CN117330952B - 一种基于持久同调分析的隔离开关故障诊断方法 - Google Patents

一种基于持久同调分析的隔离开关故障诊断方法 Download PDF

Info

Publication number
CN117330952B
CN117330952B CN202311594699.4A CN202311594699A CN117330952B CN 117330952 B CN117330952 B CN 117330952B CN 202311594699 A CN202311594699 A CN 202311594699A CN 117330952 B CN117330952 B CN 117330952B
Authority
CN
China
Prior art keywords
persistent
coherent
analysis
filtering
vertex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311594699.4A
Other languages
English (en)
Other versions
CN117330952A (zh
Inventor
彭诗怡
廖昊爽
欧阳文华
李长东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Jiangxi Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Jiangxi Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Jiangxi Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202311594699.4A priority Critical patent/CN117330952B/zh
Publication of CN117330952A publication Critical patent/CN117330952A/zh
Application granted granted Critical
Publication of CN117330952B publication Critical patent/CN117330952B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3275Fault detection or status indication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/2433Single-class perspective, e.g. one-against-all classification; Novelty detection; Outlier detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明属于开关设备故障分析技术领域,涉及一种基于持久同调分析的隔离开关故障诊断方法,本发明通过提取动作功率曲线的特征,将每个时间窗口的特征组合成一个特征向量,并标准化或归一化特征向量,所得特征向量作为点云空间中的点;将每个点视为一个顶点,确定边和单纯形,整合形成复形;通过过滤函数进行过滤,得到过滤复形序列;对于每个过滤级别的复形,计算同调群,并追踪同调特征,构建持久图或持久性条形码以可视化同调特征的出现和消失,并分析持久性;根据持久图或持久性条形码进行相似性分析,根据相似性得出诊断分析结果。本发明使用持久同调分析可以提高故障检测的灵敏度和准确性。

Description

一种基于持久同调分析的隔离开关故障诊断方法
技术领域
本发明属于开关设备故障分析技术领域,涉及一种基于持久同调分析的隔离开关故障诊断方法。
背景技术
气体绝缘全封闭组合电器(GIS)是电力系统中实现电气设备分割和隔离的关键元件。然而,由于GIS隔离开关的机械结构容易受到装配失误和长时间使用导致结构损坏,从而引发故障。其中,分、合闸不到位问题对电力系统及人员安全构成最大威胁。
GIS隔离开关分、合位置检测技术包括直接检测法和状态感知法两类。直接检测法,因GIS隔离开关结构封闭、内部空间狭小、传动机构紧凑、且处在高压大电流环境运行。在高电位引入传感器,信号线难以引出,信号受强电磁环境干扰,破坏原有结构的密封性,且易带来绝缘隐患等原因,不适用于这一对象的检测。
基于电机电流的状态感知方法与基于振动信号的状态感知方法理论上都具有GIS隔离开关机械状态的完整信息,都可以对GIS隔离开关的触头接触状态进行监测。但是,基于电机电流的状态感知方法,无法反映电压与电流的相位变化关系,且不同电机型号的电机电流具有一定程度的分散性,导致电流特征表现不明显。即使在电流特征比较明显的前提下,现有诊断算法也属于物理分析方法,通过对电流包络线的分析进行缺陷分析,属于阈值判断,这种判断会造成两个问题,第一,对于不同的隔离开关该阈值设置难以直接量化,都需要专家介入,对隔离开关的运动过程完成物理分析,然后再进行阈值对应,同时,也难以适应工业现场的因开关机械状态离散性造成的阈值因开关差异而产生的差异。
基于振动信号的状态感知方法,只考虑了隔离开关在电磁力作用下的振动频率,而忽略了GIS隔离开关本体结构的固有频率,所得出的结论难以与实测信号进行匹配。采集数据量大,信号传输时间长,耗费存储空间大。
以上现有技术都难以可靠的确认隔离开关的分、合动作指令下达后,关键的关注点是设备是否完成相应的动作,并能够及时发现隔离开关分、合位置异常状态,以避免可能发生的运行事故。而这对于电力系统的安全稳定运行至关重要。
发明内容
为了识别隔离开关数据中可能存在的非线性关系和复杂依赖,本发明提供了一种基于持久同调方式的隔离开关故障诊断方法,通过持久同调分析捕捉隔离开关运行数据中的多尺度特征。
本发明是这样来实现的,一种基于持久同调方式的隔离开关故障诊断方法,包括以下步骤:
步骤一:采集隔离开关驱动电机的电压和电流,并进行数据预处理,得到动作功率曲线;
步骤二:提取动作功率曲线的特征,将每个时间窗口的特征组合成一个特征向量,并标准化或归一化特征向量;
步骤三:将标准化或归一化后的特征向量作为点云空间中的点;每个特征向量是点云空间中的一个点;
步骤四:将每个点视为一个顶点,构建顶点集;根据选择的距离参数,确定哪些顶点通过边相连,从而确定邻接关系,然后构建单纯形,将所有顶点、边和单纯形整合起来,形成复形;
步骤五:通过过滤函数进行过滤,得到过滤复形序列;
步骤六:对于每个过滤级别的复形,计算同调群,并追踪同调特征,构建持久图或持久性条形码以可视化同调特征的出现和消失,并分析持久性;
步骤七:根据持久图或持久性条形码进行相似性分析,根据相似性得出诊断分析结果。
进一步优选,所述步骤三中,根据标准化或归一化后的特征值确定点在点云空间中的位置。
进一步优选,步骤四中,如果两个顶点之间的距离小于或等于所述选择的距离参数,则这两个顶点之间添加一条边。
进一步优选,所述过滤函数如下:
其中,f表示过滤函数,pi表示点云中的顶点,是顶点pi的标准化或归一化后的特征值。
进一步优选,通过过滤函数进行过滤,得到过滤复形序列包括:
初始状态:所有顶点作为0维复形被添加到点云空间中;
过滤增长:随着过滤值ε的增加,基于过滤函数的过滤值ε来决定顶点的连接顺序;如果顶点pi和顶点pj满足:,则顶点pi和顶点pj被一个1维边连接起来,构成一个1维复形;随过滤值继续增加,构造不同维度的复形;最终,得到一系列随过滤值逐渐增长的复形,从而形成过滤复形序列
进一步优选,计算同调群包括以下步骤:
构建边界算子:对于第k个维度,构建一个边界算子,边界算子将第k维的单纯形映射到其k-1维的边界;
计算核和余核:同调群是核和余核的商群。
进一步优选,进行相似性分析所采用的相似性度量为瓶颈距离和/或Wasserstein距离。
进一步优选,所述诊断分析包括定性分析、定量分析、阈值设定、模式识别、故障检测、趋势预测。
进一步优选,所述定性分析是通过持久图或持久性条形码比较不同动作功率曲线的拓扑特征。
进一步优选,所述定量分析是根据相似性分析的距离来定量比较动作功率曲线之间的相似性。
进一步优选,所述阈值设定是根据具体应用场景设定阈值来判别相似性是否显著,从而识别相似或不同的拓扑特征。
进一步优选,所述模式识别是识别和分类动作功率曲线中的模式或异常。
进一步优选,所述故障检测是将故障状态下的动作功率曲线与正常状态下的动作功率曲线的相似性进行比较,以识别出故障的存在。
进一步优选,所述趋势预测是通过相似性分析用来预测未来的趋势或行为。
本发明采用持久同调分析进行隔离开关的故障诊断,具有以下优点:持久同调能够捕捉隔离开关运行数据中的多尺度特征,识别在不同操作条件下持久存在的模式。能够识别隔离开关数据中可能存在的非线性关系和复杂依赖,这些在传统方法中可能难以捕捉。
通过分析数据的拓扑变化,持久同调分析可以帮助识别出故障的早期指标,甚至在传统监测方法无法检测到问题之前。结合传统的监测方法,使用持久同调分析可以提高故障检测的灵敏度和准确性。
容忍噪声和数据缺失:持久同调分析对数据的噪声和不完整性具有一定的容忍度,对数据质量要求较低,容忍噪声和数据缺失,使其在实际应用中更为鲁棒。
本发明通过分析隔离开关的历史和实时数据,持久同调可以用于评估系统的整体健康状况。可以监控隔离开关的健康状况随时间的变化,帮助识别潜在的长期问题。通过准确地识别故障和潜在问题,持久同调分析可以支持基于条件的维护策略,从而降低不必要的维护成本。
附图说明
图1为本发明的方法流程图。
具体实施方式
下面结合实施例进一步详细阐明本发明。
如图1所示,一种基于持久同调方式的隔离开关故障诊断方法,包括以下步骤:
步骤一:采集隔离开关驱动电机的电压和电流,并进行数据预处理,得到动作功率曲线;
步骤二:提取动作功率曲线的特征,将每个时间窗口的特征组合成一个特征向量,并标准化或归一化特征向量;
步骤三:构建点云;将标准化或归一化后的特征向量作为点云空间中的点;每个特征向量是点云空间中的一个点;
步骤四:构建复形;将每个点视为一个顶点,构建顶点集;根据选择的距离参数,确定哪些顶点通过边相连,从而确定邻接关系,然后构建单纯形,将所有顶点、边和单纯形整合起来,形成复形;
步骤五:通过过滤函数进行过滤,得到过滤复形序列;
步骤六:持久同调分析;对于每个过滤级别的复形,计算同调群,并追踪同调特征,构建持久图或持久性条形码以可视化同调特征的出现和消失,并分析持久性;
步骤七:根据持久图或持久性条形码进行相似性分析,根据相似性得出诊断分析结果。
本实施例步骤二中,如果提取了隔离开关驱动电机的平均功率Pavg、功率峰值Pmax、功率谷值Pmin和功率的标准差Pstd,那么特征向量可以表示为:F=(Pavg,Pmax,Pmin,Pstd)。
在数据处理中,标准化和归一化是常用的方法,以确保不同特征之间具有可比性。标准化过程会将数据转换为均值为0,标准差为1的分布。归一化的过程将数据点缩放到指定的范围内,通常是[0,1],可采用最大值最小值归一化。
本实施例步骤三中,根据标准化或归一化后的特征值确定点在点云空间中的位置。
对于标准化后的特征值,每个维度上的特征值表示该特征与整体数据集平均值的偏差,以标准差为单位。这意味着,如果一个点在某个维度上的标准化后的特征值为2,那么它在那个特征上是比平均值高两个标准差。在点云中特征值高的点可能表明在该维度上的异常或显著特征。
对于归一化后的特征值,每个维度上的特征值表示特征在最小值与最大值之间的相对位置。归一化后的特征值接近0意味着该特征接近最小值,而接近1则意味着接近最大值。在点云中,这有助于直观地识别数据点在各个维度上的相对位置,便于后续的聚类或模式识别。
本实施例步骤四中,如果两个顶点之间的距离小于或等于所述选择的距离参数,则这两个顶点之间添加一条边。单纯形(Simplex)是高维的类似结构。例如,一个二维单纯形是一个三角形,一个三维单纯形是一个四面体。如果有三个顶点彼此之间都通过边相连,则这三个顶点构成一个三角形(二维单纯形)。以此类推,如果有四个顶点彼此间都通过边相连,则这四个顶点构成一个四面体(三维单纯形)。将所有这些顶点、边和更高维的单纯形整合起来,就形成了一个复形。复形应该是闭合的,意味着如果一个更高维的单纯形被包括在内,那么它的所有边界(比如四面体的每个面、每条边和每个顶点)也都应该被包括在内。
持久同调分析中的过滤函数是用来创建一系列嵌套子空间(通常是复形)的关键,这些子空间随着参数的变化而增长。构建点云之后,可以定义一个过滤函数,过滤函数基于每个顶点的某个特征值来决定点云的增长过程。这个过滤函数会决定哪些点在哪个过滤级别下会被连接。
如果使用标准化后的特征值,过滤函数可以是基于标准化后的特征值的大小,这将决定点在复形中被添加的先后顺序。例如,较大的标准化后的特征值可能代表着功率的异常峰值,可能会更关注这些异常点的连接。
如果使用归一化后的特征值,过滤函数是基于归一化后的特征值从0到1的变化,这也会决定顶点在复形中的添加顺序。对于功率来说,归一化后的特征值可能代表相对于测量期间的最大功率和最小功率的相对功率。
假设关注的是功率的峰值,可以定义过滤函数为每个顶点的特征值,代表功率在测量期间的相对大小。定义过滤函数如下:
其中,f表示过滤函数,pi表示点云中的顶点,是顶点pi的标准化或归一化后的特征值。
使用过滤函数来构建复形:
初始状态:所有顶点作为0维复形(即顶点)被添加到点云空间中。
过滤增长:随着过滤值ε的增加(从0到1),基于过滤函数的过滤值ε来决定顶点的连接顺序;如果顶点pi和顶点pj满足:,则顶点pi和顶点pj被一个1维边连接起来,构成一个1维复形;随过滤值继续增加,构造不同维度的复形,这可能包括由三个或更多点组成的三角形、四面体等,只要这些点对应的过滤值在当前过滤级别下允许它们被连接;最终,得到一系列随过滤值逐渐增长的复形,从而形成过滤复形序列,这是进行持久同调分析的基础。
随着过滤值的变化,一些同调特征会出现,而另一些会消失。记录这些特征随参数变化的“生命周期”。使用所谓的持久图(PersistenceDiagrams)或持久条(PersistenceBarcodes)来可视化这些同调特征的出现和消失。在持久图中,水平轴代表同调特征出现时的参数值,垂直轴代表同调特征消失时的参数值。持久图上距离对角线较远的点代表了持久性强的同调特征,这通常被认为是数据中的重要结构。相反,靠近对角线的点通常代表噪声或不重要的同调特征。
通过观察到同调群如何随着过滤值的增加而出现或消失,揭示了数据的内在拓扑结构和特性。计算同调群是为了识别和量化在过滤函数增长过程中出现的拓扑特征。这些拓扑特征被称作“洞”,可以是1维的(如环),2维的(如空腔)或更高维的。同调群提供了这些拓扑特征的代数表示。
计算同调群包括以下步骤:
构建边界算子:对于第k个维度,构建一个边界算子,边界算子将第k维的单纯形映射到其k-1维的边界;
计算核和余核:核(Kernel)和余核(Cokernel)是代数拓扑中用于定义同调群的概念。对于第k维,计算核和余核/>,同调群Hk是核/>和余核/>的商群:
同调群Hk对应于不同维度的“洞”。0维同调群H0代表连接分量,1维同调群H1代表环状结构,2维同调群H2代表空腔,依此类推。
对于0维同调群H0,由1维边界算子,映射到的边的集合。如果一个顶点没有被任何边映射到,那么该顶点属于0维的核/>,所有的顶点集合形成核集合,因为边界算子为空操作。
对于1维同调群H1,需要查找那些围绕“空洞”但自身不形成“空洞”的闭环。这些闭环是由2维边界算子到边的映射中不存在的,即它们不是任何2维单纯形(如三角形)的边界。在实际计算中,同调群的计算通常涉及线性代数,特别是矩阵运算。每个边界算子可以表示为一个矩阵,其中的行和列分别对应于单纯形和它们的边界。然后,通过对这些矩阵执行行和列的简化(通常是高斯消元法),可以找到核和余核。
每个数据集(动作功率曲线)的持久同调分析会产生一组持久性条形码或持久性图(例如,二维平面上的散点图),它们代表了数据的拓扑特征(如连通分量、洞等)的出现和消失。为了比较不同数据集的拓扑特征,需要选择一个合适的相似性度量。本实施例进行相似性分析所采用的相似性度量包括:瓶颈距离(BottleneckDistance):计算两个持久图或持久性条形码之间的最大匹配差异。Wasserstein距离:是两个持久图或持久性条形码中对应点对之间距离的p次方之和的p次根。使用所选的相似性度量,计算每对数据集之间的距离。这个距离表征了两个数据集(动作功率曲线)的拓扑特征的相似度。
本实施例所述分析结果包括定性分析、定量分析、阈值设定、模式识别、故障检测、趋势预测。
定性分析:通过持久图或持久性条形码比较不同动作功率曲线的拓扑特征。
定量分析:根据计算出的距离来定量比较动作功率曲线之间的相似性。
阈值设定:根据具体应用场景设定阈值来判别相似性是否显著,从而识别相似或不同的拓扑特征。
模式识别:识别和分类数据集(动作功率曲线)中的模式或异常。
故障检测:将故障状态下的动作功率曲线与正常状态下的动作功率曲线的相似性进行比较,以识别出故障的存在。
趋势预测:通过相似性分析用来预测未来的趋势或行为。
尽管已经示出和描述了本发明的实施例,详见上述详尽的描述,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (5)

1.一种基于持久同调方式的隔离开关故障诊断方法,其特征在于,包括以下步骤:
步骤一:采集隔离开关驱动电机的电压和电流,并进行数据预处理,得到动作功率曲线;
步骤二:提取动作功率曲线的特征,将每个时间窗口的特征组合成一个特征向量,并标准化或归一化特征向量;
步骤三:将标准化或归一化后的特征向量作为点云空间中的点;每个特征向量是点云空间中的一个点;
步骤四:将每个点视为一个顶点,构建顶点集;根据选择的距离参数,确定哪些顶点通过边相连,从而确定邻接关系,然后构建单纯形,将所有顶点、边和单纯形整合起来,形成复形;如果两个顶点之间的距离小于或等于所述选择的距离参数,则这两个顶点之间添加一条边;
步骤五:通过过滤函数进行过滤,得到过滤复形序列;所述过滤函数如下:
其中,f表示过滤函数,pi表示点云中的顶点,是顶点pi的标准化或归一化后的特征值;
初始状态:所有顶点作为0维复形被添加到点云空间中;过滤增长:随着过滤值ε的增加,基于过滤函数的过滤值ε来决定顶点的连接顺序;如果顶点pi和顶点pj满足:,则顶点pi和顶点pj被一个1维边连接起来,构成一个1维复形;随过滤值继续增加,构造不同维度的复形;
步骤六:对于每个过滤级别的复形,计算同调群,并追踪同调特征,构建持久图或持久性条形码以可视化同调特征的出现和消失,并分析持久性;
步骤七:根据持久图或持久性条形码进行相似性分析,根据相似性得出诊断分析结果;所述诊断分析包括定性分析、定量分析、阈值设定、模式识别、故障检测、趋势预测;所述故障检测是将故障状态下的动作功率曲线与正常状态下的动作功率曲线的相似性进行比较,以识别出故障的存在;
所述定性分析是通过持久图或持久性条形码比较不同动作功率曲线的拓扑特征;所述定量分析是根据相似性分析的距离来定量比较动作功率曲线之间的相似性;
所述阈值设定是根据具体应用场景设定阈值来判别相似性是否显著,从而识别相似或不同的拓扑特征;所述模式识别是识别和分类动作功率曲线中的模式或异常;所述趋势预测是通过相似性分析用来预测未来的趋势或行为。
2.根据权利要求1所述的基于持久同调方式的隔离开关故障诊断方法,其特征在于,所述步骤三中,根据标准化或归一化后的特征值确定点在点云空间中的位置。
3.根据权利要求1所述的基于持久同调方式的隔离开关故障诊断方法,其特征在于,通过过滤函数进行过滤,得到过滤复形序列包括:
初始状态:所有顶点作为0维复形被添加到点云空间中;
过滤增长:随着过滤值ε的增加,基于过滤函数的过滤值ε来决定顶点的连接顺序;如果顶点pi和顶点pj满足:,则顶点pi和顶点pj被一个1维边连接起来,构成一个1维复形;随过滤值继续增加,构造不同维度的复形;最终,得到一系列随过滤值逐渐增长的复形,从而形成过滤复形序列。
4.根据权利要求1所述的基于持久同调方式的隔离开关故障诊断方法,其特征在于,计算同调群包括以下步骤:
构建边界算子:对于第k个维度,构建一个边界算子,边界算子将第k维的单纯形映射到其k-1维的边界;
计算核和余核:同调群是核和余核的商群。
5.根据权利要求1所述的基于持久同调方式的隔离开关故障诊断方法,其特征在于,进行相似性分析所采用的相似性度量为瓶颈距离和/或Wasserstein距离。
CN202311594699.4A 2023-11-28 2023-11-28 一种基于持久同调分析的隔离开关故障诊断方法 Active CN117330952B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311594699.4A CN117330952B (zh) 2023-11-28 2023-11-28 一种基于持久同调分析的隔离开关故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311594699.4A CN117330952B (zh) 2023-11-28 2023-11-28 一种基于持久同调分析的隔离开关故障诊断方法

Publications (2)

Publication Number Publication Date
CN117330952A CN117330952A (zh) 2024-01-02
CN117330952B true CN117330952B (zh) 2024-04-02

Family

ID=89279589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311594699.4A Active CN117330952B (zh) 2023-11-28 2023-11-28 一种基于持久同调分析的隔离开关故障诊断方法

Country Status (1)

Country Link
CN (1) CN117330952B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019015311A1 (zh) * 2017-12-22 2019-01-24 中国南方电网有限责任公司超高压输电公司曲靖局 一种基于振动信号支持向量机的gil故障在线监测系统
CN110443785A (zh) * 2019-07-18 2019-11-12 太原师范学院 一种持久同调下三维点云的特征提取方法
CN113331845A (zh) * 2021-05-31 2021-09-03 浙江大学 基于持续同调的脑电信号特征提取与准确度判别的方法
CN116184182A (zh) * 2022-12-15 2023-05-30 国网安徽省电力有限公司电力科学研究院 一种基于曲线相似度的gis隔离开关机械状态识别方法
CN116243115A (zh) * 2022-12-05 2023-06-09 河南理工大学 基于时序拓扑数据分析的高压电缆模式识别方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019015311A1 (zh) * 2017-12-22 2019-01-24 中国南方电网有限责任公司超高压输电公司曲靖局 一种基于振动信号支持向量机的gil故障在线监测系统
CN110443785A (zh) * 2019-07-18 2019-11-12 太原师范学院 一种持久同调下三维点云的特征提取方法
CN113331845A (zh) * 2021-05-31 2021-09-03 浙江大学 基于持续同调的脑电信号特征提取与准确度判别的方法
CN116243115A (zh) * 2022-12-05 2023-06-09 河南理工大学 基于时序拓扑数据分析的高压电缆模式识别方法及装置
CN116184182A (zh) * 2022-12-15 2023-05-30 国网安徽省电力有限公司电力科学研究院 一种基于曲线相似度的gis隔离开关机械状态识别方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于持久同调的三维模型检索方法;况立群;李丽;幸嘉诚;谌钟毓;韩燮;;计算机工程与设计;20200615(第06期);全文 *
基于非线性拓扑动态方法的脑电信号分析及应用研究;吴选昆;中国优秀硕士学位论文全文数据库(第6期);23-46 *

Also Published As

Publication number Publication date
CN117330952A (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
US20110191076A1 (en) Error detection method and system
CN105700518A (zh) 一种工业过程故障诊断方法
CN103499382B (zh) 一种基于振动数据融合和图像识别的变压器故障诊断方法
CN111678699B (zh) 一种面向滚动轴承早期故障监测与诊断方法及系统
CN116610998A (zh) 一种基于多模态数据融合的开关柜故障诊断方法和系统
KR102253230B1 (ko) 원전설비의 예측 진단 방법 및 시스템
CN116400244B (zh) 储能电池的异常检测方法及装置
Son et al. Deep learning-based anomaly detection to classify inaccurate data and damaged condition of a cable-stayed bridge
CN116704733B (zh) 铝合金电缆的老化预警方法及系统
CN118244110B (zh) 一种工业机器人电机故障预警方法及系统
CN118033459A (zh) 一种电动汽车电池系统渐进性故障诊断与预警方法
CN115524002A (zh) 一种电厂旋转设备的运行状态预警方法、系统及存储介质
CN115392782A (zh) 一种核电厂工艺系统健康状态监测和诊断方法及系统
CN117269751B (zh) 一种gis隔离开关分合位置确认方法
Niu et al. An online fault diagnosis method for lithium-ion batteries based on signal decomposition and dimensionless indicators selection
CN117330952B (zh) 一种基于持久同调分析的隔离开关故障诊断方法
CN115310499B (zh) 一种基于数据融合的工业设备故障诊断系统及方法
KR102196611B1 (ko) 원전설비의 예측 진단 방법 및 시스템
CN116432054A (zh) 一种基于聚类分析的局部放电严重程度识别方法
CN116259161A (zh) 一种电力故障预警系统
CN114137915B (zh) 一种工业设备的故障诊断方法
CN112836570B (zh) 一种利用高斯噪声的设备异常检测方法
CN112731208B (zh) 一种低压线路故障与异常在线监测方法、设备及介质
CN115456013A (zh) 基于运行数据的风电机组变流器功率模块故障诊断方法
Chen et al. A multimode anomaly detection method based on oc-elm for aircraft engine system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant