CN117388323A - 一种分离元件阻抗对湿度和间隙响应的方法 - Google Patents

一种分离元件阻抗对湿度和间隙响应的方法 Download PDF

Info

Publication number
CN117388323A
CN117388323A CN202311350893.8A CN202311350893A CN117388323A CN 117388323 A CN117388323 A CN 117388323A CN 202311350893 A CN202311350893 A CN 202311350893A CN 117388323 A CN117388323 A CN 117388323A
Authority
CN
China
Prior art keywords
gap
sensitive
layer
humidity
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311350893.8A
Other languages
English (en)
Inventor
王璐珩
阳杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202311350893.8A priority Critical patent/CN117388323A/zh
Publication of CN117388323A publication Critical patent/CN117388323A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/048Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance for determining moisture content of the material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开一种分离元件阻抗对湿度和间隙响应的方法,在衬底层上依次镀螺旋式间隙单敏感层、间隙单敏感绝缘层、间隙单敏感电极层、引线层、间隙湿度双敏感绝缘层、间隙湿度双敏感电极层和螺旋式间隙湿度双敏感层得到能够同时响应湿度激励和间隙激励的单一敏感元件,当敏感元件被同时施加湿度激励和间隙激励时,所述间隙湿度双敏感电极层和引线层之间等效阻抗变化量与所述间隙单敏感电极层和引线层之间等效阻抗变化量的差值为单一的所述湿度激励引起的敏感元件阻抗响应,从而分离湿度响应和间隙响应。该双分离元件阻抗对湿度和间隙响应的方法,不仅能够同时响应湿度激励和间隙激励,而且能够分离响应,具有用于开发湿度和间隙双敏感探头的潜力。

Description

一种分离元件阻抗对湿度和间隙响应的方法
技术领域
本发明涉及传感器领域,特别是涉及湿度传感器领域。
背景技术
多模态检测和复合传感是未来传感器发展的重要方向。现代工业设备内部狭小层间的间隙关乎设备的性能和安全,因而有间隙检测的需求。同时,现代工业设备内部的湿度较高可能会引起设备生锈和短路,因而有湿度检测的需求。所以,如何实现现代工业设备内部的间隙和湿度两个变量的同时检测是亟需解决的问题。传统的非接触式间隙敏感元件的探头敏感层材料一般由金属制成,不具备湿度敏感功能。而传统的湿度传感器是在叉指电极上涂覆敏感材料呈三明治结构,不具备非接触间隙敏感功能。所以两个变量同时检测需要分别安装两个传感器,这样的方案存在局限。一方面,面对不同测量需求,需要频繁切换不同敏感元件较为繁琐;另外一方面,面对多变量同时测量需求,需要安装多个敏感元件分别测量,成本较高且安装环境受限。尤其在狭小的被测环境,内部结构复杂,难以实现多敏感元件的同时安装和同时检测。所以研究一种能够同时测量湿度和非接触间隙的单一敏感元件及元件制备方法是非常有必要的。
发明内容
为了解决现有敏感元件功能单一,多功能敏感元件响应分离困难的问题,本发明提供一种分离元件阻抗对湿度和间隙响应的方法,在衬底层上依次镀螺旋式间隙单敏感层、间隙单敏感绝缘层、间隙单敏感电极层、引线层、间隙湿度双敏感绝缘层、间隙湿度双敏感电极层和螺旋式间隙湿度双敏感层得到能够同时响应湿度激励和间隙激励且便于响应分离的单一敏感元件;且所述螺旋式间隙单敏感层和所述螺旋式间隙湿度双敏感层的平面螺旋结构的线宽、线距和匝数均相同;当所述敏感元件被施加间隙激励并通入交流电,所述螺旋式间隙单敏感层产生间隙敏感效应,生成感应磁场改变所述间隙单敏感电极层和所述引线层之间等效阻抗,响应所述间隙激励;同时所述螺旋式间隙湿度双敏感层也产生间隙敏感效应,生成感应磁场改变所述间隙湿度双敏感电极层和所述引线层之间等效阻抗,响应所述间隙激励;而当所述敏感元件被施加湿度激励,所述螺旋式间隙单敏感层不响应湿度激励,仅螺旋式间隙湿度双敏感层响应湿度激励,吸附水分子改变电导率,进而改变所述间隙湿度双敏感电极层和所述引线层之间等效阻抗;当敏感元件被同时施加湿度激励和间隙激励时,所述间隙湿度双敏感电极层和所述引线层之间等效阻抗变化来同时响应湿度激励和间隙激励,而间隙单敏感电极层和所述引线层之间等效阻抗变化仅仅响应间隙激励,所以所述间隙湿度双敏感电极层和所述引线层之间等效阻抗变化量与所述间隙单敏感电极层和所述引线层之间等效阻抗变化量的差值为单一的所述湿度激励引起的敏感元件阻抗响应,从而分离湿度响应和间隙响应。
在其中一个实施例中,所述衬底层材料为陶瓷,所述间隙单敏感绝缘层和所述间隙湿度双敏感绝缘层的材料为Al2O3,所述螺旋式间隙单敏感层和所述螺旋式间隙湿度双敏感层的材料为ZnO;所述引线层、所述间隙敏感电极层和所述间隙湿度双敏感电极层材料为ZnO。
在其中一个实施例中,由于被所述间隙单敏感绝缘层和所述间隙湿度双敏感绝缘层覆盖,所述螺旋式间隙单敏感层隔绝了空气水分子的接触。
在其中一个实施例中,所述在衬底层上依次镀螺旋式间隙单敏感层、间隙单敏感绝缘层、间隙单敏感电极层、引线层、间隙湿度双敏感绝缘层、间隙湿度双敏感电极层和螺旋式间隙湿度双敏感层得到能够同时响应湿度激励和间隙激励且便于响应分离的单一敏感元件;具体为:
(1)将衬底及不锈钢掩膜板置于去离子水、丙酮内超声清洗后,经氮气吹干备用;
(2)磁控溅射制备螺旋式间隙单敏感层;
(3)在所述螺旋式间隙单敏感层上物理气相沉积制备间隙单敏感绝缘层;
(4)在所述间隙单敏感绝缘层上磁控溅射制备所述间隙敏感电极层;
(5)在所述间隙单敏感绝缘层和所述间隙敏感电极层上磁控溅射引线层;
(6)在所述引线层和所述间隙单敏感绝缘层上通过物理气相沉积间隙湿度双敏感绝缘层;
(7)在所述间隙湿度双敏感绝缘层上磁控溅射制备间隙湿度双敏感电极层;
(8)在所述间隙湿度双敏感电极层和所述间隙湿度双敏感绝缘层上磁控溅射制备螺旋式间隙湿度双敏感层;
(9)将步骤(8)所制备的敏感元件退火处理;
从而制备得到呈现双层螺旋结构的便于湿度和间隙响应分离的敏感元件。
在其中一个实施例,间隙湿度双敏感绝缘层和间隙单敏感绝缘层的沉积时间为1个小时以上。
在其中一个实施例,间隙湿度双敏感层和间隙单敏感层的溅射时间相同。
上述分离元件阻抗对湿度和间隙响应的方法的有益效果:
(1)螺旋式间隙湿度双敏感层能够同时响应湿度和间隙激励。
(2)螺旋式间隙单敏感层能够非接触地响应单一间隙激励。
(3)独特的双层螺旋结构便于通过不同引线之间阻抗变化来分离湿度响应和间隙响应。
(4)工艺简单,过程可控,敏感元件灵敏度较高,且通过蒸发镀膜工艺制备绝缘层薄膜确保敏感层之间的绝缘性,通过磁控溅射镀膜工艺制备的间隙敏感电极层、间隙湿度双敏感电极层和引线层材料的一致性,避免引入金属导体,干扰涡流磁场。
附图说明
图1是本发明的元件结构示意及制备流程图;
附图标记:a螺旋式间隙单敏感层;b间隙单敏感绝缘层;c间隙单敏感电极层;d引线层;e湿度间隙双敏感电极层;f间隙湿度双敏感绝缘层;g间隙湿度双敏感层;h衬底层。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述,并给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
一种分离元件阻抗对湿度和间隙响应的方法,具体为:
(1)将陶瓷衬底及不锈钢掩膜板置于去离子水、丙酮内超声清洗后,经氮气吹干备用;
(2)在陶瓷衬底表面,通过不锈钢掩膜板和ZnO靶材磁控溅射制备呈现螺旋结构的螺旋式间隙单敏感层;
(3)在所述螺旋式间隙单敏感层上通过不锈钢掩模物理气相沉积制备Al2O3材料的间隙单敏感绝缘层;
(4)在所述间隙单敏感绝缘层上通过ZnO靶材和不锈钢掩模磁控溅射制备所述间隙敏感电极层;
(5)在所述间隙单敏感绝缘层和所述间隙敏感电极层上通过ZnO靶材和不锈钢掩模磁控溅射引线层;
(6)在所述引线层和所述间隙单敏感绝缘层上通过不锈钢掩模物理气相沉积制备Al2O3材料的间隙湿度双敏感绝缘层;
(7)在所述间隙湿度双敏感绝缘层上通过ZnO靶材磁控溅射制备间隙湿度双敏感电极层;
(8)在所述间隙湿度双敏感电极层和所述间隙湿度双敏感绝缘层上通过ZnO靶材磁控溅射制备螺旋式间隙湿度双敏感层;
(9)将步骤(8)所制备的敏感元件在高温环境退火处理;
从而制备得到呈现双层螺旋结构的便于湿度和间隙响应分离的敏感元件。如图1所示在衬底层h上依次镀螺旋式间隙单敏感层a、间隙单敏感绝缘层b、间隙单敏感电极层c、引线层d、间隙湿度双敏感绝缘层e、间隙湿度双敏感电极层f和螺旋式间隙湿度双敏感层g得到能够同时响应湿度激励和间隙激励且便于响应分离的单一敏感元件;所述衬底层材料为陶瓷,所述间隙单敏感绝缘层和所述间隙湿度双敏感绝缘层的材料为Al2O3,所述螺旋式间隙单敏感层和所述螺旋式间隙湿度双敏感层的材料为ZnO;所述引线层、所述间隙敏感电极层和所述间隙湿度双敏感电极层材料为ZnO。且所述螺旋式间隙单敏感层和所述螺旋式间隙湿度双敏感层的平面螺旋结构的线宽、线距和匝数均相同;当所述敏感元件被施加间隙激励并通入交流电,所述螺旋式间隙单敏感层产生间隙敏感效应,生成感应磁场改变所述间隙单敏感电极层和所述引线层之间等效阻抗,响应所述间隙激励;同时所述螺旋式间隙湿度双敏感层也产生间隙敏感效应,生成感应磁场改变所述间隙湿度双敏感电极层和所述引线层之间等效阻抗,响应所述间隙激励;而当所述敏感元件被施加湿度激励,由于被所述间隙单敏感绝缘层和所述间隙湿度双敏感绝缘层覆盖,所述螺旋式间隙单敏感层隔绝了空气水分子的接触。所述螺旋式间隙单敏感层不响应湿度激励,仅螺旋式间隙湿度双敏感层响应湿度激励,吸附水分子改变电导率,进而改变所述间隙湿度双敏感电极层和所述引线层之间等效阻抗;当敏感元件被同时施加湿度激励和间隙激励时,所述间隙湿度双敏感电极层和所述引线层之间等效阻抗变化来同时响应湿度激励和间隙激励,而间隙单敏感电极层和所述引线层之间等效阻抗变化仅仅响应间隙激励,所以所述间隙湿度双敏感电极层和所述引线层之间等效阻抗变化量与所述间隙单敏感电极层和所述引线层之间等效阻抗变化量的差值为单一的所述湿度激励引起的敏感元件阻抗响应,从而分离湿度响应和间隙响应。
具体实施例一、
一种分离元件阻抗对湿度和间隙响应的方法,具体为:
(1)将陶瓷衬底层及不锈钢掩膜板,均放置在去离子水、丙酮内超声清洗10分钟,经氮气吹干备用。
(2)将尺寸为50mm×38.5mm×1mm的陶瓷衬底及外尺寸为50mm×38.5mm×0.05mm的不锈钢掩膜同时固定放置在磁控溅射工作腔内,靶材为ZnO,射频溅射,调节本底真空8E-4Pa,溅射压强0.5Pa,功率100W,通入流量40sccm的氩气,样品台转速10r/min;通过磁控溅射15分钟制备ZnO材料的螺旋式间隙单敏感层。
(3)将步骤(2)所制备的样片及外尺寸为50mm×38.5mm×0.05mm的不锈钢掩膜同时固定放置在真空镀膜腔内,通过物理气相沉积制备2nm厚的Al2O3材料的间隙单敏感绝缘层;蒸发靶材为Al3O2,加热到200℃,保持30分钟,然后充气,取样。
(4)将步骤(3)所制备的样片及外尺寸为50mm×38.5mm×0.05mm的不锈钢掩膜同时放置在磁控溅射腔内,溅射5分钟制备ZnO材料的间隙敏感电极层;
(5)然后将步骤(4)所制备的样片及外尺寸为50mm×38.5mm×0.05mm的不锈钢掩膜同时放置在磁控溅射腔内,溅射5分钟制备ZnO材料的及引线层。
(6)将步骤(5)所制备的样片及外尺寸为50mm×38.5mm×0.05mm掩膜V固定放置在真空镀膜腔内,蒸发靶材为Al3O2,将样片及掩膜加热到200℃,保持30分钟,然后充气,制备2nm厚的Al3O2材料的间隙湿度双敏感绝缘层,取样。
(7)将步骤(6)所制备样片通过外尺寸为50mm×38.5mm×0.05mm不锈钢掩膜Ⅲ磁控溅射5分钟制备间隙湿度双敏感电极层。
(8)将步骤(7)制备的样片及外尺寸为50mm×38.5mm×0.05mm的掩膜固定放置在磁控溅射工作腔内,靶材为ZnO,射频溅射,调节本底真空8E-4Pa,溅射压强0.5Pa,功率100W,通入流量40sccm的氩气,样品台转速10r/min;上磁控溅射15分钟制备ZnO材料的螺旋式间隙湿度双敏感层。
(9)在400℃-450℃环境退火6个小时以上。
从而制备得到呈现双层螺旋结构的便于湿度和间隙响应分离的敏感元件。当敏感元件置于湿度激励(11%RH)和304#不锈钢金属目标物构成的间隙激励(1mm)下,将TH2822E手持式LCR表阻抗分析仪的正负接线夹具分别连接所述间隙湿度双敏感电极层和所述引线层,1MHz,5V交流激励下测得等效阻抗值3.5×106Ω。
将TH2822E手持式LCR表阻抗分析仪的正负接线夹具分别连接所述间隙单敏感电极层和所述引线层,1MHz,5V交流激励下测得等效阻抗值1.6×106Ω。
那么敏感元件的在湿度和间隙双激励下,5v,1MHz电压输入时,阻抗响应为3.5×106Ω。
单一的湿度激励(11%RH)下,敏感元件5v,1MHz电压输入时,阻抗响应为1.9×106Ω。
单一的间隙激励(1mm)下,敏感元件5v,1MHz电压输入时,阻抗响应为1.6×106Ω。
从而实现敏感元件同时响应湿度激励和间隙激励,且实现湿度和间隙响应分离。
具体实施例二、
一种分离元件阻抗对湿度和间隙响应的方法,具体为:
(1)将陶瓷衬底层及不锈钢掩膜板,均放置在去离子水、丙酮内超声清洗15分钟,经氮气吹干备用。
(2)将尺寸为50mm×38.5mm×1mm的陶瓷衬底及外尺寸为50mm×38.5mm×0.05mm的不锈钢掩膜同时固定放置在磁控溅射工作腔内,靶材为ZnO,射频溅射,调节本底真空8E-4Pa,溅射压强0.5Pa,功率120W,通入流量40sccm的氩气,样品台转速8r/min;通过磁控溅射15分钟制备ZnO材料的螺旋式间隙单敏感层。
(3)将步骤(2)所制备的样片及外尺寸为50mm×38.5mm×0.05mm的不锈钢掩膜同时固定放置在真空镀膜腔内,通过物理气相沉积制备2nm厚的Al2O3材料的间隙单敏感绝缘层;蒸发靶材为Al3O2,加热到200℃,保持30分钟,然后充气,取样。
(4)将步骤(3)所制备的样片及外尺寸为50mm×38.5mm×0.05mm的不锈钢掩膜同时放置在磁控溅射腔内,溅射5分钟制备ZnO材料的间隙敏感电极层;
(5)然后将步骤(4)所制备的样片及外尺寸为50mm×38.5mm×0.05mm的不锈钢掩膜同时放置在磁控溅射腔内,溅射5分钟制备ZnO材料的及引线层。
(6)将步骤(5)所制备的样片及外尺寸为50mm×38.5mm×0.05mm掩膜V固定放置在真空镀膜腔内,蒸发靶材为Al3O2,将样片及掩膜加热到200℃,保持30分钟,然后充气,制备2nm厚的Al3O2材料的间隙湿度双敏感绝缘层,取样。
(7)将步骤(6)所制备样片通过外尺寸为50mm×38.5mm×0.05mm不锈钢掩膜Ⅲ磁控溅射5分钟制备间隙湿度双敏感电极层。
(8)将步骤(7)制备的样片及外尺寸为50mm×38.5mm×0.05mm的掩膜固定放置在磁控溅射工作腔内,靶材为ZnO,射频溅射,调节本底真空8E-4Pa,溅射压强0.5Pa,功率120W,通入流量40sccm的氩气,样品台转速10r/min;上磁控溅射15分钟制备ZnO材料的螺旋式间隙湿度双敏感层。
(9)在600℃环境退火4个小时以上。
从而制备得到呈现双层螺旋结构的便于湿度和间隙响应分离的敏感元件。当敏感元件置于湿度激励(98%RH)和304#不锈钢金属目标物构成的间隙激励(2mm)下,将TH2822E手持式LCR表的正负接线夹具分别连接所述间隙湿度双敏感电极层和所述引线层,1MHz,5V交流激励下测得等效阻抗值1.7×106Ω。
将TH2822E手持式LCR表阻抗分析仪的正负接线夹具分别连接所述间隙单敏感电极层和所述引线层,1MHz,5V交流激励下测得等效阻抗值3×105Ω。
那么敏感元件的在湿度和间隙双激励下,5v,1MHz电压输入时,阻抗响应为1.7×106Ω。
单一的湿度激励(98%RH)下,敏感元件5v,1MHz电压输入时,阻抗响应为1.4×106Ω。
单一的间隙激励(2mm)下,敏感元件5v,1MHz电压输入时,阻抗响应为3×105Ω。
从而实现敏感元件同时响应湿度激励和间隙激励,且实现湿度和间隙响应分离。
具体实施例三、
一种分离元件阻抗对湿度和间隙响应的方法,具体为:
(1)将陶瓷衬底层及不锈钢掩膜板,均放置在去离子水、丙酮内超声清洗10分钟,经氮气吹干备用。
(2)将尺寸为50mm×38.5mm×1mm的陶瓷衬底及外尺寸为50mm×38.5mm×0.05mm的不锈钢掩膜同时固定放置在磁控溅射工作腔内,靶材为ZnO,射频溅射,调节本底真空8E-4Pa,溅射压强0.5Pa,功率50W,通入流量40sccm的氩气,样品台转速8r/min;通过磁控溅射15分钟制备ZnO材料的螺旋式间隙单敏感层。
(3)将步骤(2)所制备的样片及外尺寸为50mm×38.5mm×0.05mm的不锈钢掩膜同时固定放置在真空镀膜腔内,通过物理气相沉积制备2nm厚的Al2O3材料的间隙单敏感绝缘层;蒸发靶材为Al3O2,加热到200℃,保持30分钟,然后充气,取样。
(4)将步骤(3)所制备的样片及外尺寸为50mm×38.5mm×0.05mm的不锈钢掩膜同时放置在磁控溅射腔内,溅射5分钟制备ZnO材料的间隙敏感电极层;
(5)然后将步骤(4)所制备的样片及外尺寸为50mm×38.5mm×0.05mm的不锈钢掩膜同时放置在磁控溅射腔内,溅射5分钟制备ZnO材料的及引线层。
(6)将步骤(5)所制备的样片及外尺寸为50mm×38.5mm×0.05mm掩膜V固定放置在真空镀膜腔内,蒸发靶材为Al3O2,将样片及掩膜加热到200℃,保持30分钟,然后充气,制备2nm厚的Al3O2材料的间隙湿度双敏感绝缘层,取样。
(7)将步骤(6)所制备样片通过外尺寸为50mm×38.5mm×0.05mm不锈钢掩膜Ⅲ磁控溅射5分钟制备间隙湿度双敏感电极层。
(8)将步骤(7)制备的样片及外尺寸为50mm×38.5mm×0.05mm的掩膜固定放置在磁控溅射工作腔内,靶材为ZnO,射频溅射,调节本底真空8E-4Pa,溅射压强0.5Pa,功率50W,通入流量40sccm的氩气,样品台转速8r/min;上磁控溅射15分钟制备ZnO材料的螺旋式间隙湿度双敏感层。
(9)在500℃环境退火5个小时以上。
从而制备得到呈现双层螺旋结构的便于湿度和间隙响应分离的敏感元件。当敏感元件置于湿度激励(75%RH)和304#不锈钢金属目标物构成的间隙激励(1.5mm)下,将TH2822E手持式LCR表阻抗分析仪的正负接线夹具分别连接所述间隙湿度双敏感电极层和所述引线层,10MHz,5V交流激励下测得等效阻抗值2.3×105Ω。
将TH2822E手持式LCR表阻抗分析仪的正负接线夹具分别连接所述间隙单敏感电极层和所述引线层,10MHz,5V交流激励下测得等效阻抗值8×104Ω。
那么敏感元件的在湿度和间隙双激励下,5v,10MHz电压输入时,阻抗响应为2.3×105Ω。
单一的湿度激励(75%RH)下,敏感元件5v,10MHz电压输入时,阻抗响应为1.5×105Ω。
单一的间隙激励(1.5mm)下,敏感元件5v,10MHz电压输入时,阻抗响应8×104Ω。
从而实现敏感元件同时响应湿度激励和间隙激励,且实现湿度和间隙响应分离。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

1.一种分离元件阻抗对湿度和间隙响应的方法,在衬底层上依次镀螺旋式间隙单敏感层、间隙单敏感绝缘层、间隙单敏感电极层、引线层、间隙湿度双敏感绝缘层、间隙湿度双敏感电极层和螺旋式间隙湿度双敏感层得到用于同时响应湿度激励和间隙激励且便于响应分离的单一敏感元件;且所述螺旋式间隙单敏感层和所述螺旋式间隙湿度双敏感层的平面螺旋结构的线宽、线距和匝数均相同;其特征在于,当所述敏感元件被施加间隙激励并通入交流电,所述螺旋式间隙单敏感层产生间隙敏感效应,生成感应磁场改变所述间隙单敏感电极层和所述引线层之间等效阻抗,响应所述间隙激励;同时所述螺旋式间隙湿度双敏感层也产生间隙敏感效应,生成感应磁场改变所述间隙湿度双敏感电极层和所述引线层之间等效阻抗,响应所述间隙激励;而当所述敏感元件被施加湿度激励,所述螺旋式间隙单敏感层不响应湿度激励,仅螺旋式间隙湿度双敏感层响应湿度激励,吸附水分子改变电导率,进而改变所述间隙湿度双敏感电极层和所述引线层之间等效阻抗;当敏感元件被同时施加湿度激励和间隙激励时,所述间隙湿度双敏感电极层和所述引线层之间等效阻抗变化同时响应湿度激励和间隙激励,而间隙单敏感电极层和所述引线层之间等效阻抗变化仅仅响应间隙激励,所以所述间隙湿度双敏感电极层和所述引线层之间等效阻抗变化量与所述间隙单敏感电极层和所述引线层之间等效阻抗变化量的差值为单一的所述湿度激励引起的敏感元件阻抗响应,从而分离湿度响应和间隙响应。
2.如权利要求1所述的一种分离元件阻抗对湿度和间隙响应的方法,其特征在于:所述衬底层材料为陶瓷,所述间隙单敏感绝缘层和所述间隙湿度双敏感绝缘层的材料为Al2O3,所述螺旋式间隙单敏感层和所述螺旋式间隙湿度双敏感层的材料为ZnO;所述引线层、所述间隙敏感电极层和所述间隙湿度双敏感电极层材料为ZnO。
3.如权利要求1所述的一种分离元件阻抗对湿度和间隙响应的方法,其特征在于:由于被所述间隙单敏感绝缘层和所述间隙湿度双敏感绝缘层覆盖,隔绝了空气水分子的接触,所述螺旋式间隙单敏感层无法产生湿度敏感效应。
4.如权利要求1所述的所述的一种分离元件阻抗对湿度和间隙响应的方法,其特征在于:所述在衬底层上依次镀螺旋式间隙单敏感层、间隙单敏感绝缘层、间隙单敏感电极层、引线层、间隙湿度双敏感绝缘层、间隙湿度双敏感电极层和螺旋式间隙湿度双敏感层得到同时响应湿度激励和间隙激励且便于响应分离的单一敏感元件;具体为:
(1)将衬底及不锈钢掩膜板置于去离子水、丙酮内超声清洗后,经氮气吹干备用;
(2)磁控溅射螺旋式间隙单敏感层;
(3)在所述螺旋式间隙单敏感层上通过物理气相沉积间隙单敏感绝缘层;
(4)在所述间隙单敏感绝缘层上通过磁控溅射所述间隙敏感电极层;
(5)在所述间隙单敏感绝缘层和所述间隙敏感电极层上磁控溅射引线层;
(6)在所述引线层和所述间隙单敏感绝缘层上通过物理气相沉积间隙湿度双敏感绝缘层;
(7)在所述间隙湿度双敏感绝缘层上磁控溅射间隙湿度双敏感电极层;
(8)在所述间隙湿度双敏感电极层和所述间隙湿度双敏感绝缘层上磁控溅射螺旋式间隙湿度双敏感层;
(9)将步骤(8)所制备的敏感元件退火处理;
从而制备得到呈现双层螺旋结构的便于分离湿度和间隙响应的敏感元件。
5.如权利要求4所述的所述的一种分离元件阻抗对湿度和间隙响应的方法,其特征在于:所述间隙湿度双敏感绝缘层和所述间隙单敏感绝缘层的沉积时间为1个小时以上。
6.如权利要求4所述的所述的一种分离元件阻抗对湿度和间隙响应的方法,其特征在于:所述间隙单敏感层和所述间隙湿度双敏感的溅射时间相同。
CN202311350893.8A 2023-10-18 2023-10-18 一种分离元件阻抗对湿度和间隙响应的方法 Pending CN117388323A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311350893.8A CN117388323A (zh) 2023-10-18 2023-10-18 一种分离元件阻抗对湿度和间隙响应的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311350893.8A CN117388323A (zh) 2023-10-18 2023-10-18 一种分离元件阻抗对湿度和间隙响应的方法

Publications (1)

Publication Number Publication Date
CN117388323A true CN117388323A (zh) 2024-01-12

Family

ID=89466184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311350893.8A Pending CN117388323A (zh) 2023-10-18 2023-10-18 一种分离元件阻抗对湿度和间隙响应的方法

Country Status (1)

Country Link
CN (1) CN117388323A (zh)

Similar Documents

Publication Publication Date Title
US7404331B2 (en) Sensor assembly, transformers and methods of manufacture
JPH01109250A (ja) ガスセンサ
EP1616172B1 (en) A thin semiconductor film gas sensor device
CN105784212B (zh) 一种陶瓷电容式压力传感器及制备方法
CN111879958B (zh) 一种高频响无源lc转速传感器及其测试方法
CN117388323A (zh) 一种分离元件阻抗对湿度和间隙响应的方法
CN103545107A (zh) 用于薄膜电学性能测试的串联平行板电容器及其制备方法
Wang et al. High-temperature ac electrical behaviour of polycrystalline calcium zirconate
Costa et al. Effect of electrode alterations on the ac behaviour of Li2O ZnO humidity sensors
Wang et al. Low-cost parylene based micro humidity sensor for integrated human thermal comfort sensing
Min et al. Dielectric properties of thin-film ZrO 2 up to 50 GHz for RF MEMS switches
JPS61181104A (ja) 白金測温抵抗体
CN112730177B (zh) 一种颗粒物传感器及其制造方法
Smetana et al. Using integrated capacitive humidity sensors in thick-film technology
RU2826793C1 (ru) Датчик влажности газов
JP3284329B2 (ja) 湿度センサ
JPH0658900A (ja) 湿度センサ
CN102967634A (zh) 基于阳极氧化铝薄膜共平面电极结构的电容湿敏传感器及其制备方法
CN221485282U (zh) 一种气体探测装置
Yu et al. A self-packaged capacitive humidity sensor with low leakage loss
Singh et al. Cross-Conductive Sensor for Humidity Measurement in Gas for Gas Insulated Switchgears Application
Carullo et al. Measurement procedures for the electrical characterization of oxide thin films
JP7394144B2 (ja) 電極埋設セラミックス構造体およびその製造方法
JPH0147739B2 (zh)
JPS58179348A (ja) Alの陽極酸化薄膜を用いた湿度センサ素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination