CN117320748A - Covid-19进入抑制剂对covid-19复制的遏制 - Google Patents

Covid-19进入抑制剂对covid-19复制的遏制 Download PDF

Info

Publication number
CN117320748A
CN117320748A CN202280022542.1A CN202280022542A CN117320748A CN 117320748 A CN117320748 A CN 117320748A CN 202280022542 A CN202280022542 A CN 202280022542A CN 117320748 A CN117320748 A CN 117320748A
Authority
CN
China
Prior art keywords
cov
formula
sars
alkyl
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280022542.1A
Other languages
English (en)
Inventor
K·辛格
S·拜拉莱迪
A·阿查尔雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Missouri System
University of Nebraska
Original Assignee
University of Missouri System
University of Nebraska
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Missouri System, University of Nebraska filed Critical University of Missouri System
Publication of CN117320748A publication Critical patent/CN117320748A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/428Thiazoles condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • A61K31/55131,4-Benzodiazepines, e.g. diazepam or clozapine
    • A61K31/55171,4-Benzodiazepines, e.g. diazepam or clozapine condensed with five-membered rings having nitrogen as a ring hetero atom, e.g. imidazobenzodiazepines, triazolam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/553Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having at least one nitrogen and one oxygen as ring hetero atoms, e.g. loxapine, staurosporine

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Communicable Diseases (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

本发明涉及用于治疗病毒感染的化合物、组合物和方法。具体地,公开了用于治疗冠状病毒感染,包含SARS‑CoV‑1和SARS‑CoV‑2感染的进入抑制剂化合物。所述化合物与SARS‑CoV‑2刺突蛋白受体结合结构域(RBD)和宿主细胞ACE‑2受体的界面结合。所述进入抑制剂化合物显示出抗病毒活性、有利的动力学,并且在SARS‑CoV‑2感染进入时暂时起作用。在实施例中,所述化合物用作药物,所述药物用于抑制病毒复制,包含SARS‑CoV‑1和/或SARS‑CoV‑2复制,所述药物用于治疗或预防病毒感染,包含SARS‑CoV‑1和SARS‑CoV‑2感染,和/或所述药物用于治疗或预防由于SARS‑CoV‑1和SARS‑CoV‑2感染而引起的疾病。

Description

COVID-19进入抑制剂对COVID-19复制的遏制
相关申请的交叉引用
本国际专利申请要求于2021年3月3日提交的美国临时专利申请第63/200,366号的优先权的权益,所述美国临时申请通过引用整体并入本文。
关于联邦政府资助研究的声明
本发明是在HHS/NIH/NIAID(Al129745)、HHS/NIH/NIAID(Al113883)和HHS/NIH/NIAID(AI076119)的政府支持下完成的。政府拥有本发明的某些权利。
技术领域
本发明涉及用于治疗SARS-CoV感染的抗病毒化合物,更具体地涉及阻断SARS-CoV-2原型毒株“Hu-1”(NCBI参考序列:NC_045512.2)和相关变体的进入、复制和传播的SARS-CoV-2的小分子进入抑制剂。
背景技术
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)是冠状病毒疾病19(COVID-19)的病原体。自其出现以来,SARS-CoV-2已夺走200多万人的生命并在全球造成了前所未有的社会经济损失。刺突糖蛋白(S蛋白)、膜蛋白(M)和包膜蛋白(E)构成SARS-CoV-2的球形包膜。S蛋白由S1和S2亚基组成。S1亚基含有两个主要结构域:N末端结构域(NTD)和受体结合结构域(S-RBD),此外还有CTD1(C末端结构域1)和CTD2(C末端结构域2)。相比之下,S2亚基含有融合肽(FP)、七肽重复序列1(HR1)、中央螺旋(CH)、七肽重复序列2(HR2)、连接器结构域(CD)、跨膜结构域(TM)和细胞质尾部(CT)。S1亚基内的S-RBD与宿主细胞受体血管紧张素转化酶2(ACE2)结合并促进病毒进入到宿主细胞中,同时S2亚基介导膜融合。尽管S-RBD和ACE2的结合是细胞进入的充分证明的决定簇,但根据细胞类型,病毒体可能通过网格蛋白介导的内体通路或网格蛋白非依赖性非内体通路进入细胞。
SARS-CoV-2基因组是约30千碱基的正(+)义单链RNA(ssRNA)。其属于类似于2002-2003年出现的密切相关的SARS-CoV的β-CoV谱系。多个开放阅读框(ORF)编码多蛋白(pp)1a和pp1ab。多蛋白pp1a和pp1ab被病毒蛋白酶Mpro和3CLpro加工成16种非结构蛋白(nsp)。这些nsp中的许多在双膜囊泡(DMV)内组装形成复制-转录复合物(RTC)并产生负(-)义RNA。(-)义RNA随后用作合成(+)义RNA基因组和具有共同5'前导序列和3'末端poly A序列的分段基因组RNA(sgRNA)的集合的模板。sgRNA被翻译成几种结构蛋白。四种主要结构蛋白:膜(M)、核衣壳(N)、包膜(E)和刺突蛋白(S蛋白)与宿主细胞膜一起形成感染性成熟病毒颗粒。
比较SARS-CoV-2基因组MERS-CoV和SARS-CoV-1的研究表明,SARS-CoV-2与SARS-CoV-1(2002-2003年出现)具有类似的RBD结构,尽管在一些关键残基上存在氨基酸变异。SARS-CoV-2与SARS-CoV-1和蝙蝠SARS样冠状病毒的基因组比较揭示了刺突蛋白的S1亚基具有约75%的序列同一性。由于S蛋白在进入时的功能和病毒的成熟,几乎所有疫苗接种策略靶向S蛋白RBD。由私营部门发起并得到政府资源支持的非常措施已经产生具有良好功效的候选疫苗。然而,SARS-CoV-2的快速和持续进化继续推动小分子进入抑制剂的发展,所述小分子进入抑制剂具有成本效益、可扩展并且不易受遗传漂变的影响。
发明内容
本文公开了阻断SARS-CoV-2和其相关变体的病毒复制的小分子进入抑制剂化合物。所述化合物可以用于治疗包含患有冠状病毒疾病2019(COVID-19)的受试者的有需要的受试者的疾病和其它病状。
更具体地,本发明涉及与SARS刺突蛋白受体结合结构域(RBD)和宿主细胞ACE-2受体的界面结合的某些小低分子量的化合物。利用计算机辅助药物设计(CADD)方法,化合物被鉴定并验证为S-RBD和ACE-2相互作用的抑制剂。
基于这些化合物与S-RBD和ACE2的对接评分和视觉检查,选择了几种化合物进行优化。具体地,式IIa和IIIa支架用于开发权利要求5、6和22中所示的式的小低分子量的化合物。如下文所描述的,这些化合物包含但不限于:式(IIb)、式(IIc)、式(IId)、式(IIe)、式(IIIb)和式(IIIc)。另外公开的化合物包含但不限于:式(Ia)、式(IV)、式(V)、式(VI)、式(VII)、式(VIII)、式(IX)和式(X)。上述化合物适于在不同程度上抑制S-RBD和ACE-2相互作用。
在一些实施例中,三种化合物(式(Ia)、式(IIa)和式(IIb))显示以亚微摩尔IC50抑制病毒复制。其它式(IIa)衍生物(包括式(IIc)、式(IId)和式(IIe))也可以以亚微摩尔IC50阻断病毒复制。在其它实施例中,式(IIa)与瑞德西韦(remdesivir,RDV)协同作用,提供了有效的组合疗法。
因此,在实施例中,本发明的进入抑制剂化合物中的一些将可用于向受试者施用以治疗或预防SARS-CoV-2感染。进一步地,所述化合物对包含南非、苏格兰和δ变体的SARS-CoV-2的变体有效。
虽然公开了多个实施例,但根据示出并描述说明性实施例的以下详细描述,其它实施例对于本领域技术人员而言将变得显而易见。因此,附图和详细描述被认为本质上是说明性的而不是限制性的。
附图说明
在实施例中,图1A是描述了用于鉴定SARS-CoV-2进入抑制剂的计算机筛选过程的流程图。图1B示出了在S-RBD和ACE2界面处的残基的缩小试图。图1C示出了为化合物对接选择的袋的放大视图。虚线示出了蛋白质的不连续主链(青色的S-RBD和绿色的ACE2)。图1D-1I示出了基于其用于体外筛选针对SARS-CoV-2的抗病毒活性的滑动评分而选择的五种化合物的分子对接,包含式(Ia)(图1D)、式(IIa)(图1E)、式(V)(图1F)、式(VI)(图1G)、式(VI)(图1H)和式(VII)(图1I)。图1G示出了式(VI)的第一结合取向。图1H示出了式(VI)的第二结合取向。黄色虚线表示化合物与最近的蛋白质残基形成的极性相互作用。表示为棍的ACE2残基是绿色碳,而S-RBD残基被着色为青色棍。蛋白质主链用条带表示(绿色=ACE2并且青色=S-RBD)。进入抑制剂化合物用品红色碳以球棍表示示出。所有其它原子按原子类型着色(红色=氧、蓝色=氮、橙色=硫、青绿色=氟并且浅绿色=氯)。
图2A-2P示出了如本文所公开的多种SARS-CoV进入抑制剂化合物和/或衍生物。提供了示出了式(Ia)(图2A)、式(IIa)(图2B)、式(IIb)(图2C)、式(IIc)(图2D)、式(IId)(图2E)、式(IIe)(图2F)、式(IIIa)(图2G)、式(IIIb)(图2H)、式(IIIc)(图2I)、式(IV)(图2J)、式(V)(图2K)、式(VI)(图2L)、式(VII)(图2M)、式(VIII)(图2N)、式(IX)(图2O)和式(X)(图2P)的图。对于上文所公开的化合物的总结,参见表2。
图3描绘了包含通过计算机辅助药物设计(CADD)选择的潜在药物样化合物的化合物的筛选,以确定其与ACE2:SARS-CoV-2刺突受体结合结构域(RBD)结合的能力。在实施例中,式(Ia)、式(IIa)、式(V)、式(VI)和式(VII)以从0.25至5μM开始的不同浓度进行测试三次。所述测试用于使用ELISA评估所述化合物抑制SARS-CoV-2刺突RBD与固定化人ACE2的结合的能力。使用Graph Pad Prism 8.0软件,使用四参数可变斜率S形剂量应答模型计算IC50值。
图4A-K示出了确定本发明的细胞毒性的方法,如应用于五种药物样化合物。具体地,图4A-K示出了在存在指定浓度的化合物的情况下评估HEK293T-hACE2细胞的活力的MTT测定。图4F和图4G示出了在存在指定浓度的化合物的情况下,式(Ia)和式(IIa)的化合物分别在Vero-STAT1 KO细胞中的细胞毒性的测量结果。图4H和图4I示出了在存在指定浓度的化合物的情况下,式(Ia)和式(IIa)分别在UNCN1T细胞中的细胞毒性的测量结果。图4J和图4K示出了在存在指定浓度的化合物的情况下,式(Ia)和式(IIa)分别在Calu-3细胞中的细胞毒性的测量结果。在HEK293T-hACE2细胞中,所有五种化合物的CC50值高于100μM,包含式I(图4A)、式(IIa)(图4B)、式V(图4C)、式VI(图4D)和式VII(图4E)。
图5A-D示出了使用本发明的假病毒测定筛选五种药物样化合物的进入抑制潜力。具体地,图5A-E示出了用指定浓度的化合物预处理并且然后用表达SARS-CoV-2的刺突糖蛋白的假型化慢病毒颗粒接种的HEK-293T-hACE2细胞。化合物包含式I(图5A)、式(II)(图5B)、式V(图5C)、式VI(图5D)和式(VII)(图5E)。在转导后48小时,通过确定细胞裂解物中的荧光素酶活性,在针对未经处理的细胞进行归一化之后,分析假型进入。图5F示出了在指定浓度的化合物下对式(IIa)测量了表达SARS-CoV-2的刺突糖蛋白的假型化慢病毒颗粒的进入的抑制百分比。值得注意的是,接受DMSO的细胞被认为是媒剂对照。使用Graph PadPrism 8.0软件,使用四参数可变斜率S形剂量应答模型计算IC50值。
