CN117352778A - 一种控制空冷型燃料电池系统输出工作电压范围的方法 - Google Patents

一种控制空冷型燃料电池系统输出工作电压范围的方法 Download PDF

Info

Publication number
CN117352778A
CN117352778A CN202311290676.4A CN202311290676A CN117352778A CN 117352778 A CN117352778 A CN 117352778A CN 202311290676 A CN202311290676 A CN 202311290676A CN 117352778 A CN117352778 A CN 117352778A
Authority
CN
China
Prior art keywords
fuel cell
voltage
selection module
air
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311290676.4A
Other languages
English (en)
Inventor
谭凯峰
王谷城
高祖昌
刘泓吟
贾秋红
韩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Temasek Institute Of Technology Singapore
Chongqing Innovative Fuel Cell Technology Industry Research Institute Co ltd
Original Assignee
Temasek Institute Of Technology Singapore
Chongqing Innovative Fuel Cell Technology Industry Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Temasek Institute Of Technology Singapore, Chongqing Innovative Fuel Cell Technology Industry Research Institute Co ltd filed Critical Temasek Institute Of Technology Singapore
Priority to CN202311290676.4A priority Critical patent/CN117352778A/zh
Publication of CN117352778A publication Critical patent/CN117352778A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/30Charge provided using DC bus or data bus of a computer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种控制空冷型燃料电池系统输出工作电压范围的方法,涉及燃料电池发电技术领域。本发明燃料电池混合动力系统包括空冷型质子交换膜燃料电池、燃料电池控制器、电路选择模块、DC/DC变换器、锂电池和总线等组件。空冷型质子交换膜燃料电池与燃料电池控制器、电路选择模块、DC/DC变换器依次相连,实现将燃料电池氢氧反应的化学能转换为电能,为用电负载提供动力。电路选择模块与燃料电池控制器相连、锂电池与总线并联连接、二者与燃料电池共同组合为混合动力系统。本发明可实现燃料电池系统输出电压范围变小,缩小了燃料电池系统中DC/DC的功率等级,更加适配于传统的用电负载,这都将使电堆体积更小、重量和成本更低,并能提升系统效率。

Description

一种控制空冷型燃料电池系统输出工作电压范围的方法
技术领域
本发明涉及燃料电池发电技术领域,具体地涉及一种控制空冷型燃料电池系统输出工作电压范围的方法。
背景技术
质子交换膜燃料电池作为一种将化学能转化为电能的装置,其具有环境污染小、能量转化效率高、噪声低等优势。基于燃料电池的电化学反应原理,根据吉布斯自由能计算单片电池在热力学平衡时的可逆电动势为1.24V,但由于燃料电池内部存在混合电势、气体渗透、内部短路电流等因素,在实际环境下,燃料电池的开路电压一般维持在1V左右;
在燃料电池放电过程中,随着输出电流的不断增加,输出电压会经历快速下降、线性下降、快速下降的过程,当电池处于在合适的区间内时,燃料电池的电压较开路电压降低了30%~40%,而一般锂电池的放电电压平台较满电电压的电压降低仅为15%,由此可见燃料电池的电压范围较宽,一般的燃料电池系统都需要配合DC/DC使用,DC/DC变换器虽然能够较好地解决燃料电池使用时电压变化范围较大的问题,但该方法将增加燃料电池系统的成本与体积,特别是对于成本和集成化程度较低的空冷型燃料电池来说,DC/DC带来的影响更加明显;
因此,如何在尽可能减小燃料电池体积和成本的基础上,控制好系统的输出电压范围对于空冷型燃料电池的商业化至关重要;为此,本发明提出一种控制空冷型燃料电池系统输出工作电压范围的方法。
发明内容
本发明的目的在于提供一种控制空冷型燃料电池系统输出工作电压范围的方法,在于在有效降低燃料电池系统体积与成本的基础上解决燃料电池电压范围较大的问题。
本发明是通过以下技术方案实现的:
本发明为一种控制空冷型燃料电池系统输出工作电压范围的方法,包括空冷型质子交换膜燃料电池、燃料电池控制器、电路选择模块、DC/DC变换器,其操作包括如下步骤:
S1:燃料电池控制器接收到启动指令后,首选对燃料电池状态进行检测,当符合启动要求时,打开供气开关,并通过控制器内MOS将燃料电池接入电路;
S2:电路选择模块开始读取燃料电池两端电压,在初始状态下,MOS1默认打开,通过DC/DC转换器向用电负载供电;
S3:当用电负载处于低功耗状态下时,燃料电池输出电流较小,电堆电压较高,高电压值通过DC/DC变换器转换为低电压,处于用电负载可承受电压区间内,且由于整体输出功率较小,DC/DC的绝对损耗功率也较小;
S4:当用电负载功率需求不断增大,燃料电池输出电压开始快速降低,如果电路选择模块监测到燃料电池两端电压下降到V1时,电路选择模块开始执行电路切换动作,MOS1关断,MOS2打开,燃料电池直接接入总线,此时燃料电池电压等于总线电压,电路选择模块根据燃料电池两端电压维持MOS开关状态;
S5:基于上述状态,当用电负载需求功率变小,燃料电池电压开始不断升高,当电池电压值升高到V2以上,电路选择模块执行电路切换动作,MOS1打开,MOS2关断,燃料电池通过DCDC向负载供电;
S6:电路选择模块切换电路的阈值电压V2大于V1,形成滞环控制,防止燃料电池运行时的电压波动引起电路选择模块的误动作;当上升电压阈值略高于下降电压阈值,形成滞环控制,以避免电路选择模块频繁切换电路。
优选地,所述空冷型质子交换膜燃料电池与燃料电池控制器、电路选择模块、DC/DC变换器依次相连,用于将化学能转换为电能,为用电负载提供电力;
优选地,所述燃料电池控制器包含监测、控制、保护三个主要功能,监测功能能够获得燃料电池的电压、电流、温度、压力等信息;控制功能主要控制燃料电池氢气的进入和排出、空气的供给和控制温度、燃料电池在从总线的接入和切出;保护功能主要负载故障分析、故障上报和故障保护;
优选地,所述电路选择模块与燃料电池控制器相连,主要包含一个电压选择芯片以及两个高边驱动MOS开关,电压选择芯片监测燃料电池输出端的电压,并根据电压值向两个MOS开关驱动器发送信号;其中一个MOS开关与DC/DC相连,经DC/DC接入总线,另一个MOS开关直接与总线相连,从而形成一个可选择的双通道电路,以维持总线电压的相对稳定;当电路选择模块监测到燃料电池输出电压高于用电负载所能承受的电压时,电路选择模块将燃料电池与DC/DC相连,DC/DC将燃料电池电压变换到用电负载能够承受的范围内;当燃料电池的输出电压处于用电负载的承受电压范围内时,电路选择模块将燃料电池与用电负载直连,从而避免了使用DC/DC带来的能量损耗,提升了系统效率;同时从燃料电池特性出发,燃料电池在高电压区间内,输出功率较小,选择DC/DC时只需满足该功率需求即可,能够极大的减小DC/DC的体积、重量和成本。
优选地,所述操作方法中还包括锂电池,所述锂电池与总线并联连接,与燃料电池共同组合为混合动力系统,提高整体系统的瞬时响应能力,当燃料电池功率不足时,辅助燃料电池供电,从而提高系统的峰值功率;当锂电池没电时,从燃料电池接受电能储存。
本发明具有以下有益效果:
本发明提出的控制空冷型燃料电池系统输出工作电压范围的方法,实现燃料电池系统输出电压范围变小,缩小了燃料电池系统中DC/DC的功率等级,更加适配于传统的用电负载,这都将使电堆体积更小、重量和成本更低,并能提升系统效率。
本发明方法避免了降压DC/DC可能出现的输入输出端电压差不足的问题,对于系统内DC/DC的选择范围更宽。
本发明中系统增设的锂电池,可以有效为燃料电池消峰填谷,同时电路切换的方式能够保证总线电压匹配锂电池的电压范围,在充电中不会出现过充、过压的问题。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明控制空冷型燃料电池系统输出工作电压范围的燃料电池的极化曲线分布;
图2为本发明控制空冷型燃料电池系统输出工作电压范围的燃料电池系统连接框图;
图3为本发明控制空冷型燃料电池系统输出工作电压范围的电路选择模块的连接示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参照图1所示,本发明为一种控制空冷型燃料电池系统,采用的混合动力系统以燃料电池输出为主,选用的燃料电池额定输出电压在用电负载的可承受电压范围内,用电负载电压承受范围基本包含燃料电池欧姆极化区域。
其中,选用的DC/DC输入电压范围应包含用电负载可承受的最大电压值,输出电压小于电压阈值V1,DC/DC的最大输出功率应大于P值;
选用的锂电池电压范围基本符合用电负载电压的可承受电压范围。
如图2所示:控制空冷型燃料电池系统输出工作电压范围的方法,基于电路切换,包括空冷型质子交换膜燃料电池、燃料电池控制器、电路选择模块、DCDC变换器、锂电池和用电负载,操作包括如下环节:
燃料电池控制器接收到启动指令后,首选对燃料电池状态进行检测,如符合启动要求,打开供气开关,并通过控制器内MOS将燃料电池接入电路,电路选择模块开始读取燃料电池两端电压,在初始状态下,MOS1默认打开,通过DCDC转换器向用电负载供电;
当用电负载处于低功耗状态下时,燃料电池输出电流较小,电堆电压较高,高电压通过DC/DC变换器转换为低电压,处于用电负载可承受电压区间内,且由于整体输出功率较小,DC/DC的绝对损耗功率也较小。当用电负载功率需求不断增大,燃料电池输出电压开始快速降低,如果电路选择模块监测到燃料电池两端电压下降到V1时,电路选择模块开始执行电路切换动作,MOS2打开,MOS1关断,燃料电池直接接入总线,此时燃料电池电压等于总线电压,电路选择模块根据燃料电池两端电压维持MOS开关状态;
基于上述状态,当用电负载需求功率变小,燃料电池电压开始不断升高,当电池电压值升高到V2以上,电路选择模块执行电路切换动作,MOS1打开,MOS2关断,燃料电池通过DC/DC向负载供电。电路选择模块切换电路的阈值电压V2大于V1,形成滞环控制,防止燃料电池运行时的电压波动引起电路选择模块的误动作;
用电负载两端并有锂电池,除了辅助燃料电池发电,起到消峰填谷的作用外,还能进一步维持用电负载两端的电压稳定,防止电路切换可能带来的电压波动影响到用电负载的正常运行。
空冷型质子交换膜燃料电池与燃料电池控制器、电路选择模块、DC/DC变换器、用电负载依次相连,锂电池并联在用电负载两端。
空冷型质子交换膜燃料电池将氢能转换为电能,通过燃料电池控制器接入电路选择模块。
如图3所示,电路选择模块根据燃料电池控制器输出端电压,即质子交换膜燃料电池两端电压选择电路,确定燃料电池通过DC/DC为负载供电还是直接向负载供电;电路选择模块与燃料电池控制器相连,主要包含一个电压选择芯片以及两个高边驱动MOS开关,电压选择芯片监测燃料电池输出端的电压,并根据电压值向两个MOS开关驱动器发送信号;其中一个MOS开关与DC/DC相连,经DC/DC接入总线,另一个MOS开关直接与总线相连,从而形成一个可选择的双通道电路,以维持总线电压的相对稳定;当电路选择模块监测到燃料电池输出电压高于用电负载所能承受的电压时,电路选择模块将燃料电池与DC/DC相连,DC/DC将燃料电池电压变换到用电负载能够承受的范围内;当燃料电池的输出电压处于用电负载的承受电压范围内时,电路选择模块将燃料电池与用电负载直连,从而避免了使用DC/DC带来的能量损耗,提升了系统效率;同时从燃料电池特性出发,燃料电池在高电压区间内,输出功率较小,选择DC/DC时只需满足该功率需求即可,能够极大的减小DC/DC的体积、重量和成本。
控制空冷型燃料电池系统,还包括锂电池,锂电池并联在用电负载两端,当用电负载使用功率大于燃料电池可提供的功率时,与燃料电池共同向负载提供电能,当锂电池低电量时,从燃料电池侧接收电能,同时,锂电池能在电路切换的同时稳定用电侧的电压,防止电路切换不连贯引起的用电侧电压波动。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (8)

1.一种控制空冷型燃料电池系统输出工作电压范围的方法,其特征在于,包括空冷型质子交换膜燃料电池、燃料电池控制器、电路选择模块、DC/DC变换器、锂电池和用电负载,所述控制空冷型燃料电池系统输出工作电压范围的方法,包括如下步骤:
S1:燃料电池控制器接收到启动指令后,首选对燃料电池状态进行检测,当符合启动要求,打开供气开关,并通过控制器内MOS将燃料电池接入电路;
S2:电路选择模块开始读取燃料电池两端电压,在初始状态下,MOS1默认打开,通过DC/DC变换器向用电负载供电;
S3:当用电负载负载处于低功耗状态下时,燃料电池输出电流较小,电堆电压较高,通过DC/DC变换器实现高电压转换为低电压,处于工作负载承受的电压区间内,且由于整体输出功率较小,DC/DC的绝对损耗功率也较小;
S4:当用电负载功率需求不断增大,燃料电池输出电压开始快速降低,当如果电路选择模块监测到燃料电池两端电压下降到V1时,电路选择模块开始执行电路切换动作,MOS1关断,MOS2打开,燃料电池直接接入总线,此时燃料电池电压等于总线电压,电路选择模块根据燃料电池两端电压维持MOS开关状态;
S5:基于上述S4的状态,当用电负载需求功率变小,燃料电池电压开始不断升高,当如果电池电压值升高到V2以上,电路选择模块执行电路切换动作,MOS1打开,MOS2关断,燃料电池通过DC/DC向负载供电;
S6:基于上述S5的操作,电路选择模块切换电路的阈值电压V2大于V1,形成滞环控制,防止燃料电池运行时的电压波动引起电路选择模块的误动作。
2.根据权利要求1所述的一种控制空冷型燃料电池系统输出工作电压范围的方法,其特征在于,所述空冷型质子交换膜燃料电池与燃料电池控制器、电路选择模块、DC/DC变换器、用电负载依次相连,锂电池并联在用电负载两端。
3.根据权利要求1所述的一种控制空冷型燃料电池系统输出工作电压范围的方法,其特征在于,所述空冷型质子交换膜燃料电池将反应的化学能转换为电能,通过燃料电池控制器接入电路选择模块。
4.根据权利要求1所述的一种控制空冷型燃料电池系统输出工作电压范围的方法,其特征在于,所述电路选择模块根据燃料电池控制器输出端电压,即质子交换膜燃料电池两端电压选择电路,确定燃料电池通过DC/DC为负载供电或是直接向负载供电。
5.根据权利要求1所述的一种控制空冷型燃料电池系统输出工作电压范围的方法,其特征在于,所述燃料电池控制器包含监测、控制、保护三个主要功能,监测功能获得燃料电池的电压、电流、温度、压力信息,控制功能主要控制燃料电池氢气的进入和排出、空气的供给和控制电池温度、燃料电池在从总线的接入和切出,保护功能主要负载故障分析、故障上报和故障保护。
6.根据权利要求1所述的一种控制空冷型燃料电池系统输出工作电压范围的方法,其特征在于,所述电路选择模块与燃料电池控制器相连,主要包含一个电压选择芯片以及两个高边驱动MOS开关,电压选择芯片监测燃料电池输出端的电压,并根据电压值向两个MOS开关驱动器发送信号。
7.根据权利要求1所述的一种控制空冷型燃料电池系统输出工作电压范围的方法,其特征在于,所述DC/DC输入电压范围包含用电负载承受的最大电压值,输出电压小于电压阈值V1,DC/DC的最大输出功率大于P值。
8.根据权利要求1所述的一种控制空冷型燃料电池系统输出工作电压范围的方法,其特征在于,所述锂电池并联在用电负载两端,当用电负载使用功率大于燃料电池提供的功率时,与燃料电池共同向负载提供电能,当锂电池低电量时,从燃料电池侧接收电能,同时,锂电池在电路切换的同时稳定用电侧的电压,防止电路切换不连贯引起的用电侧电压波动。
CN202311290676.4A 2023-10-08 2023-10-08 一种控制空冷型燃料电池系统输出工作电压范围的方法 Pending CN117352778A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311290676.4A CN117352778A (zh) 2023-10-08 2023-10-08 一种控制空冷型燃料电池系统输出工作电压范围的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311290676.4A CN117352778A (zh) 2023-10-08 2023-10-08 一种控制空冷型燃料电池系统输出工作电压范围的方法

Publications (1)

Publication Number Publication Date
CN117352778A true CN117352778A (zh) 2024-01-05

Family

ID=89368475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311290676.4A Pending CN117352778A (zh) 2023-10-08 2023-10-08 一种控制空冷型燃料电池系统输出工作电压范围的方法

Country Status (1)

Country Link
CN (1) CN117352778A (zh)

Similar Documents

Publication Publication Date Title
CN1738087B (zh) 电源装置及其控制方法
US8364287B2 (en) Apparatus, system, and method to manage the generation and use of hybrid electric power
US7427450B2 (en) Hybrid fuel cell system with battery capacitor energy storage system
US20060035116A1 (en) Equipment with a built-in fuel cell
US8154242B2 (en) Method of fully charging an electrical energy storage device using a lower voltage fuel cell system
US10099573B2 (en) Drive system and vehicle
US8283082B2 (en) Method of starting operation of fuel cell system
US8027759B2 (en) Fuel cell vehicle system
CN101488580B (zh) 用于短路燃料电池堆的系统和方法
JP4085642B2 (ja) 燃料電池システム
US7808129B2 (en) Fuel-cell based power generating system having power conditioning apparatus
WO2003034523A1 (fr) Systeme de pile a combustible domestique
CN207972603U (zh) 一种基于bsg的轻型混合动力系统的双电网结构
Kisacikoglu et al. Fuzzy logic control of a fuel cell/battery/ultra-capacitor hybrid vehicular power system
Thounthong et al. A control strategy of fuel cell/battery hybrid power source for electric vehicle applications
CN111404248A (zh) 基于燃料电池测试与充电桩耦合的微网系统及方法
CN100546079C (zh) 一种燃料电池系统
EP4391295A1 (en) Backup power supply and operating method therefor
CN117352778A (zh) 一种控制空冷型燃料电池系统输出工作电压范围的方法
CN112109595A (zh) 一种燃料电池的控制系统
JP4831063B2 (ja) 燃料電池システム
Thounthong et al. Performance investigation of fuel cell/battery and fuel cell/supercapacitor hybrid sources for electric vehicle applications
CN111180761A (zh) 车载燃料电池关机时残余能量释放方法
CN220298302U (zh) 一种氢燃料车延时下电的控制电路
CN114337411B (zh) 一种充电发电机驱动电路及其控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination