CN117344208A - 一种经济型800MPa级高塑性钢的制造方法 - Google Patents

一种经济型800MPa级高塑性钢的制造方法 Download PDF

Info

Publication number
CN117344208A
CN117344208A CN202210747158.XA CN202210747158A CN117344208A CN 117344208 A CN117344208 A CN 117344208A CN 202210747158 A CN202210747158 A CN 202210747158A CN 117344208 A CN117344208 A CN 117344208A
Authority
CN
China
Prior art keywords
equal
percent
rolling
less
plasticity steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210747158.XA
Other languages
English (en)
Inventor
刘昌明
刘永前
刘斌
骆海贺
熊飞
陈昊
蔡珍
刘洋
胡俊
孙宜强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN202210747158.XA priority Critical patent/CN117344208A/zh
Publication of CN117344208A publication Critical patent/CN117344208A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种经济型800MPa级高塑性钢的制造方法,其包括如下步骤:1)冶炼;2)薄板坯连铸连轧,将钢水进行薄板坯连铸连轧生产,铸坯加热温度1220~1300℃,直接在多机架精轧机中进行轧制,精轧开轧温度≥1100℃,前三道次压下率≥50%,道次温度≥1050℃,其后每道次压下率均≥15%;采用恒速轧制,轧制速度控制在3.0~10.0m/s,终轧温度控制在890~930℃,成品钢板厚度为1.2~5.0mm;3)层流冷却,采用两段式控制冷却,第一段水冷速度为100~180℃/s,冷却至中间温度650~730℃,然后以≤15℃/s水冷速度冷却至610~670℃进行卷取。本发明高塑性钢的屈服强度≥800MPa,抗拉强度≥850MPa,断后延伸率≥18%。

Description

一种经济型800MPa级高塑性钢的制造方法
技术领域
本发明涉及微合金化钢制造领域,具体涉及一种经济型800MPa级高塑性钢的制造方法。
背景技术
如何通过提高钢板强度实现结构轻量化,从而达到降耗节能,减轻工人劳动强度等效果,已经成为现代钢铁材料发展的必然。对于一般结构用钢,随着材料强度的提升,其塑性水平呈下降趋势。塑性表征着材料变形能力,过低的塑性会直接影响到用户零件结构的成形,容易发生开裂等问题,导致材料不可用。如何解决强度和塑性这一对矛盾体,也成为钢铁材料品种研究开发的难点。
屈服强度800MPa级高强度钢在国内外机构和企业中都开展了研究和制造,如:
中国专利CN101568659A公开的“具有优良高强度的耐候性热轧钢板及其制造方法”,介绍了一种低碳高锰(Mn优选2.0~2.5%),铌钛复合微合金化,添加Cu、Cr的一种用于集装箱的具有优良耐候性的高强度热轧钢板。
中国专利CN101784688A公布的“具有高拉伸强度和延展特性的钢片材的制造方法以及由此获得的片材”介绍了一种通过添加较高含量的V和一定含量的Mo,组织以上贝氏体为主,具有大于800MPa的拉伸强度和大于10%的断裂延伸率的热轧高强度钢片材。
中国专利CN101560629A公开的“一种屈服强度高于800MPa的热轧带钢及其制备方法”,介绍了一种屈服强度高于800MPa的热轧带钢,其化学成分主要采用中碳高锰(Mn 1.70~2.20%),添加较高含量的铌、钒、钛(Nb 0.04~0.07%,V 0.00~0.07%,Ti 0.08~0.18%)。
中国专利CN104513937A公开的“一种屈服强度800MPa级别高强钢及其生产方法”,其屈服强度都能达到800MPa级,延伸率只能保证≥12%,其化学成分采用中碳添加Cr、Mo、B以及一定含量的Nb、V、Ti微合金化。
上述专利都主要通过添加较高含量的合金,并以强度为主要目标,均没有充分考虑强度与塑性的匹配。
发明内容
本发明的目的在于提供一种经济型800MPa级高塑性钢的制造方法,一方面保证高强度(屈服强度≥800MPa,抗拉强度≥850MPa),更重要的是实现高塑性(断后延伸率≥18%),即得到高强塑积,并在此基础上,实现低成本设计和生产。
为达到上述目的,本发明的技术方案是:
一种经济型800MPa级高塑性钢的制造方法,其包括如下步骤:
1)冶炼
按下述成分转炉冶炼、LF钢包炉精炼,其化学成分重量百分比为:C:0.17~0.25%,Si:0.1~0.20%,Mn:1.2~2.0%,P≤0.010%,S≤0.002%,Ti:0.10~0.40%,Cr:0.3~1.0%,Als:0.03~0.20%,Ca:0.001~0.004%,As≤0.012%,N≤0.004%,余量包含Fe及其它不可避免的杂质;
2)薄板坯连铸连轧
将钢水进行薄板坯连铸连轧生产,铸坯厚度60~110mm;铸坯在均热炉内进行加热,加热温度控制在1220~1300℃,直接在7机架精轧机中进行轧制,精轧开轧温度≥1100℃,前三道次压下率≥50%,道次温度≥1050℃,其后每道次压下率均≥15%;采用恒速轧制,轧制速度控制在3.0~10.0m/s,终轧温度控制在890~930℃,成品钢板厚度为1.2~5.0mm;
3)层流冷却
采用两段式控制冷却,第一段水冷速度为100~180℃/s,冷却至中间温度650~730℃,然后以≤15℃/s水冷速度冷却至610~670℃进行卷取。
在本发明所述800MPa级高塑性钢的制造方法中:
本发明采用薄板坯连铸连轧,特别是轧制的前三道次采用≥50%的压下率,主要是利用高温阶段大压下,充分破碎铸坯连铸过程中形成的短小柱状晶,促进C、Mn扩散,同时利用高温条件下充分再结晶,进一步均匀和细化奥氏体组织,改善中心偏析,防止和降低常规工艺容易产生的中心C、Mn偏析问题,提高最终产品的性能和成形能力。
后续每道次压下率均≥15%,可以保证每道次变形后,钢坯组织能够通过回复和动态再结晶,实现组织的不断细化。
通过恒速轧制,可以发挥薄板坯连铸连轧产线优势,实现钢带在轧制过程中稳定的工艺参数,保证最终钢带各部分均在同一条件下生产,提高最终产品的组织和性能均匀性。
层流冷却采用两段式控制冷却,第一段水冷速度为100~180℃/s,冷却至中间温度650~730℃,然后按照≤15℃/s水冷速度冷却至610~670℃进行卷取。
现有常规冷却工艺是采用前段冷却或后段冷却的一段式冷却,不考虑奥氏体→铁素体相变及铁素体形态的控制。
本发明通过两段式冷却控制,第一段快速冷却使形变奥氏体快速过冷到奥氏体→铁素体相变点温度区间,保留过冷奥氏体中畸变能,使得过冷奥氏体能够产生更多的铁素体形核点并迅速完成相变,从而获得更多更细小的铁素体组织;第二段慢速冷却,能够使铁素体组织形态等轴均匀化。通过上述冷却控制,得到最终均匀细化的等轴铁素体+珠光体+少量贝氏体组织。
通过本发明所述的制造方法获得的高塑性钢,其化学成分重量百分比为:C:0.17~0.25%,Si:0.1~0.20%,Mn:1.2~2.0%,P≤0.010%,S≤0.002%,Ti:0.10~0.40%,Cr:0.3~1.0%,Als:0.03~0.20%,Ca:0.001~0.004%,As≤0.012%,N≤0.004%,余量包含Fe及其它不可避免的杂质。
又,所述余量为Fe及其它不可避免的杂质。
本发明所述高塑性钢的屈服强度≥800MPa,延伸率≥18%,强塑积≥18GPa*%。
本发明所述高塑性钢的成分设计中:
碳:碳是最经济的强化元素。碳含量0.07~0.16%范围是包晶区,易发生钢水包晶反应,直接影响浇铸稳定性和板坯质量。而且碳含量过大,会影响钢材的可焊性。所以,本发明将碳含量限定在0.17~0.25%,优选为0.175~0.215%。
硅:硅可以净化铁素体,避免冷却时粗大碳化物的生成,但是硅也容易形成Fe2SiO4并在钢坯表面与FeO形成共析产物,并凝固成锚状结构,使FeO难以去除,影响最终表面质量。所以将硅含量限定在0.10~0.20%范围。
锰:锰是提高强度和韧性最有效的元素,可有效的推迟珠光体转变。但是添加过量的锰,同样容易导致钢水包晶反应,造成连铸裂纹等质量问题,因此本发明将锰含量限定在1.20~2.00%,优选为1.4~1.7%。
铬:铬是碳化物形成元素,与碳的亲和力较强,可阻碍碳原子的扩散,再加上锰的综合作用,使珠光体和贝氏体转变显著滞后。而且铬元素可以提高材料的淬透性,同时具有一定的耐腐蚀作用。在本发明中将铬含量控制在0.30~1.00%,优选为0.4~0.7%。
钛:钛的析出强化效果突出,是保证钢材强度的经济有效元素,本发明钛含量范围设计在0.10~0.40%,优选为0.12~0.20%。
磷:磷容易产生中心偏析,影响成形性能。在本发明中将磷含量控制在≤0.010%。
铝:作为冶炼过程有效的脱氧剂,同时具有一定的细化晶粒作用,提升钢材强度,但也容易形成Al2O3夹杂物。在本发明中将铝含量控制在0.03~0.20%。
砷:会大幅度降低材料韧塑性,本发明将砷含量严格控制在≤0.012%。
硫、氮:容易与钢中Ti结合,影响Ti的强化效果,同时会极大影响钢材的塑性,在本发明中将硫控制在≤0.002%,氮控制在≤0.004%。
除了对以上化学成分的范围作了限定以外,从提高材料成形性、经济性的观点出发,本发明未添加Nb、Cu、Ni、Mo等贵重合金元素。
根据成品厚度,轧制速度控制在3.0~10.0m/s进行恒速轧制,是为了保证通卷工艺的稳定性,保证整体性能稳定。
与现有技术相比,本发明的优点和有益效果在于:
本发明成分设计采用中碳-钛-铬的低成本设计,并着重在工艺上考虑铁素体组织的形成和控制,通过严格轧制过程道次压下分配获得细小的原始奥氏体组织,通过冷却过程冷速和温度的控制,获得细小均匀的铁素体基体,并充分考虑Ti的析出强化效果,所生产的屈服强度≥800MPa级的薄钢板带工艺成本和合金成本低,且具备更高的延伸塑性,产品具有极高的强塑积,能够应用于成形要求更高的高强结构件领域,可以满足用户辊压、冲压、折弯等多种成形工艺以及焊接等多种应用要求和应用环境。
附图说明
图1为本发明实施例2钢的金相组织图。
具体实施方式
下面结合实施例和附图对本发明做进一步说明。
表1为本发明实施例钢的化学成分;表2为本发明实施例钢的主要工艺参数列表;表3为本发明实施例钢的性能参数。
对比例1(中国专利CN101784688A)、对比例2(中国专利CN106929759A)、对比例3(中国专利CN102978525A)。
与对比例1~3相比,本发明不添加Nb、Mo等贵重合金,采用中碳设计,选择使用较为经济的Ti、Cr等合金元素,充分利用轧制工艺和冷却过程控制,获得均匀细小等轴的铁素体基体实现材料的高塑性,充分发挥C、Mn、Cr等的固溶强化、Ti的析出强化以及组织细晶强化效果等综合强化效果实现高强度。
参见图1,其所示为本发明实施例2钢的金相组织图。
由图可见,本发明所述高塑钢的显微组织为铁素体或者铁素体+珠光体+少量贝氏体。

Claims (10)

1.一种经济型800MPa级高塑性钢的制造方法,其特征是,包括如下步骤:
1)冶炼
按下述成分转炉冶炼、LF钢包炉精炼,其化学成分重量百分比为:C:0.17~0.25%,Si:0.1~0.20%,Mn:1.2~2.0%,P≤0.010%,S≤0.002%,Ti:0.10~0.40%,Cr:0.3~1.0%,Als:0.03~0.20%,Ca:0.001~0.004%,As≤0.012%,N≤0.004%,余量包含Fe及其它不可避免的杂质;
2)薄板坯连铸连轧
将钢水进行薄板坯连铸连轧生产,铸坯厚度60~110mm;铸坯在均热炉内进行加热,加热温度控制在1220~1300℃,直接在多机架精轧机中进行轧制,精轧开轧温度≥1100℃,前三道次压下率≥50%,道次温度≥1050℃,其后每道次压下率均≥15%;采用恒速轧制,轧制速度控制在3.0~10.0m/s,终轧温度控制在890~930℃,成品钢板厚度为1.2~5.0mm;
3)层流冷却
采用两段式控制冷却,第一段水冷速度为100~180℃/s,冷却至中间温度650~730℃,然后以≤15℃/s水冷速度冷却至610~670℃进行卷取。
2.如权利要求1所述的经济型800MPa级高塑性钢的制造方法,其特征是,步骤2)中精轧机采用7机架精轧机。
3.如权利要求1所述的经济型800MPa级高塑性钢的制造方法,其特征是,所述高塑性钢的屈服强度≥800MPa,延伸率≥18%,强塑积≥18GPa*%。
4.如权利要求1所述的经济型800MPa级高塑性钢的制造方法,其特征是,所述余量为Fe及其它不可避免的杂质。
5.如权利要求1所述的经济型800MPa级高塑性钢的制造方法,其特征是,所述高塑性钢的C含量为0.175~0.215wt%。
6.如权利要求1所述的经济型800MPa级高塑性钢的制造方法,其特征是,所述高塑性钢的Mn含量为1.4~1.7wt%。
7.如权利要求1所述的经济型800MPa级高塑性钢的制造方法,其特征是,所述高塑性钢的Cr含量为0.4~0.7wt%。
8.如权利要求1所述的经济型800MPa级高塑性钢的制造方法,其特征是,所述高塑性钢的Ti含量为0.12~0.20wt%。
9.通过如权利要求1所述的制造方法获得的高塑性钢,其化学成分重量百分比为:C:0.17~0.25%,Si:0.1~0.20%,Mn:1.2~2.0%,P≤0.010%,S≤0.002%,Ti:0.10~0.40%,Cr:0.3~1.0%,Als:0.03~0.20%,Ca:0.001~0.004%,As≤0.012%,N≤0.004%,余量包含Fe及其它不可避免的杂质。
10.如权利要求9所述的高塑性钢,其特征是,所述余量为Fe及其它不可避免的杂质。
CN202210747158.XA 2022-06-28 2022-06-28 一种经济型800MPa级高塑性钢的制造方法 Pending CN117344208A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210747158.XA CN117344208A (zh) 2022-06-28 2022-06-28 一种经济型800MPa级高塑性钢的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210747158.XA CN117344208A (zh) 2022-06-28 2022-06-28 一种经济型800MPa级高塑性钢的制造方法

Publications (1)

Publication Number Publication Date
CN117344208A true CN117344208A (zh) 2024-01-05

Family

ID=89361901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210747158.XA Pending CN117344208A (zh) 2022-06-28 2022-06-28 一种经济型800MPa级高塑性钢的制造方法

Country Status (1)

Country Link
CN (1) CN117344208A (zh)

Similar Documents

Publication Publication Date Title
CN109943778B (zh) 一种扩孔性能优异的590MPa级冷轧双相钢及其生产方法
CN102586688B (zh) 一种双相钢板及其制造方法
CN110484827B (zh) 一种抗拉强度600MPa级低屈强比热轧酸洗钢板
CN109182919B (zh) 一种多相组织高韧性船板钢eh47的生产方法
CN109097705A (zh) 一种800MPa级冷轧热镀锌双相钢及其生产方法
CN102251170A (zh) 一种超高强度贝氏体钢及其制造方法
CN111172466B (zh) 一种塑性增强的抗拉强度590MPa级冷轧双相钢及其生产方法
CN113416889B (zh) 焊接性能良好超高强热镀锌dh1470钢及制备方法
CN111663085B (zh) 一种超高强度和塑性的热轧奥氏体低密度钢及生产方法
CN109943765B (zh) 一种800MPa级高屈强比冷轧双相钢及其制备方法
KR20230166081A (ko) 인장강도가 1180MPa 이상인 저탄소 저합금 Q&P강 또는 용융 아연 도금 Q&P강 및 이의 제조 방법
CN109023055B (zh) 一种高强度高成形性汽车钢板及其生产工艺
CN101270436B (zh) 一种热轧多相钢板及其制造方法
CN112226673A (zh) 一种抗拉强度650MPa级热轧钢板及其制造方法
CN108315662A (zh) 一种屈服强度900MPa级热轧钢板及其生产工艺
CN114921726A (zh) 低成本高屈强比冷轧热镀锌超高强钢及其生产方法
CN114807750A (zh) 一种薄规格500MPa级低屈强比高韧性桥梁钢板及其制造方法
CN108728728A (zh) 一种具有极低屈强比的高锰钢及其制造方法
JP3879440B2 (ja) 高強度冷延鋼板の製造方法
CN113802060A (zh) 一种低成本工程结构用钢板及其制造方法
CN111394658B (zh) 一种适用于常规连续退火生产线的980MPa级冷轧Q&P钢及其制造方法
US20240167138A1 (en) Dual-phase steel and hot-dip galvanized dual-phase steel having tensile strength greater than or equal to 980mpa and method for manufacturing same by means of rapid heat treatment
CN113604736B (zh) 一种屈服强度800MPa级高强度中厚板及其制备方法
JP2002363685A (ja) 低降伏比高強度冷延鋼板
CN117344208A (zh) 一种经济型800MPa级高塑性钢的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination