4669085A (en) Electro-optical modulator for an electro-optically modulated laser
Panarella et al. Controlled timewise redistribution of laser energy
Lührmann et al. High-average power Nd: YVO4 regenerative amplifier seeded by a gain switched diode laser
JPH0730179A (ja) Qスイッチco2レーザ装置
Ganeev et al. Investigation of negative feedback regimes for generation of compressed pulses
Bostick et al. Dual picosecond dye lasers pumped by synchronized mode-locked and Q-switched Cw Nd: YAG lasers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination