CN117470106A - Narrow space point cloud absolute data acquisition method and model building equipment - Google Patents
Narrow space point cloud absolute data acquisition method and model building equipment Download PDFInfo
- Publication number
- CN117470106A CN117470106A CN202311809847.XA CN202311809847A CN117470106A CN 117470106 A CN117470106 A CN 117470106A CN 202311809847 A CN202311809847 A CN 202311809847A CN 117470106 A CN117470106 A CN 117470106A
- Authority
- CN
- China
- Prior art keywords
- point cloud
- slam
- cloud data
- coordinate system
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000010276 construction Methods 0.000 claims abstract description 86
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 238000013480 data collection Methods 0.000 claims description 8
- 238000013499 data model Methods 0.000 claims description 3
- 230000000877 morphologic effect Effects 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims 2
- 238000009412 basement excavation Methods 0.000 abstract description 12
- 238000005259 measurement Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009430 construction management Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/002—Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C7/00—Tracing profiles
- G01C7/06—Tracing profiles of cavities, e.g. tunnels
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
技术领域Technical field
本发明属于工程测量领域,尤其是针对隧道工程建设中狭小空间比如上台阶或者仰拱等比较难架设大型三维激光扫描仪进行扫描的场景,涉及一种狭小空间点云绝对数据采集方法以及模型建立设备。The invention belongs to the field of engineering surveying, especially for scenes in tunnel engineering construction where it is difficult to set up a large-scale three-dimensional laser scanner for scanning in narrow spaces such as steps or inverts. It relates to a point cloud absolute data collection method and model establishment in a narrow space. equipment.
背景技术Background technique
隧道地质条件恶劣、施工环境复杂,施工管理控制存在较多的不便,导致施工过程中的超挖问题成为影响隧道建设成本的重要因素。因此,有效控制隧道施工超挖程度,及时准确地掌握隧道施工轮廓面数据信息成为解决问题的关键。The geological conditions of the tunnel are harsh, the construction environment is complex, and there are many inconveniences in construction management and control. As a result, the over-excavation problem during the construction process has become an important factor affecting the cost of tunnel construction. Therefore, effectively controlling the degree of over-excavation in tunnel construction and promptly and accurately grasping tunnel construction profile data information have become the key to solving the problem.
当前,主要通过断面测量的方式来获取隧道施工轮廓面,主要使用的仪器为断面仪、全站仪,这些方法效率低下,需要大量的时间和人力。相较于传统测量方法,三维激光扫描技术提供了一种更快速、更安全、更有效的调查、测量、监测方法。三维激光扫描仪能够在极其复杂的空间场景中工作,通过对空间进行精细的扫描,将获取的大量的三维激光点云数据汇于电脑中,再通过软件快速地对各种非标准、不规则的大型实体进行三维模型构建。但隧道为狭长结构,而且三维激光扫描仪自身存在精度要求和扫描视角限制。Currently, tunnel construction profiles are mainly obtained through cross-section measurement. The main instruments used are section meters and total stations. These methods are inefficient and require a lot of time and manpower. Compared with traditional measurement methods, 3D laser scanning technology provides a faster, safer, and more effective method of investigation, measurement, and monitoring. The 3D laser scanner can work in extremely complex spatial scenes. By carefully scanning the space, a large amount of 3D laser point cloud data is collected into the computer, and then the software can quickly detect various non-standard and irregular shapes. 3D model construction of large entities. However, the tunnel is a long and narrow structure, and the 3D laser scanner itself has accuracy requirements and scanning viewing angle limitations.
因此,数据采集问题是将三维激光扫描技术应用到隧道工程中的一个关键问题。特别是在微台阶法开挖时上台开挖面空间可视角度小,三维扫描测量仪器在狭小空间内无法安置,仰拱开挖面三维扫描测量仪器受俯角测量盲区影响,精密的扫描测量是难点。Therefore, the data acquisition problem is a key issue in applying 3D laser scanning technology to tunnel engineering. Especially when excavating with the micro-step method, the viewing angle of the upper excavation surface space is small, and the three-dimensional scanning measuring instrument cannot be placed in a small space. The three-dimensional scanning measuring instrument for the inverted arch excavation surface is affected by the blind area of depression angle measurement. Precise scanning measurement is difficulty.
发明内容Contents of the invention
本发明的一个目的在于提供一种狭小空间点云绝对数据采集方法,以解决上述背景技术中提出的台阶法施工隧道开挖时施工轮廓面点部分云数据难以准确采集的问题。One object of the present invention is to provide a point cloud absolute data acquisition method in a small space to solve the problem of difficulty in accurately collecting cloud data of construction contour surface points during the step method construction tunnel excavation proposed in the above background technology.
为达到上述目的,本发明采用如下技术方案:In order to achieve the above objects, the present invention adopts the following technical solutions:
一种狭小空间点云绝对数据采集方法,包含以下步骤:A method for absolute data collection of point clouds in a small space, including the following steps:
在隧道施工段布置控制点;Arrange control points in the tunnel construction section;
在控制点处架设第一扫描仪,建立隧道施工全局坐标系下的测站,扫描获取施工轮廓面的全局点云数据;Set up the first scanner at the control point, establish a measuring station in the global coordinate system of tunnel construction, and scan to obtain global point cloud data of the construction contour surface;
预处理全站扫描仪获取的全局点云数据,对比实际轮廓面,得到未能获取轮廓面点云数据的空缺区域;Preprocess the global point cloud data obtained by the full-station scanner, compare it with the actual contour surface, and obtain the vacant areas where the contour surface point cloud data cannot be obtained;
利用第二扫描仪移动获取包括空缺区域轮廓面点云数据的SLAM点云数据;Use the second scanner to move to obtain SLAM point cloud data including the point cloud data of the contour surface of the vacant area;
将SLAM点云数据和全局点云数据进行配准,将SLAM点云数据填补融合到所述全局点云数据中填补所述空缺区域的点云数据,得到隧道施工段全轮廓面的点云绝对数据。The SLAM point cloud data and the global point cloud data are registered, and the SLAM point cloud data is integrated into the global point cloud data to fill in the point cloud data of the vacant area, and the absolute point cloud of the full contour surface of the tunnel construction section is obtained. data.
作为优选的一个方面,该狭小空间点云绝对数据采集方法还包括步骤:利用隧道施工段点云绝对数据建立隧道施工轮廓面的三维模型。As a preferred aspect, the narrow space point cloud absolute data collection method also includes the step of establishing a three-dimensional model of the tunnel construction contour surface using the point cloud absolute data of the tunnel construction section.
作为优选的一个方面,所述第一扫描仪为全站扫描仪,获取的点云坐标是隧道施工全局坐标系下的绝对数据;所述第二扫描仪为手持SLAM设备,获取的点云坐标是以SLAM设备为中心的点云空间坐标系下的相对数据,各帧点云都有一个局部坐标系,将各帧数据配准后形成SLAM点云全局空间,该空间的坐标系为SLAM点云全局坐标系。As a preferred aspect, the first scanner is a full-station scanner, and the point cloud coordinates obtained are absolute data in the global coordinate system of tunnel construction; the second scanner is a handheld SLAM device, and the point cloud coordinates obtained are It is relative data under the point cloud space coordinate system centered on the SLAM device. Each frame point cloud has a local coordinate system. After registering each frame data, the SLAM point cloud global space is formed. The coordinate system of this space is the SLAM point. Cloud global coordinate system.
作为优选的一个方面,所述将SLAM点云数据和全局点云数据进行配准的步骤具体实施为:As a preferred aspect, the step of registering SLAM point cloud data and global point cloud data is specifically implemented as:
将手持SLAM设备获取的点云数据进行各帧局部坐标系投影至SLAM点云全局坐标系,然后完成定位拼接;Project the point cloud data obtained by the handheld SLAM device from the local coordinate system of each frame to the global coordinate system of the SLAM point cloud, and then complete positioning and splicing;
将全站扫描仪的全局点云数据和拼接后的SLAM点云数据进行配准,实现SLAM点云全局坐标系到隧道施工全局坐标系的投影转换。The global point cloud data of the full-station scanner and the spliced SLAM point cloud data are registered to realize the projection conversion from the SLAM point cloud global coordinate system to the tunnel construction global coordinate system.
作为优选的一个方面,所述将全站扫描仪的全局点云数据和拼接后的SLAM点云数据进行配准,实现SLAM点云全局坐标系到隧道施工全局坐标系的投影转换的步骤具体实施为:首先通过被测部位本身所具备的形态特性构建点云间的匹配对应,然后采用基于点SHOT特征的AO算法估计得到投影转换关系。As a preferred aspect, the step of registering the global point cloud data of the full-station scanner and the spliced SLAM point cloud data to realize the projection conversion from the SLAM point cloud global coordinate system to the tunnel construction global coordinate system is specifically implemented. As follows: first, the matching correspondence between point clouds is constructed through the morphological characteristics of the measured part itself, and then the AO algorithm based on point SHOT features is used to estimate the projection transformation relationship.
作为优选的一个方面,所述将SLAM点云数据填补融合到所述全局点云数据中填补所述空缺区域的点云数据的步骤具体实施为:As a preferred aspect, the step of fusing the SLAM point cloud data filling into the global point cloud data to fill the point cloud data in the vacant area is specifically implemented as:
根据投影转换关系对拼接后的SLAM点云数据转换到隧道施工全局坐标系,并将转换后的SLAM数据填补到全局点云数据中。According to the projection conversion relationship, the spliced SLAM point cloud data is converted to the tunnel construction global coordinate system, and the converted SLAM data is filled into the global point cloud data.
作为优选的一个方面,所述各帧局部坐标系与SLAM点云全局坐标系的投影转换关系为:As a preferred aspect, the projection transformation relationship between the local coordinate system of each frame and the global coordinate system of the SLAM point cloud is:
其中,x1、y1、z1为SLAM点云数据某一帧局部坐标系中的空间坐标;x2、y2、z2为SLAM 点云全局坐标系中的空间坐标;x0、y0、z0为SLAM点云数据某一帧局部坐标系原点相对于 SLAM点云全局坐标系原点的偏移;为SLAM点云数据某一帧局部坐标系向SLAM 点云全局坐标系转换的各坐标轴的旋转角度参数。 Among them, x 1 , y 1 , z 1 are the spatial coordinates in the local coordinate system of a certain frame of SLAM point cloud data; x 2 , y 2 , z 2 are the spatial coordinates in the global coordinate system of the SLAM point cloud; x 0 , y 0 , z 0 is the offset of the origin of the local coordinate system of a certain frame of SLAM point cloud data relative to the origin of the global coordinate system of the SLAM point cloud; It is the rotation angle parameter of each coordinate axis converted from the local coordinate system of a certain frame of SLAM point cloud data to the global coordinate system of SLAM point cloud.
作为优选的一个方面,所述SLAM点云全局坐标系到隧道施工全局坐标系的投影转换关系包括以下公式:As a preferred aspect, the projection transformation relationship between the SLAM point cloud global coordinate system and the tunnel construction global coordinate system includes the following formula:
其中,X、Y、Z为隧道施工全局坐标系中任意的空间坐标;x、y、z为SLAM点云全局坐 标系中的空间坐标;X0、Y0、Z0为SLAM点云全局坐标系原点相对于隧道施工全局坐标系原点 的偏移;为SLAM点云全局坐标系向隧道施工全局坐标系转换的各坐标轴的旋 转角度参数;为SLAM点云全局坐标系向隧道施工全局坐标系转换的尺度因子。 Among them, X, Y, Z are arbitrary spatial coordinates in the tunnel construction global coordinate system; x, y, z are spatial coordinates in the SLAM point cloud global coordinate system; X 0 , Y 0 , Z 0 are the SLAM point cloud global coordinates The offset of the system origin relative to the origin of the tunnel construction global coordinate system; It is the rotation angle parameter of each coordinate axis converted from the SLAM point cloud global coordinate system to the tunnel construction global coordinate system; It is the scale factor for converting the SLAM point cloud global coordinate system to the tunnel construction global coordinate system.
作为优选的一个方面,所述手持SLAM设备包括视觉SLAM和/或激光SLAM;As a preferred aspect, the handheld SLAM device includes visual SLAM and/or laser SLAM;
获取SLAM点云数据的步骤实施为:The steps to obtain SLAM point cloud data are as follows:
手持SLAM设备移动获取轮廓面点云数据,并从不同角度、不同帧获取同一个位置的多个点云数据。The handheld SLAM device moves to acquire contour surface point cloud data, and acquires multiple point cloud data at the same location from different angles and different frames.
一种狭小空间点云绝对数据采集及模型建立设备,包括:A narrow space point cloud absolute data collection and model building equipment, including:
控制点布置单元,用于在隧道施工段布置控制点;Control point arrangement unit, used to arrange control points in the tunnel construction section;
全局点云数据获取单元,用于在控制点处架设第一扫描仪,建立隧道施工全局坐标系下的测站,扫描获取施工轮廓面的全局点云数据;The global point cloud data acquisition unit is used to set up the first scanner at the control point, establish a measuring station in the global coordinate system of tunnel construction, and scan and obtain the global point cloud data of the construction contour surface;
空缺区域获取单元,用于预处理全站扫描仪获取的全局点云数据,对比实际轮廓面,得到未能获取轮廓面点云数据的空缺区域;The vacant area acquisition unit is used to preprocess the global point cloud data obtained by the full-station scanner, compare it with the actual contour surface, and obtain the vacant area where the contour surface point cloud data cannot be obtained;
SLAM点云数据获取单元,利用第二扫描仪移动获取包括空缺区域轮廓面点云数据的SLAM点云数据;The SLAM point cloud data acquisition unit uses the second scanner to move to acquire SLAM point cloud data including the point cloud data of the contour surface of the vacant area;
点云绝对数据计算单元,用于将SLAM点云数据和全局点云数据进行配准,将空缺区域轮廓面点云数据填补融合到所述全局点云数据中,得到隧道施工段点云绝对数据。The point cloud absolute data calculation unit is used to register the SLAM point cloud data and the global point cloud data, fill in the blank area contour surface point cloud data into the global point cloud data, and obtain the point cloud absolute data of the tunnel construction section. .
模型建立单元,用于利用隧道施工段点云绝对数据建立隧道施工轮廓面的三维模型。The model building unit is used to establish a three-dimensional model of the tunnel construction contour surface using absolute point cloud data of the tunnel construction section.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明在隧道等狭小空间的开阔区域利用全站扫描获取隧道施工轮廓面的部分点云数据后,利用小型手持SLAM设备进移动测量获取上台开挖面、仰拱等处的局部点云数据,进一步配准、拼接,实现了狭小空间点云绝对数据采集,及时、全面、准确获取了隧道施工中当前轮廓面信息,为有效控制隧道施工超挖等问题提供了高精度的数据支撑,实现了隧道施工的数字化管理,对施工的进度、质量能够产生积极效益。This invention uses full station scanning to obtain partial point cloud data of the tunnel construction contour surface in an open area of a narrow space such as a tunnel, and then uses a small handheld SLAM device to conduct mobile measurements to obtain local point cloud data of the upper excavation surface, inverts, etc. Through further registration and splicing, absolute data collection of point clouds in a small space was achieved, and the current contour surface information during tunnel construction was obtained in a timely, comprehensive and accurate manner. It provided high-precision data support for effectively controlling over-excavation and other issues in tunnel construction, and achieved Digital management of tunnel construction can have positive benefits on the progress and quality of construction.
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。Referring to the following description and drawings, specific embodiments of the invention are disclosed in detail and the manner in which the principles of the invention may be employed is indicated. It should be understood that embodiments of the invention are not thereby limited in scope.
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。Features described and/or illustrated with respect to one embodiment may be used in the same or similar manner in one or more other embodiments, in combination with features in other embodiments, or in place of features in other embodiments .
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。It should be emphasized that the term "comprising" when used herein refers to the presence of features, integers, steps or components but does not exclude the presence or addition of one or more other features, integers, steps or components.
附图说明Description of the drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are only These are some embodiments of the present invention. For those skilled in the art, other drawings can be obtained based on these drawings without exerting any creative effort.
图1为本发明一个实施例提供的狭小空间点云绝对数据采集方法方法步骤示意图;Figure 1 is a schematic diagram of the method steps of a narrow space point cloud absolute data acquisition method provided by an embodiment of the present invention;
图2为本发明一个实施例提供的设备模块示意图。Figure 2 is a schematic diagram of a device module provided by an embodiment of the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to enable those skilled in the art to better understand the technical solutions in the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described The embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts should fall within the scope of protection of the present invention.
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的另一个元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中另一个元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。It should be noted that when an element is referred to as being "disposed on" another element, it can be directly on the other element or the other element may be interveningly present. When an element is said to be "connected" to another element, it can be directly connected to the other element or it may be present between the other element. The terms "vertical", "horizontal", "left", "right" and similar expressions used herein are for illustrative purposes only and do not represent the only implementation manner.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field to which the invention belongs. The terminology used herein in the description of the invention is for the purpose of describing specific embodiments only and is not intended to limit the invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
请参阅图1,本发明一个实施例提供一种狭小空间点云绝对数据采集方法,包含以下步骤:Please refer to Figure 1. One embodiment of the present invention provides a point cloud absolute data acquisition method in a small space, which includes the following steps:
S1、在隧道施工段布置控制点;S1. Arrange control points in the tunnel construction section;
S2、在控制点处架设第一扫描仪,建立隧道施工全局坐标系下的测站,扫描获取施工轮廓面的全局点云数据;S2. Set up the first scanner at the control point, establish a measuring station in the global coordinate system of tunnel construction, and scan to obtain the global point cloud data of the construction contour surface;
S3、预处理全站扫描仪获取的全局点云数据,对比实际轮廓面,得到未能获取轮廓面点云数据的空缺区域;S3. Preprocess the global point cloud data obtained by the full-station scanner, compare it with the actual contour surface, and obtain the vacant areas where the point cloud data of the contour surface cannot be obtained;
S4、利用第二扫描仪移动获取包括空缺区域轮廓面点云数据的SLAM点云数据;S4. Use the second scanner to move to obtain SLAM point cloud data including the point cloud data of the contour surface of the vacant area;
S5、将SLAM点云数据和全局点云数据进行配准,将SLAM点云数据填补融合到所述全局点云数据中填补所述空缺区域的点云数据,得到隧道施工段点云绝对数据;S5. Register the SLAM point cloud data and the global point cloud data, fill and fuse the SLAM point cloud data into the global point cloud data to fill the point cloud data in the vacant area, and obtain the point cloud absolute data of the tunnel construction section;
S6、利用隧道施工段点云绝对数据建立隧道施工轮廓面的三维模型。S6. Use the point cloud absolute data of the tunnel construction section to establish a three-dimensional model of the tunnel construction contour surface.
在步骤S1中,通过导线测量将工程控制网引入到隧道施工开挖段,布置控制点。其中,控制点主要是用于架设扫描仪器,获取点云的在隧道施工坐标系中的绝对坐标值。控制点一般在隧道中央,便于架设全站扫描仪,视野开阔,能最大可能的观测到施工轮廓面。In step S1, the engineering control network is introduced into the tunnel construction excavation section through wire measurement, and control points are arranged. Among them, the control points are mainly used to set up scanning instruments and obtain the absolute coordinate values of the point cloud in the tunnel construction coordinate system. The control point is generally in the center of the tunnel, making it easy to set up a full-station scanner. The field of view is wide and the construction contour can be observed to the greatest extent possible.
所述第一扫描仪为全站扫描仪。在步骤S2中所获取的全局点云数据为隧道施工全局坐标系(绝对坐标系)下的点云数据。在步骤S3中,实际轮廓面为当前现实中的隧道轮廓面,通过人工对比,找到没有观测到的区域,诸如上台开挖面、仰拱等点云中的空洞区域。该空缺区域主要为全站扫描仪因为视角等问题而无法扫描到的区域。The first scanner is a full-station scanner. The global point cloud data obtained in step S2 is the point cloud data in the tunnel construction global coordinate system (absolute coordinate system). In step S3, the actual contour surface is the current tunnel contour surface in reality. Through manual comparison, unobserved areas are found, such as cavity areas in the point cloud such as the upper platform excavation surface and inverted arches. This vacant area is mainly an area that the full-station scanner cannot scan due to viewing angle and other issues.
所述第二扫描仪为手持SLAM设备。所述手持SLAM设备包括视觉SLAM和/或激光SLAM。所述步骤S4步骤实施为:手持SLAM设备移动获取轮廓面点云数据,并从不同角度、不同帧获取同一个位置的多个(SLAM)点云数据。手持SLAM设备在隧道中多位置多角度进行多帧拍摄扫描,尤其重点测量S3中得到的空缺区域的(SLAM)点云数据。手持SLAM精度低,但是其设备移动灵活,但其无法直接获取到点云的绝对坐标值,因此SLAM点云数据可以覆盖到全站扫描仪所无法扫描到的空缺区域,进而将SLAM点云数中的相关数据可填补到全站点云数据中,得到整体隧道施工段点云绝对数据。The second scanner is a handheld SLAM device. The handheld SLAM device includes visual SLAM and/or laser SLAM. The step S4 is implemented as follows: the handheld SLAM device moves to acquire contour surface point cloud data, and acquires multiple (SLAM) point cloud data at the same position from different angles and different frames. The handheld SLAM device performs multi-frame shooting and scanning at multiple locations and angles in the tunnel, with particular emphasis on measuring the (SLAM) point cloud data of the vacant areas obtained in S3. Handheld SLAM has low accuracy, but its equipment is flexible in movement, but it cannot directly obtain the absolute coordinates of the point cloud. Therefore, the SLAM point cloud data can cover the vacant areas that cannot be scanned by the full-station scanner, thereby converting the SLAM point cloud data into The relevant data in can be filled into the full-site cloud data to obtain absolute point cloud data of the entire tunnel construction section.
在本实施例中,所述将SLAM点云数据和全局点云数据进行配准的步骤具体实施为以下子步骤:In this embodiment, the step of registering SLAM point cloud data and global point cloud data is specifically implemented as the following sub-steps:
S51、将手持SLAM设备的SLAM点云数据进行各帧局部坐标系投影至SLAM点云空间的全局坐标系,然后完成定位拼接;S51. Project the SLAM point cloud data of the handheld SLAM device from the local coordinate system of each frame to the global coordinate system of the SLAM point cloud space, and then complete the positioning splicing;
S52、将全站扫描仪的全局点云数据和拼接后的SLAM点云数据进行配准,实现SLAM点云全局坐标系到隧道施工全局坐标系的投影转换。S52. Register the global point cloud data of the full-station scanner and the spliced SLAM point cloud data to realize the projection conversion from the SLAM point cloud global coordinate system to the tunnel construction global coordinate system.
所述步骤S52具体实施为:首先通过被测部位本身所具备的形态特性构建点云间的匹配对应,然后采用基于点SHOT特征的AO算法估计得到投影转换关系。其中,配准过程可不断迭代,由粗配准向精配准进化,最终通过判断准则停止。The specific implementation of step S52 is as follows: first, the matching correspondence between point clouds is constructed based on the morphological characteristics of the measured part itself, and then the AO algorithm based on point SHOT features is used to estimate and obtain the projection conversion relationship. Among them, the registration process can be continuously iterated, evolving from coarse registration to fine registration, and finally stopped through judgment criteria.
在步骤S51中,所述各帧局部坐标系与SLAM点云全局坐标系的投影转换关系为:In step S51, the projection transformation relationship between the local coordinate system of each frame and the global coordinate system of the SLAM point cloud is:
其中,x1、y1、z1为SLAM点云数据某一帧局部坐标系中的空间坐标;x2、y2、z2为SLAM 点云全局坐标系中的空间坐标;x0、y0、z0为SLAM点云数据某一帧局部坐标系原点相对于 SLAM点云全局坐标系原点的偏移;为SLAM点云数据某一帧局部坐标系向SLAM 点云全局坐标系转换的各坐标轴的旋转角度参数。 Among them, x 1 , y 1 , z 1 are the spatial coordinates in the local coordinate system of a certain frame of SLAM point cloud data; x 2 , y 2 , z 2 are the spatial coordinates in the global coordinate system of the SLAM point cloud; x 0 , y 0 , z 0 is the offset of the origin of the local coordinate system of a certain frame of SLAM point cloud data relative to the origin of the global coordinate system of the SLAM point cloud; It is the rotation angle parameter of each coordinate axis converted from the local coordinate system of a certain frame of SLAM point cloud data to the global coordinate system of SLAM point cloud.
在步骤S52中,所述SLAM点云全局坐标系到隧道施工全局坐标系的投影转换关系包括以下公式:In step S52, the projection transformation relationship between the SLAM point cloud global coordinate system and the tunnel construction global coordinate system includes the following formula:
其中,X、Y、Z为隧道施工全局坐标系中任意的空间坐标;x、y、z为SLAM点云全局坐 标系中的空间坐标;X0、Y0、Z0为SLAM点云全局坐标系原点相对于隧道施工全局坐标系原点 的偏移;为SLAM点云全局坐标系向隧道施工全局坐标系转换的各坐标轴的旋 转角度参数;为SLAM点云全局坐标系向隧道施工全局坐标系转换的尺度因子。 Among them, X, Y, Z are arbitrary spatial coordinates in the tunnel construction global coordinate system; x, y, z are spatial coordinates in the SLAM point cloud global coordinate system; X 0 , Y 0 , Z 0 are the SLAM point cloud global coordinates The offset of the system origin relative to the origin of the tunnel construction global coordinate system; It is the rotation angle parameter of each coordinate axis converted from the SLAM point cloud global coordinate system to the tunnel construction global coordinate system; It is the scale factor for converting the SLAM point cloud global coordinate system to the tunnel construction global coordinate system.
进一步地,所述步骤S5的将SLAM点云数据填补融合到所述全局点云数据中填补所述空缺区域的点云数据具体实施为:根据投影转换关系对拼接后的SLAM点云数据转换到隧道施工全局坐标系,并将转换后的SLAM数据填补到全局点云数据中。Further, the specific implementation of step S5 of fusing the SLAM point cloud data filling into the global point cloud data to fill the point cloud data in the vacant area is: converting the spliced SLAM point cloud data to Tunnel construction global coordinate system, and fill the converted SLAM data into the global point cloud data.
在该步骤中,以站扫数据(全局点云数据)为基准,将SLAM点云数据融入到进去,实现SLAM点云数据从相对坐标到绝对坐标的转换,进而融合到全局点云数据中,形成整体隧道施工段点云绝对数据。In this step, the station scan data (global point cloud data) is used as the benchmark, and the SLAM point cloud data is integrated into it to realize the conversion of the SLAM point cloud data from relative coordinates to absolute coordinates, and then integrate it into the global point cloud data. The point cloud absolute data of the overall tunnel construction section is formed.
为提高点云配准的精度,还包括步骤:首先在现场布置一定数量(两个或更多个)的标靶,然后利用全局点云数据和SLAM点云数据中标靶的同名特征点进行配准。相应的,在步骤S51中,标靶的同名特征点可以用来确定不同帧的SLAM点云数据局部坐标系原点相对于SLAM点云空间的全局坐标系原点的偏移,而在步骤S52中,标靶的同名特征点可以用来确定SLAM点云空间的全局坐标系原点相对于隧道施工全局坐标系原点的偏移。In order to improve the accuracy of point cloud registration, it also includes the following steps: first arrange a certain number of targets (two or more) on site, and then use the global point cloud data and the same-name feature points of the targets in the SLAM point cloud data for registration. allow. Correspondingly, in step S51, the same-named feature points of the target can be used to determine the offset of the origin of the local coordinate system of the SLAM point cloud data of different frames relative to the origin of the global coordinate system of the SLAM point cloud space, and in step S52, The same-named feature points of the target can be used to determine the offset of the origin of the global coordinate system of the SLAM point cloud space relative to the origin of the global coordinate system of the tunnel construction.
进而,大小和形状特征已知的标靶,通过算法可以精确提取到标靶的特征点,然后利用全站扫描和SLAM两种点云间标靶的同名特征点进行配准,能有效提高配准精度。Furthermore, for targets with known size and shape characteristics, the target's feature points can be accurately extracted through the algorithm, and then the target's feature points of the same name between full-station scanning and SLAM point clouds are used for registration, which can effectively improve the accuracy of the alignment. Accuracy.
如图2所示,本发明一个实施例中还提供一种狭小空间点云绝对数据采集及模型建立设备,包括:As shown in Figure 2, one embodiment of the present invention also provides a narrow space point cloud absolute data collection and model establishment device, including:
控制点布置单元,用于在隧道施工段布置控制点;Control point arrangement unit, used to arrange control points in the tunnel construction section;
全局点云数据获取单元,用于在控制点处架设第一扫描仪,建立隧道施工全局坐标系下的测站,扫描获取施工轮廓面的全局点云数据;The global point cloud data acquisition unit is used to set up the first scanner at the control point, establish a measuring station in the global coordinate system of tunnel construction, and scan and obtain the global point cloud data of the construction contour surface;
空缺区域获取单元,用于预处理全站扫描仪获取的全局点云数据,对比实际轮廓面,得到未能获取轮廓面点云数据的空缺区域;The vacant area acquisition unit is used to preprocess the global point cloud data obtained by the full-station scanner, compare it with the actual contour surface, and obtain the vacant area where the contour surface point cloud data cannot be obtained;
SLAM点云数据获取单元,利用第二扫描仪移动获取包括空缺区域轮廓面点云数据的SLAM点云数据;The SLAM point cloud data acquisition unit uses the second scanner to move to acquire SLAM point cloud data including the point cloud data of the contour surface of the vacant area;
点云绝对数据计算单元,用于将SLAM点云数据和全局点云数据进行配准,将空缺区域轮廓面点云数据填补融合到所述全局点云数据中,得到隧道施工段点云绝对数据;The point cloud absolute data calculation unit is used to register the SLAM point cloud data and the global point cloud data, fill in the blank area contour surface point cloud data into the global point cloud data, and obtain the point cloud absolute data of the tunnel construction section. ;
模型建立单元,用于利用隧道施工段点云绝对数据建立隧道施工轮廓面的三维模型。The model building unit is used to establish a three-dimensional model of the tunnel construction contour surface using absolute point cloud data of the tunnel construction section.
多个元件、成分、部件或步骤能够由单个集成元件、成分、部件或步骤来提供。另选地,单个集成元件、成分、部件或步骤可以被分成分离的多个元件、成分、部件或步骤。用来描述元件、成分、部件或步骤的公开“一”或“一个”并不说为了排除其他的元件、成分、部件或步骤。Multiple elements, components, components or steps can be provided by a single integrated element, component, component or step. Alternatively, a single integrated element, component, component or step may be divided into separate multiple elements, components, components or steps. The word "a" or "an" used to describe an element, component, component or step is not intended to exclude other elements, components, components or steps.
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。因此,本教导的范围不应该参照上述描述来确定,而是应该参照所附权利要求以及这些权利要求所拥有的等价物的全部范围来确定。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。在前述权利要求中省略这里公开的主题的任何方面并不是为了放弃该主体内容,也不应该认为发明人没有将该主题考虑为所公开的发明主题的一部分。It should be understood that the above description is for purposes of illustration rather than limitation. Many embodiments and many applications beyond the examples provided will be apparent to those skilled in the art from reading the above description. The scope of the present teachings, therefore, should be determined, not with reference to the foregoing description, but rather with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. For purposes of comprehensiveness, the disclosures of all articles and references, including patent applications and publications, are hereby incorporated by reference. The omission of any aspect of the subject matter disclosed herein from the preceding claims is not intended to be a disclaimer of that subject matter, nor should it be deemed that the inventors failed to consider such subject matter to be part of the disclosed inventive subject matter.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311809847.XA CN117470106B (en) | 2023-12-27 | 2023-12-27 | Absolute data acquisition method of point cloud in narrow space and model building equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311809847.XA CN117470106B (en) | 2023-12-27 | 2023-12-27 | Absolute data acquisition method of point cloud in narrow space and model building equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117470106A true CN117470106A (en) | 2024-01-30 |
CN117470106B CN117470106B (en) | 2024-04-12 |
Family
ID=89635066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311809847.XA Active CN117470106B (en) | 2023-12-27 | 2023-12-27 | Absolute data acquisition method of point cloud in narrow space and model building equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117470106B (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104075691A (en) * | 2014-07-09 | 2014-10-01 | 广州市城市规划勘测设计研究院 | Method for quickly measuring topography by using ground laser scanner based on CORS (Continuous Operational Reference System) and ICP (Iterative Closest Point) algorithms |
CN106803267A (en) * | 2017-01-10 | 2017-06-06 | 西安电子科技大学 | Indoor scene three-dimensional rebuilding method based on Kinect |
CN108180856A (en) * | 2018-01-30 | 2018-06-19 | 中国地质大学(武汉) | A kind of tunnel deformation monitoring method, equipment and storage device based on laser data |
CN109993697A (en) * | 2019-03-19 | 2019-07-09 | 中交第二航务工程局有限公司 | A kind of method of tunnel three-dimensional laser data prediction |
CN110440711A (en) * | 2019-08-15 | 2019-11-12 | 郑州联睿电子科技有限公司 | A kind of cable tunnel there-dimensional laser scanning device and its location method |
CN210321636U (en) * | 2019-08-15 | 2020-04-14 | 郑州联睿电子科技有限公司 | Three-dimensional laser scanning device for cable tunnel |
CN111121733A (en) * | 2019-12-30 | 2020-05-08 | 青岛国信海天中心建设有限公司 | Construction quality detection method and system based on BIM and three-dimensional laser scanning |
WO2020114466A1 (en) * | 2018-12-05 | 2020-06-11 | 中国铁建重工集团股份有限公司 | Tunnel point cloud data analysis method and system |
WO2021212844A1 (en) * | 2020-04-21 | 2021-10-28 | 广东博智林机器人有限公司 | Point cloud stitching method and apparatus, and device and storage device |
CN114459378A (en) * | 2022-02-16 | 2022-05-10 | 河南城建学院 | A three-dimensional laser scanning subsection measurement method and measurement system for tunnel engineering |
CN115240047A (en) * | 2022-08-04 | 2022-10-25 | 中国矿业大学(北京) | Laser SLAM method and system fusing visual loopback detection |
-
2023
- 2023-12-27 CN CN202311809847.XA patent/CN117470106B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104075691A (en) * | 2014-07-09 | 2014-10-01 | 广州市城市规划勘测设计研究院 | Method for quickly measuring topography by using ground laser scanner based on CORS (Continuous Operational Reference System) and ICP (Iterative Closest Point) algorithms |
CN106803267A (en) * | 2017-01-10 | 2017-06-06 | 西安电子科技大学 | Indoor scene three-dimensional rebuilding method based on Kinect |
CN108180856A (en) * | 2018-01-30 | 2018-06-19 | 中国地质大学(武汉) | A kind of tunnel deformation monitoring method, equipment and storage device based on laser data |
WO2020114466A1 (en) * | 2018-12-05 | 2020-06-11 | 中国铁建重工集团股份有限公司 | Tunnel point cloud data analysis method and system |
CN109993697A (en) * | 2019-03-19 | 2019-07-09 | 中交第二航务工程局有限公司 | A kind of method of tunnel three-dimensional laser data prediction |
CN110440711A (en) * | 2019-08-15 | 2019-11-12 | 郑州联睿电子科技有限公司 | A kind of cable tunnel there-dimensional laser scanning device and its location method |
CN210321636U (en) * | 2019-08-15 | 2020-04-14 | 郑州联睿电子科技有限公司 | Three-dimensional laser scanning device for cable tunnel |
CN111121733A (en) * | 2019-12-30 | 2020-05-08 | 青岛国信海天中心建设有限公司 | Construction quality detection method and system based on BIM and three-dimensional laser scanning |
WO2021212844A1 (en) * | 2020-04-21 | 2021-10-28 | 广东博智林机器人有限公司 | Point cloud stitching method and apparatus, and device and storage device |
CN114459378A (en) * | 2022-02-16 | 2022-05-10 | 河南城建学院 | A three-dimensional laser scanning subsection measurement method and measurement system for tunnel engineering |
CN115240047A (en) * | 2022-08-04 | 2022-10-25 | 中国矿业大学(北京) | Laser SLAM method and system fusing visual loopback detection |
Non-Patent Citations (2)
Title |
---|
尤相骏;詹登峰;: "一种新型三维激光扫描隧道测量点云坐标定位方法的精度评估", 测绘通报, no. 04, 25 April 2017 (2017-04-25) * |
张瀚;高飞;: "一种点云配准新方法在隧道变形监测中的应用研究", 信息通信, no. 05, 15 May 2016 (2016-05-15) * |
Also Published As
Publication number | Publication date |
---|---|
CN117470106B (en) | 2024-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104656097B (en) | Caliberating device based on rotary two-dimensional laser three-dimensional reconfiguration system and method | |
Arias et al. | Control of structural problems in cultural heritage monuments using close-range photogrammetry and computer methods | |
CN101936761B (en) | Visual measuring method of stockpile in large-scale stock ground | |
CN101566461B (en) | Method for quickly measuring blade of large-sized water turbine | |
CN112629431B (en) | Civil structure deformation monitoring method and related equipment | |
Armesto et al. | FEM modeling of structures based on close range digital photogrammetry | |
CN112282847B (en) | Deformation monitoring method for underground coal mine roadway | |
CN106886659A (en) | The virtual pre-splicing and detection method of steel structure bridge based on 3 D laser scanning and cloud platform | |
CN115203778A (en) | Tunnel overbreak and underexcavation detection method and device, terminal equipment and storage medium | |
CN101424551A (en) | Active vision non-contact type servomechanism parameter measurement method and apparatus thereof | |
WO2022126339A1 (en) | Method for monitoring deformation of civil structure, and related device | |
CN112884647A (en) | Embedded part construction positioning method based on BIM point cloud technology guidance | |
Kong et al. | Application of 3D laser scanning technology in engineering field | |
CN109341603A (en) | Method for monitoring the flatness of blasting excavation surface based on laser point cloud technology | |
CN116934705A (en) | A flatness detection method based on three-dimensional laser scanning | |
CN114993203A (en) | Tunnel deformation monitoring method based on unequal thickness of primary support | |
CN118274784A (en) | Road surface non-uniform settlement detection method and device based on high-density gray point cloud | |
CN116338720A (en) | Three-dimensional scanning system and method for stock yard | |
CN110672622A (en) | Tunnel defect rapid positioning method based on point cloud data and total station | |
CN115930800B (en) | A monitoring method of tunnel face displacement field based on 3D laser point cloud | |
CN117470106A (en) | Narrow space point cloud absolute data acquisition method and model building equipment | |
CN108592789A (en) | A kind of steel construction factory pre-assembly method based on BIM and machine vision technique | |
Ren et al. | Height deviation detection of rail bearing platform on high-speed railway track slab based on digital image correlation | |
CN117671161A (en) | Method for finely calculating concrete volume among different working procedures of tunnel and computer storage medium | |
CN113048956B (en) | Monitoring method and system for steel structure construction based on three-dimensional scanning technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: 230000 No.96, Wangjiang East Road, Hefei City, Anhui Province Applicant after: CHINA TIESIJU CIVIL ENGINEERING GROUP Co.,Ltd. Applicant after: THE SECOND CONSTRUCTION CO., LTD. OF CTCE Group Applicant after: WUHAN University Address before: 215000 No. 9, litanghe Road, Xiangcheng District, Suzhou City, Jiangsu Province Applicant before: THE SECOND CONSTRUCTION CO., LTD. OF CTCE Group Country or region before: China Applicant before: CHINA TIESIJU CIVIL ENGINEERING GROUP Co.,Ltd. Applicant before: WUHAN University |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Junmin Inventor after: Xuan Rui Inventor after: Ye Zun Inventor after: Zuo Yanyan Inventor after: Chen Xiao Inventor after: Ding Zhiping Inventor after: Peng Bo Inventor after: Zhang Wen Inventor after: Wang Lipeng Inventor after: Liu Wensheng Inventor after: Wu Guojun Inventor after: Yu Anbin Inventor after: Du Qiyi Inventor after: Zhu Lirong Inventor before: Li Junmin Inventor before: Yi Rui Inventor before: Ye Zun Inventor before: Zuo Yanyan Inventor before: Chen Xiao Inventor before: Ding Zhiping Inventor before: Peng Bo Inventor before: Zhang Wen Inventor before: Wang Lipeng Inventor before: Liu Wensheng Inventor before: Wu Guojun Inventor before: Yu Anbin Inventor before: Du Qiyi Inventor before: Zhu Lirong |