图6A-D描绘了根据本发明的方法,用式(Ia)和式(IIa)处理的和SARS-CoV-2感染的UNCN1T和Vero-STAT1敲除细胞的SARS-CoV-2剂量-应答曲线。图6A-B描绘了在24hpi(图6A)和48hpi(图6B)在UNCN1T细胞中用指定药物浓度对SARS-CoV-2复制的抑制百分比的式(Ia)(蓝色)和式(IIa)(绿色)剂量-应答曲线。图6C-D示出了在24hpi(图6C)和48hpi(图6D)在Vero-STAT1敲除细胞中用指定化合物浓度对SARS-CoV-2复制的抑制百分比的式(Ia)(蓝色)和式(IIa)(绿色)剂量-应答曲线。在实施例中,在图6B-6D中,式(II)(例如式(IIa))在所有时间点表现出较低IC50值,与其增强的药物代谢动力学特征一致。
图7A-D描绘了用式(Ia)和式(IIa)处理的和受感染Calu-3细胞中相关SARS-CoV-2变体的SARS-CoV-2剂量-应答曲线。图7A示出了用指定药物浓度在感染南非变体(谱系:B.1.351)的Calu-3细胞中24hpi的SARS-CoV-2复制的抑制百分比的式(Ia)剂量-应答曲线。图7B示出了用指定药物浓度在感染苏格兰变体(谱系:B.1.222)的Calu-3细胞中24hpi的SARS-CoV-2复制的抑制百分比的式(Ia)剂量-应答曲线。图7C示出了用指定药物浓度在感染南非变体(谱系:B.1.351)的Calu-3细胞中24hpi的SARS-CoV-2复制的抑制百分比的式(IIa)剂量-应答曲线。图7D示出了用指定药物浓度在感染苏格兰变体(谱系:B.1.222)的Calu-3细胞中24hpi的SARS-CoV-2复制的抑制百分比的式(IIa)剂量-应答曲线。
图8A-B示出了根据本发明的方法,化合物的时间添加对SARS-CoV-2在Vero-STAT1敲除细胞中的复制的影响。图8A是描述向细胞中添加式(Ia)和式(IIa)的时间、SARS-CoV-2感染以及在实验结束时测量病毒复制动力学的实验概况。图8B示出了在存在媒剂对照(DMSO)、式(Ia)(5μM)和式(IIa)(5μM)的情况下,Vero-STAT1敲除细胞中分别在-2hpi、+0hpi和+4hpi时SARS-CoV-2复制的百分比。所述观察表明,这些化合物可以用作针对SARS-CoV-2的有效预防剂。
图9A-D描绘了在感染后24小时,针对SARS-CoV-2感染的UNCN1T细胞的瑞德西韦(RDV)和式(Ia)治疗的组合效果。图9A是在存在不同固定浓度的式(Ia)的情况下,在24hpi时在SARS-CoV-2感染的UNCN1T细胞中的瑞德西韦的剂量应答曲线。图9B示出了在存在不同固定浓度的瑞德西韦的情况下,在24hpi时在SARS-CoV-2感染的UNCN1T细胞中的式(Ia)的剂量-应答曲线。图9C示出了在24hpi时在SARS-CoV-2感染的UNCN1T细胞中,单一和组合治疗瑞德西韦和式(Ia)的剂量-应答百分比抑制矩阵,绘制了RDV的浓度(微摩尔)对式(Ia)的浓度(微摩尔)。图9D描绘了在24hpi时在SARS-CoV-2感染的UNCN1T细胞中使用SynergyFinder v.2基于Loewe加和性模型计算的瑞德西韦与式(IIa)之间的3-D相互作用景观(Loewe协同作用评分-30.69;最协同区域评分为-21.34)。所述图使用SynerFinderv.2绘制了在3-D相互作用景观中RDV的浓度(微摩尔)对式(Ia)的浓度(微摩尔)。
图10A-D示出了在感染后24小时,针对SARS-CoV-2感染的UNCN1T细胞的瑞德西韦和式(IIa)治疗的组合效果。图10A是在存在不同固定浓度的式(IIa)的情况下,在24hpi时在SARS-CoV-2感染的UNCN1T细胞中的瑞德西韦的剂量-应答曲线。图10B是在存在不同固定浓度的瑞德西韦的情况下,在24hpi时在SARS-CoV-2感染的UNCN1T细胞中的式(IIa)的剂量-应答曲线。图10C是在24hpi时在SARS-CoV-2感染的UNCN1T细胞中,单一和组合治疗瑞德西韦和式(IIa)的剂量-应答百分比抑制矩阵,绘制了RDV的浓度(微摩尔)对式(IIa)的浓度(微摩尔)。图10D示出了在24hpi时在SARS-CoV-2感染的UNCN1T细胞中使用SynergyFinderv.2基于Loewe加和性模型计算的瑞德西韦与式(IIa)之间的相互作用景观(Loewe协同作用评分26.63;最协同区域评分为37.25)。所述图使用SynerFinder v.2绘制了在3-D相互作用景观中RDV的浓度(微摩尔)对式(IIa)的浓度(微摩尔)。
图11A-B示出了在微量热泳测定(MST)中的结合亲和力,表明式(IIa)不与单独的S-RBD结合,也不与单独的ACE2结合。相反,式(IIa)与S-RBD/ACE2复合物结合。微量热泳测定也用于得到仅式(IIa)/Hu-1 S-RBD(图11A)和仅式(IIa)/ACE2(图11B)的结合动力学。仅式(IIa)/ACE2结合曲线(图11B)示出Kd为3.7微摩尔。
图12A-D描绘了分析式(IIa)和式(IIb)化合物与WT(“Hu-1”)和δS-RBD/ACE2复合物的结合的微量热泳(“MST”)测定。使用式(IIa)和Hu-1的MST测定(图12A)提供了299nM的Kd。使用式(IIa)和δ的MST测定(图12B)提供了200nM的Kd。使用式(IIb)和Hu-1的MST测定(图12C)提供了31nM的Kd。使用式(IIb)和δ的MST测定(图12D)提供了90nM的Kd。因此,相对于其衍生物式(IIb),式(IIa)表现出与Hu-1 S-RBD/ACE复合物的结合亲和力降低约10倍并且与δS-RBD/ACE复合物的结合亲和力降低约10倍。
图13A-13D示出了当式(Ia)和式(IIa)的化合物与SARS-CoV-2刺突蛋白受体结合结构域(RBD)和宿主细胞ACE-2受体(“ACE2:刺突RBD”)的界面结合时侧链构象的变化。通过化合物式(Ia)和式(IIa)的诱导-拟合对接来确定构象的变化。所示的所有侧链在式(Ia)或式(IIa)的诱导-拟合对接(IFD)时表现出显著的变化。图13A示出了式(Ia)的化合物与ACE2:刺突RBD的界面对接时的构象变化。黄色碳表示在IFD之前的S-RBD侧链的构象,而青色碳与在IFD之后的S-RBD的侧链构象相对应。图13B示出了在IFD与ACE2:刺突RBD对接之前(蓝绿色碳)和之后(品红色碳)的式(Ia)结合的模式。图13C示出了式(IIa)对接时的构象变化。图13D示出了在IFD之前(蓝绿色碳)和之后(品红色碳)的式(II)结合的结合模式。
将参考附图对本发明的各种实施例进行详述,其中几个附图中相同的附图标记表示相同的部件。各种实施例的参考不限制本发明的范围。本文表示的图不是对根据本发明的各种实施例的限制,而是为了示例性地说明本发明而呈现的。本领域的普通技术人员不需要在孤立的附图中查看以下详细描述中描述的近乎无限数量的不同特征排列,以促进对本发明的理解。
具体实施方式
为了可以更容易地理解本发明,首先定义某些术语。除非另外定义,否则本文所用的所有技术和科学术语具有与本发明的实施例所属的领域内的普通技术人员通常理解的相同含义。与本文所述的方法和材料类似的、修改的或等效的许多方法和材料可以用于本发明的实施例的实践中而无需过多的实验,本文描述了优选的材料和方法。在描述和要求本发明的实施例时,将根据下面给出的定义来使用以下术语。
I.定义和解释
除非本文另外定义,否则结合本公开使用的科学和技术术语应具有本领域的普通技术人员通常理解的含义。此外,除非上下文另外要求,否则单数术语应包含复数含义并且复数术语应包含单数含义。通常,与本文所述的细胞和组织培养、分子生物学、免疫学、微生物学、基因学和蛋白质以及核酸化学以及杂交结合使用的术语表和其技术是本领域众所周知和常用的术语表和技术。除非另外说明,否则通常根据本领域熟知的常规方法以及如在本说明书通篇引用和讨论的各个一般和更具体的参考文献中所描述的方法进行本公开的方法和技术。与本文所描述的分析化学、合成有机化学以及药物和制药化学相关使用的命名法以及实验室程序和技术都是本领域中众所周知和常用的那些。
除非另外明确指出,否则如描述和所附权利要求中使用的,单数形式“一个/一种(a和an)”及“所述(the)”可互换使用,并且旨在也包含复数形式并且落入每个含义内。此外,如本文所使用的,“和/或”是指并且涵盖所列项中的一个或多个项的任何和所有可能的组合,以及当以替代形式(“或”)解释时组合的缺少。
如本文所使用的,术语“烷基”或“烷基基团”是指具有一个或多个碳原子的饱和烃,包含直链烷基(例如,甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基等)、环状烷基(或“环烷基”或“脂环基”或“碳环基”)(例如,环丙基、环戊基、环己基、环庚基、环辛基等)、支链烷基(例如,异丙基、叔丁基、仲丁基、异丁基等)和经烷基取代的烷基(例如,经烷基取代的环烷基和经环烷基取代的烷基)。
除非另外指出,否则术语“烷基”包含“未经取代的烷基”和“经取代的烷基”两者。如本文所使用的,术语“经取代的烷基”是指具有置换烃主链的一个或多个碳上的一个或多个氢的取代基的烷基。此类取代基可以包含例如烯基、炔基、卤基、羟基、烷基羰氧基、芳基羰氧基、烷氧基羰氧基、芳氧基、芳氧基羰氧基、羧酸酯基、烷基羰基、芳基羰基、烷氧基羰基、氨基羰基、烷基氨基羰基、二烷基氨基羰基、烷基硫基羰基、烷氧基、磷酸酯基、膦酸基、亚膦酸基、氰基、氨基(包含烷基氨基、二烷基氨基、芳基氨基、二芳基氨基及烷基芳基氨基)、酰胺基(包含烷基羰基氨基、芳基羰基氨基、氨甲酰基和脲基)、亚氨基、巯基、烷基硫基、芳基硫基、硫代羧酸酯基、硫酸酯基、烷基亚磺酰基、磺酸酯基、氨磺酰基、磺酰胺基、硝基、三氟甲基、氰基、叠氮基、杂环基、烷基芳基或芳香族(包含杂芳香族)基团。
在一些实施例中,经取代的烷基可以包含杂环基。如本文所使用的,术语“杂环基”包含类似于其中环上碳原子中的一个或多个为不是碳的元素(例如氮、硫或氧)的碳环基的闭环结构。杂环基团可为饱和或不饱和的。示例性杂环基团包含但不限于氮丙啶、环氧乙烷(环氧化物、环氧乙烷)、环硫乙烷(环硫化物)、双环氧乙烷、氮杂环丁烷、氧杂环丁烷、硫杂环丁烷、二氧杂环丁烷、二硫杂环丁烷、二硫环丁烯、氮杂环戊烷、吡咯啶、吡咯啉、氧杂环戊烷、二氢呋喃以及呋喃。
包含范围的所有数字标识,例如pH、温度、时间、浓度和分子量是以0.1的增量(+)或(-)变化的近似值。应理解的是,尽管并不总是明确地说明,但所有的数字标识的前面有术语“约”。术语“约”还包含精确值“X”以及“X”的微小增量,如“X+0.1”或“X-0.1”。还应理解,尽管并不总是明确地说明,但本文所描述的试剂仅仅是示例性的,并且其等效物在本领域中是已知的。
如本文所使用的,术语“约”将被本领域普通技术人员理解,并且将根据其所使用的上下文而在一定程度上有所不同。如果存在本领域普通技术人员不清楚的术语使用,则考虑到所述术语使用的上下文,“约”意味着特定术语的至多±10%。
包含“至少”、“大于”或“小于”数值的范围的说明书中列举的数值范围包含定义所述范围的数字,并且包含所定义范围内的每个整数。范围可以表示为从“约”一个特定值和/或到“约”另一个特定值。当表达此类范围时,另一方面包含从一个特定值和/或至另一个特定值。类似地,当通过使用先行词“约”将值表示为近似值时,应当理解,特定值形成另一方面。还应当理解,每个范围的端点相对于另一个端点和独立于另一个端点都是重要的。
术语“施用”活性剂应理解为意味着向需要治疗的受试者提供活性剂,所述活性剂可以以治疗上有用的形式和治疗有效量引入到个体的体内。如本文所使用的,“施用”进一步是指通过选择的途径将药剂,如所公开的进入抑制剂引入到受试者体内。施用可以是局部的或全身的。例如,如果选择的途径是鼻内,则通过将组合物引入到受试者的鼻道中来施用药剂(如包括在融合前构象中稳定的重组冠状病毒S胞外域三聚体的免疫原)。示例性施用途径包含但不限于口服、注射(如皮下、肌肉内、皮内、腹膜内和静脉内)、舌下、直肠、透皮(例如,局部)、鼻内、阴道和吸入途径。
如本文所使用的,“佐剂”是指用于增强抗原性的媒剂。在一些实施例中,佐剂可以包含吸附抗原的矿物质(明矾、氢氧化铝或磷酸盐)的悬浮液;或油包水乳液,例如,其中抗原溶液在矿物油中乳化(弗氏不完全佐剂),有时含有杀死的分枝杆菌(弗氏完全佐剂)以进一步增强抗原性(抑制抗原的降解和/或引起巨噬细胞的流入)。在一些实施例中,用于所公开的药物组合物的佐剂是卵磷脂和卡波姆均聚物的组合(如可从高级生物助剂有限责任公司(Advanced BioAdjuvants,LLC)获得的ADJUPLEXTM佐剂,也参见Wegmann,《临床与疫苗免疫学(Clin Vaccine Immunol)》,22(9):1004-1012,2015)。用于所公开的免疫原性组合物的另外的佐剂包含QS21纯化植物萃取物、基质M、ASO1、MF59和ALFQ佐剂。免疫刺激性寡核苷酸(如包含CpG基序的那些)也可以用作佐剂。佐剂包含生物分子(“生物佐剂”),如共刺激分子。示例性佐剂包含IL-2、RANTES、GM-CSF、TNF-α、IFN-γ、G-CSF、LFA-3、CD72、B7-1、B7-2、OX-40L、4-1BBL和toll样受体(TLR)激动剂,如TLR-9激动剂。佐剂的另外的描述可以在例如Singh(编辑)《疫苗佐剂和递送系统(Vaccine Adjuvants and Delivery Systems)》威利-国际科学出版社(Wiley-Interscience),2007中找到。佐剂可以与所公开的免疫原组合使用。
如本文所使用的,“抗病毒剂”可以包含食品和药物管理局(FDA)批准的用于治疗或控制病毒感染的药物。在Covid-19的情况下,抗病毒药物可以包含本文所公开的小分子药物组合物(例如,小分子进入抑制剂)、瑞德西韦、莫诺拉韦(lagevrio)(莫努匹韦(molnupiravir))、帕克斯洛维德(paxlovid)(利托那韦(ritonavir))以及类似的化合物。在机制上,抗病毒剂主要靶向病毒生命周期中的各个阶段。病毒生命周期中的示例靶阶段包含:与宿主细胞连接的病毒、脱壳、病毒mRNA的合成、mRNA的翻译、病毒RNA和DNA的复制、新病毒蛋白的成熟、出芽和新合成病毒的释放。
如本文所使用的,“氨基酸取代”是指多肽中的一个氨基酸被不同的氨基酸替代。
如本文所使用的,术语“包括”旨在意味着组合物和方法包含所叙述的要素,但不排除其它要素。当用于定义组合物和方法时,“基本上由…组成”应当意味着排除对所述组合物和方法具有任何重要意义的其它要素。“由…组成”应当意味着排除所要求保护的组合物的大于痕量要素的其它成分和大量方法步骤。由这些过渡术语中的每一个定义的实施例都在本公开的范围内。因此,意图是所述方法和组合物可以包含额外的步骤和组分(包括),或者可替代地包含不重要的步骤和组合物(基本上由…组成),或者可替代地,仅意在所陈述的方法步骤或组合物(由…组成)。
如本文所使用的,术语“冠状病毒科”是指有包膜、正义的单链RNA病毒家族。当前已知感染人的冠状病毒家族的病毒来自α冠状病毒和β冠状病毒属。另外地,据信γ冠状病毒和δ冠状病毒属可能在未来感染人。术语“冠状病毒”是指冠状病毒科家族中的任何病毒,包含但不限于中东呼吸综合征(MERS)冠状病毒、人冠状病毒229E(HCoV-229E)、人冠状病毒OC43(HCoV-OC43)、严重急性呼吸综合征相关冠状病毒(SARS-CoV;也被称为SARS-CoV-1)、人冠状病毒NL63(HCoV-NL63,纽黑文冠状病毒)、人冠状病毒HKU1、新型冠状病毒(2019-nCoV),也被称为严重急性呼吸综合征冠状病毒2(SARS-CoV-2),其是称为冠状病毒疾病2019(COVID-19)的疾病的致病因子,以及任何冠状病毒的相关毒株。术语冠状病毒和其变体在整个公开中可互换使用。其它冠状病毒科病毒用作测量目前公开的化合物的实例、靶标和标准,包含但不限于MERS(中东呼吸综合征)冠状病毒。δ冠状病毒的非限制性实例是猪δ冠状病毒(SDCV)。病毒基因组被封端、多聚腺苷酸化并被核衣壳蛋白覆盖。冠状病毒病毒体包含病毒包膜,所述病毒包膜含有被称为刺突(S)蛋白的I型融合糖蛋白。大多数冠状病毒具有共同的基因组结构,复制酶基因包含在基因组的5'-部分中,并且结构基因包含在基因组的3'-部分中。
如本文所使用的,术语“冠状病毒刺突(S)蛋白”是指最初作为前体蛋白合成的I类融合糖蛋白。单个前体S多肽形成同三聚体,并在高尔基体中进行糖基化,以及加工以去除信号肽,并被细胞蛋白酶切割以产生单独的51和S2多肽链,其在同三聚体中作为S1/S2原聚体保持缔合,并且因此是异二聚体的三聚体。51亚基位于病毒膜的远端并且含有介导病毒与其宿主受体连接的受体结合域(RBD)。S2亚基含有融合蛋白机制,如融合肽、两个七肽重复序列(HR1和HR2)和融合糖蛋白典型的中央螺旋、跨膜结构域和胞质尾部结构域。
如本文所使用的,“病状”或“健康病状”是指受试者或生物体的离体、体内或细胞状态。健康病状可以涉及例如在给定位置的健康相关病毒的存在。在本文中,权利要求考虑用小分子抑制剂调节细胞表面相互作用,以便抑制病毒复制。可能患有健康病状的受试者动物物种的范围也非常广泛,包含人、家养的动物、农场动物、水生无脊椎动物等。
测试样品与对照之间的差异可以是增加或相反的减少。所述差异可以是定性差异或定量差异,例如统计上显著的差异。在一些实例中,差异是相对于对照增加或减少至少约5%,如至少约10%、至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约100%、至少约150%、至少约200%、至少约250%、至少约300%、至少约350%、至少约400%、至少约500%或大于500%。
如本文所使用的,“疾病”是指活体动物或植物体或其一部分的损害正常功能的病状,并且通常表现为明显的体征和症状。疾病可以包含细菌感染、病毒感染、耐药性病毒和细菌感染、遗传病症、癌症、涉及铜体内平衡组分的任何疾病,以及本领域已知的其它有害健康病状。
如本文所使用的,“进入抑制剂”(也被称为“融合抑制剂”)是一类抗病毒药物,其例如通过阻断细胞表面受体来预防病毒进入细胞。进入抑制剂可以包括小分子(例如本发明的小分子抑制剂)、抗体等。
如本文所使用的,术语“示例性”是指实例、情况或说明,并且除非另有说明,否则不表示最优选的实施例。
如本文所使用的,“抑制”是指由于一种化学物质通过与另一种化学物质竞争结合或键合来抑制另一种化学物质的作用而中断化学通路(例如,“竞争性抑制”)。如本文所使用的,“抑制或治疗疾病”是指抑制疾病或病状的完全发展,例如,在有患如CoV感染等疾病风险的受试者中。这可以通过用小分子进入抑制剂抑制病毒复制来实现。“治疗”是指在疾病或病理学病状开始发展之后改善其体征或症状的治疗干预。关于疾病或病理学病状,术语“改善”是指治疗的任何可观察到的有益效果。
抑制疾病可以包含预防或降低疾病的风险,如预防或降低病毒感染的风险。有益效果可以通过例如以下来证明:易感受试者中疾病的临床症状的延迟发作、疾病的一些或所有临床症状的严重程度降低、疾病的进展减慢、病毒载量的减少、受试者的整体健康或福祉的改善或者通过对特定疾病具有特异性的其它参数来证明。“预防性”治疗是对未表现出疾病体征或仅表现出早期体征的受试者施用的治疗目的是降低发生病理的风险。
如本文所使用的,“药学上可接受的载体”是指常规使用的药学上可接受的载体。可以用于这些组合物(例如,化合物I、II或III)的药学上可接受的载体包含但不局限于:离子交换剂、氧化铝、硬脂酸铝、卵磷脂、血清蛋白如人血清白蛋白、缓冲物质如磷酸盐、甘氨酸、山梨酸、山梨酸钾、饱和植物脂肪酸的偏甘油酯混合物、水、盐或电解质,如硫酸鱼精蛋白、磷酸氢二钠、磷酸氢钾、氯化钠、锌盐、胶体二氧化硅、三硅酸镁、聚乙烯吡咯烷酮、基于纤维素的物质、聚乙二醇、羧甲基纤维素钠、聚丙烯酸酯、蜡、聚乙烯-聚氧丙烯嵌段聚合物、聚乙二醇和羊毛脂。通常,载体的性质将取决于所采用的特定施用模式。例如,肠胃外调配物通常包括可注射流体,其包含药学和生理学可接受的流体,如水、生理盐水、平衡盐溶液、葡萄糖水溶液、甘油等作为媒剂。对于固体组合物(例如,粉末、丸剂、片剂或胶囊形式),常规的无毒固体载体可以包含例如药物级的甘露醇、乳糖、淀粉或硬脂酸镁。除了生物学上中性的载体之外,要施用的药物组合物(如小分子进入抑制剂)可以含有少量无毒的辅助物质,如湿润剂或乳化剂、防腐剂和pH缓冲液等,例如,乙酸钠或脱水山梨糖醇单月桂酸酯。在特定实施例中,适合于向受试者施用的载体可以是无菌的、和/或悬浮的或以其它方式包含在单位剂型中,所述单位剂型含有一个或多个测量剂量的适合于诱导期望的免疫应答的组合物。所述载体也可能伴随着用于其治疗目的的药物。单位剂型可以是,例如,包含无菌内容物的密封小瓶或用于注射到受试者中的注射器,或冻干以用于随后的溶解和施用,或者呈固体或受控释放剂量。
如本文所使用的,“多肽”是指任何氨基酸链,无论长度或翻译后修饰(例如,糖基化或磷酸化)。“多肽”适用于氨基酸聚合物,包含天然存在的氨基酸聚合物和非天然存在的氨基酸聚合物,以及其中一个或多个氨基酸残基是非天然氨基酸,例如对应天然存在的氨基酸的人工化学模拟物。“残基”是指通过酰胺键或酰胺键模拟物并入多肽中的氨基酸或氨基酸模拟物。多肽具有氨基端(N端)末端和羧基端(C端)末端。“多肽”与肽或蛋白质可互换使用,并且在本文中用于指氨基酸残基的聚合物。
如本文所使用的,“治疗有效量”包括药学有效量,并且是指有效减少、消除、治疗、预防或控制由SARS-CoV-1病毒、SARS-CoV-2病毒等感染引起的感染、疾病、病症或其它病状的症状的化合物的浓度和/或体积。在SARS-CoV-1和SARS-CoV-2感染的情况下,药学有效量是指施用的量,以便在感染被证明的整个期间维持遏制或抑制循环病毒的量,所述感染被证明是如抗病毒抗体的存在、可培养病毒的存在和患者血清中的病毒抗原的存在或医疗专业人员可鉴定的症状。
如本文所使用的,“突变”是指病毒的基因组(遗传密码)的单一变化。突变经常发生,但只是有时会改变病毒的特性。在一些情况下,其用于治疗感染(例如SARS-CoV-2、HIV、丁型肝炎等)的组合疗法。
如本文所使用的,“核苷类似物”是指含有核酸类似物、糖和具有一至三个磷酸的磷酸基团的核苷。作为抗病毒药物,其通常用于预防受感染细胞中的病毒复制。瑞德西韦或利巴韦林(ribavirin)是可用于SARS-CoV治疗的上下文的核苷类似物的实例。核苷酸和核苷类似物也可以自然发现。实例包含由人抗病毒蛋白viperin产生的ddhCTP(3'-脱氧-3',4'二脱氢-CTP)和由一些链霉菌产生的西奈芬净(sinefungin)(S-腺苷甲硫氨酸类似物)。
如本文所使用的,“变体”是指可能含有一个或多个突变的病毒基因组。在一些情况下,具有类似遗传变化的变体组,如谱系或谱系组,可能会被公共卫生组织指定为相关变体(VOC)或所关注变体(VOI),因为其具有共同的属性和特性,可能需要采取公共卫生行动。如本文所使用的,“变体”包括VOC、VOI和被监测的变体(VBM)。在SARS-CoV的情况下,VOC是变体,有证据表明所述变体的传播性增加,疾病更严重(例如,住院或死亡增加),在先前感染或疫苗接种期间产生的抗体的中和作用显著降低,治疗或疫苗的有效性降低或诊断检测失败。VOI是具有特定遗传标志物的变体,所述特定遗传标志物与受体结合的变化、针对先前感染或疫苗接种产生的抗体的中和作用降低、治疗功效降低、潜在的诊断影响或预测的传播性或疾病增加有关。VBM包含数据表明对批准或授权的医学对策有潜在或明显影响,或与更严重的疾病或传播增加有关,但在美国不再被检测到或以非常低的水平循环的VBM。这些变体不会对美国的公共卫生构成重大和迫在眉睫的风险。
多肽(如冠状病毒RBD)的同源物和变体的特征通常在于在与所关注的氨基酸序列的全长比对中具有至少约75%,例如至少约80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性。当通过这种方法评估时,与参考序列具有甚至更大相似性的蛋白质将显示增加的百分比同一性,如至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性。当比较少于整个序列的序列同一性时,同源物和变体将通常在10-20个氨基酸的短窗口内具有至少80%的序列同一性,并且可能具有至少85%或至少90%或95%的序列同一性,这取决于其与参考序列的同一性。在互联网上的NCBI网站上可以获得用于在此类短窗口内确定序列同一性的方法。
如本文所使用的,“受试者”是指活的多细胞脊椎动物生物体,这一类别包含人和非人哺乳动物,如非人灵长类动物、猪、骆驼、蝙蝠、羊、牛、狗、猫、啮齿类动物等。在实例中,受试者是哺乳动物(例如人、水生哺乳动物、野生动物等)。受试者可以是家养动物(如狗或猫)或农场动物(如牛或猪)。在另外的实例中,选择需要抑制如SARS-CoV或MERS-CoV感染等冠状病毒感染或抑制冠状病毒复制的受试者。例如,受试者未被感染并处于冠状病毒感染的风险中,或者被感染并需要治疗。
如本文所使用的,“变体”是指南非变体、苏格兰变体和其它变体,包含所关注变体(VOI)、被监测的变体(VBM)和相关变体(VOC)。VOC是变体,有证据表明所述变体的传播性增加,疾病更严重,在先前感染或疫苗接种期间产生的抗体的中和作用显著降低,治疗或疫苗的有效性降低或诊断检测失败。VOI是具有特定遗传标志物的变体,所述特定遗传标志物与受体结合的变化、针对先前感染或疫苗接种产生的抗体的中和作用降低、治疗功效降低、潜在的诊断影响或预测的传播性或疾病增加有关。VBM包含数据表明对批准或授权的医学对策有潜在或明显影响,或与更严重的疾病或传播增加有关,但在美国不再被检测到或以非常低的水平循环的情况。这些变体不会对美国的公共卫生构成重大和迫在眉睫的风险。
示例SARS-CoV-2变体谱系包含:α(B.1.1.7和Q谱系)、β(B.1.351和后代谱系)、γ(P.1和后代谱系)、ε(B.1.427和B.1.429)、η(B.1.525)、ι(B.1.526)、κ(B.1.617.1)、变体1.617.3、μ(B.1.621、B.1.621.1)、ζ(P.2)等。在实施例中,在SARS-CoV-2的背景下,VOC包含B.1.1.7和Q谱系(2020年12月29日)、B.1.351和后代谱系(2020年12月29日)、P.1和后代谱系(2020年12月29日)以及B.1.427/B.1.429(2021年3月19日)。VOI的实例包含和B.1.427和B.1.429(2021年2月26日;2021年6月29日)、B.1.525(2021年2月26日)、B.1.526(2021年2月26日)、B.1.617.1(2021年5月7日)、B.1.617.3(2021年5月7日)和P.2(2021年2月26日)。VBM的实例包含B.1.1.7和Q谱系(2021年9月21日)、B.1.351和后代谱系(2021年9月21日)、P.1和后代谱系(2021年9月21日)、B.1.427和B.1.429(2021年9月21日)、B.1.427/B.1.429(2021年9月21日)、B.1.525(2021年9月21日)、B.1.526(2021年9月21日)、B.1.617.1(2021年9月21日)、B.1.617.3(2021年9月21日)和P.2(2021年9月21日)。
II.化合物
本文所使用的术语“化合物”或“候选化合物”描述了任何天然存在的或合成的分子,所述分子可以在如筛选测定等测定中测试,或具体地在用于鉴定能够结合和预防SARS-CoV-2和/或SARS-CoV-1的复制和/或感染的化合物的方法中测试。因此,这些化合物包括有机和无机化合物。在优选实施例中,化合物可以是小分子或化学物质。在其它实施例中,化合物可以包含肽、抗体或ISVD或活性抗体片段。
本发明的化合物包含使用本发明的筛选方法设计或鉴定的化合物,以及能够与SARS-CoV-2和/或SARS-CoV-1结合并对其进行中和的化合物两者。例如,能够与SARS-CoV-2结合并对其进行中和的化合物可以使用基于CADD的方法来产生,此外还有基于使用与和本文所呈现的ACE2(本文也被称为“ACE2:刺突RBD”)结合的S-RBD/刺突复合物和/或S-RBD/刺突复合物的3D结构相对应的原子坐标的筛选方法。使用本发明的方法鉴定或设计的候选化合物和/或化合物可以是合成的或天然存在的,优选地合成的任何合适的化合物。在一个实施例中,通过本发明的方法选择或设计的合成化合物的分子量优选地等于或小于约5000、4000、3000、2000、1000或更优选地小于约500道尔顿。本发明的化合物优选地在生理条件下可溶。此类化合物可以包括与蛋白质结构相互作用所必需的官能团,具体地氢键合,并且通常包含至少一个胺、羰基、羟基或羧基基团,优选地功能性化学基团中的至少两个。所述化合物可以包括被上述官能团中的一个或多个取代的环状碳或杂环结构和/或芳香族或多芳香族结构。化合物还可以包括生物分子,包含肽、糖类、脂肪酸、类固醇、嘌呤、嘧啶、衍生物、结构类似物或其组合。
A.使用CADD方法筛选化合物
图1A示出了用于筛选进入抑制剂化合物的计算机辅助过程。过程包括使用计算机辅助药物设计(CADD)方法筛选至少800万种化合物。在一些实施例中,使用CADD方法筛选了500万至1500万种化合物。在实施例中,在S-RBD和ACE2的界面处发现的残基总结描述于表1中。S-RBD和ACE2的界面处的残基也示出于图1B中。进一步地,图1C示出了结合袋的放大视图。
表1-S-RBD和ACE2的界面处的残基
在实施例中,提供了用于筛选进入抑制剂的方法,其中在第一步骤中,分析候选化合物的对接评分和结合几何形状。在第二步骤中,在基于细胞的测定中测试所述化合物的抗病毒活性。最后,所述化合物可以被衍生化以改善药物动力学。该方法提供了标准的方法,用于基于对接评分和视觉检查由S-RBD/刺突复合物和宿主ACE2(在本文中也被称为“ACE2:刺突RBD”)形成的结合袋中的其结合几何形状来选择化合物。选择的示例性化合物在图1D-I中示出,包含式(Ia)(图1D)、式(IIa)(图1E)、式(V)(图1F)、式(VI)(图1G和图1H)和式(VII)(图1I)。在测试化合物的抗病毒活性之后,式(Ia)和式(IIa)被鉴定为药物样化合物。后来,将式(IIa)衍生化得到式(IIb)(图2C)、式(IIc)(图2D)、式(IId)(图2E)和式(IIe)(图2F)。如上文所描述的,活性测定显示,相对于具有Hu-1和δ两者的式(IIa),式(IIb)具有改善的结合动力学。测试抗病毒活性和/或考虑用于未来衍生的另外的化合物包含式(IIIa)(图2G)、式(IIIb)(图2H)、式(IIIc)(图2I)、式(IV)(图2J)、式(V)(图2K)、式(VI)(图2L)、式(VII)(图2M)、式(VIII)(图2N)、式(IX)(图2O)和式(X)(图2P)。下表2总结了上述几种化合物的性质,包含化合物ID、IUPAC名称和结构。
表2:进入抑制剂化合物和衍生物
/>
/>
在实施例中,式(V)、式(VI)和式(VII)的对接评分分别为-7.6、-7.2和-6.4。式(Ia)的最佳姿态(基于对接评分)对接在由S-RBD残基R403、E406、Q409、K417、Y505和ACE2残基N33、H34、E37、R393、F390、P389、Q388、A387形成的袋中(图1D)。在其它实施例中,式(IIa)对接在同一袋中。在其它实施例中,式(IIa)对接在由Y505、R403、Y453(来自RBD)和N33、H34、E37、P389、F390、Q388和A387形成的袋中(图1E)。从图1D和图1E所示的两种化合物的对接姿态可以看出,在实施例中,式(Ia)与袋残基的极性相互作用(如图1D中的黄色虚线所示)的数量比式(IIa)多,所述式(IIa)与袋残基的极性相互作用只有四种,如图1E所示。在实施例中,与式(Ia)相比,所述有限的极性相互作用可以导致式(IIa)的对接评分提高。图1F-1I示出了式(V)(图1F)、式(VI)(图1G和图1F)和式(VII)(图1I)的化合物适于对接在与式(Ia)(图1D)相同的袋中。因此,在实施例中,最佳姿态研究显示,至少式(Ia)、式(IIa)和式(III)的化合物适于结合在S-RBD(其中S-RBD是SARS-CoV-1和/或SARS-CoV-2刺突蛋白受体结合结构域)和宿主细胞ACE-2受体的界面处。
B.化合物对SARS-CoV-2的ACE2:刺突RBD的结合的影响
图3示出了通过计算机辅助药物设计方法选择的化合物的筛选。本公开提供了用于筛选化合物的文库的方法,以便鉴定抑制ACE2:SARS-CoV-2刺突RBD(“ACE2:刺突RBD”)的化合物。所述刺突/ACE2抑制剂筛选测定如以下实例章节所描述进行。在实施例中,式(Ia)、式(IIa)、式(V)、式(VI)和式(VII)以从0.25至5μM开始的不同浓度进行测试三次。这五种化合物显示出不同程度地抑制/阻断ACE2和刺突RBD的结合。值得注意的是,在实施例中,所有五种化合物适于以剂量依赖性方式逆转ACE2与刺突RBD之间的结合。
在一些实施例中,式(Ia)的IC50为至少0.25μM。相反,式(IIa)、式(V)、式(VI)和式(VII)的IC50分别为0.45、1.91、>5.0和>5.0μM。
C.使用微量热泳测定评估结合亲和力
在其它实施例中,提供了方法,微量热泳(MST)测定用于确定式(IIa)和式(IIb)是否与单独的S-RBD(图11A)和/或单独的ACE2结合(图11B)。另外,所述MST测定评估化合物是否与S-RBD/ACE2复合物结合。在一个实施例中,式(IIa)不与S-RBD(未测得Kd)结合也不与单独的ACE2(Kd=3.7μM)结合,但与S-RBD/ACE2复合物(Kd=299nM)结合。
所述方法进一步提供了使用微量热泳来得到仅式(IIa)/Hu-1 S-RBD(图11A)和仅式(IIa)/ACE2(图11B)的结合动力学。在实施例中,“仅式(IIa)/ACE2”的结合曲线(图11B)用于得到3.7微摩尔的Kd。在实施例中,式(IIa)衍生物包含式(IIb)(图2C)、式(IIc)(图2D)、式(IId)(图2E)和式(IIe)(图2F)。在一些实施例中,所述式(IIa)衍生物不与S-RBD和单独的ACE2结合,但与S-RBD/ACE2复合物结合。除了上述之外,本公开总体上提供了治疗SARS-CoV-2病毒的方法,所述方法包括向感染SARS-CoV-2病毒的受试者施用化合物,其中所述化合物与SARS-CoV-2 S-RBD/ACE2复合物结合,但不与单独的S-RBD或单独的ACE-2结合,其中所述化合物包括式(II)(例如,式(IIa)、式(IIb)、式(IIc)、式(IId)或式(IIe))或其药学上可接受的盐。
如图12A-D所示,在实施例中,上文所描述的MST方法适用于变体蛋白复合物。例如,微量热泳(MST)可以用于分析式(IIa)和式(IIb)化合物与WT(“Hu-1”)和δS-RBD/ACE2蛋白复合物的结合。在另一个实例中,使用式(IIa)和Hu-1的MST测定(图12A)提供了299nM的Kd。使用式(IIa)和δ的MST测定(图12B)提供了200nM的Kd。使用式(IIb)和Hu-1的MST测定(图12C)提供了31nM的Kd。使用式(IIb)和δ的MST测定(图12D)提供了90nM的Kd。因此,在实施例中,化合物式(IIb)和/或包括具有Hu-1 S-RBD/ACE复合物的式(IIb)的药物组合物的结合亲和力相对于δS-RBD/ACE复合物提高了约10倍。
D.测量化合物的细胞毒性
在一些实施例中,本发明的方法提供了细胞细胞毒性的精确测量。所述方法应用于候选进入抑制剂化合物(例如,式(Ia)、式(IIa)、式(V)、式(VI)和式(VII)的化合物等)。在HEK293T-hACE2细胞中进行测定(参见图4A-4K)。首先,使用测量细胞增殖和活力的比色MTT测定,在Vero-STAT1敲除、UNCN1T和Calu-3细胞中计算式(Ia)(参见图4A、图4F、图4H、图4J)和式(IIa)(参见图4B、图4G、图4I、图4K)的细胞毒性。接下来,相对于化合物浓度的增加,绘制细胞的活力百分比,并使用四参数可变斜率S形剂量-应答模型计算每种化合物的50%细胞毒性浓度(CC50)。在实施例中,在HEK293T-hACE2细胞中,所有五种化合物的表现出高于100μM的CC50值(图4A-4E)。在Vero-STAT1敲除细胞中,式(Ia)表现出6.21μM的CC50(图4F),并且式(IIa)提供了7.13μM的CC50(图4G)。在其它实施例中,在UNCN1T和Calu-3细胞中,式(Ia)和式(IIa)表现出高于100μM的CC50值(图4H-4K)。
E.筛选进入抑制潜力
本公开提供了模拟冠状病毒宿主细胞进入的方法,其中在第一步骤中复制表达冠状病毒刺突糖蛋白的缺陷型慢病毒颗粒。在所述第一步骤中,慢病毒颗粒适于掺入表面表达的SARS-CoV-2刺突蛋白。接下来,使用表达人ACE2的HEK-293T细胞,慢病毒颗粒用于确定不存在进入抑制化合物时病毒进入的相对效率。然后,用增加浓度的化合物(0.25至5μM)处理HEK-293T-hACE2细胞,并且然后用假型化慢病毒颗粒转导。然后计算假型病毒进入,并在48小时后相对于媒剂对照(DMSO)进行测量。在实施例中,式(Ia)的化合物显示出低水平的病毒进入抑制,在较高浓度下略有增加(图5A)。在其它实施例中,式(IIa)治疗可以跨宽浓度范围产生显著和稳健的病毒进入抑制(图5B)。在其它实施例中,如相对于图5A和图5B所测量的,式(V)(图5C)、式(VI)(图5D)和式(VII)(图5E)在该体外实验的条件下可能不能预防假病毒进入。基于四参数可变斜率S形剂量-应答模型,式(IIa)的IC50值为0.84μM(图5F)。在一些实施例中,式(IIa)表现出一定范围的IC50值,包含0.8-0.85μM或0.9-1μM。在其它实施例中,式(IIb)表现出比式(IIa)甚至更低的IC50值,范围为0.1-0.2μM、0.22-0.3μM、0.32-0.6μM或0.6-.8μM。
在实施例中,病毒进入/复制可以被进入抑制剂以各种方式阻断。例如,在一个实施例中,SARS-CoV-1和/或SARS-CoV-2的复制被预防宿主ACE2和S-RBD的缔合的所结合的小分子化合物的空间位阻抑制。在另一个实例中,病毒进入/复制被进入抑制剂和RBD和/或刺突蛋白的残基的静电排斥抑制。在其它实施例中,治疗有效量的本文所公开的进入抑制剂可以通过替代性方式阻断病毒进入/复制,所述替代性方式包含与RBD/刺突复合物和/或侧链的共价化学相互作用。在实施例中,进入抑制剂可以提取质子、贡献电子、参与范德华相互作用、参与量子隧穿等。此类相互作用可能破坏ACE2与刺突/RBD复合物的结合,因此预防病毒的进入和复制。
F.针对活SARS-CoV-2分离株和变体的抗病毒功效
在实施例中,示出式(Ia)、式(IIa)和式(IIb)的化合物和其药物组合物以提供针对SARS-CoV-2的有效抗病毒活性。本发明的方法允许在UNCN1T和Vero-STAT1敲除细胞中测量式(Ia)和式(IIa)对活SARS-CoV-2的抗病毒功效。UNCN1T是一种人支气管上皮细胞系并作为SARS-CoV-2的靶组织肺上皮的疾病相关背景。由于缺乏STAT1,涉及细胞抗病毒干扰素介导的应答的转录因子,Vero-STAT1敲除细胞对病毒感染高度敏感。因此,在实施例中,这些细胞作为稳健病毒感染的阳性对照。在一些实施例中,在使用上文所描述的细胞模型之后,然后在不同的时间点(例如,24和48hpi)测量SARS-CoV-2复制动力学。在进入抑制剂化合物(例如,式(Ia)、式(IIa)、式(IIb))或任何上文所描述的其它进入抑制剂化合物,如式(IIc)、式(IId)和式(IIe)的浓度增加的情况下确定所述测量结果。
应用本发明的上文所描述的方法,在一个实例中,在24hpi时式(Ia)和式(IIa)分别提供了0.67和1.72μM的IC50值的抗病毒活性(图6A)。另一方面,在48hpi时式(Ia)和式(IIa)的IC50值分别为1.16和0.89μM(图6B)。在Vero-STAT1敲除细胞中,24hpi式(Ia)和24hpi式(IIa)的IC50值分别为5.35和1.63μM(图6C)。在其它实施例中,当在48hpi时,式(Ia)和式(IIa)的化合物的IC50值分别为2.94和0.54μM(图6D)。在实施例中,在图6B-6D中,式(II)(例如式(IIa))在所有时间点表现出较低IC50值,与其增强的药物代谢动力学特征一致。
在实施例中,可以针对SARS-CoV-2的变体进一步评估式(Ia)和式(IIa)的抗病毒功效。作为概念的证明并且基于其来自BEI资源公司(BEI resources)的可获得性,选择了来自南非(谱系:B.1.351)和苏格兰(谱系:B.1.222)的两个突变体变体。基于Calu-3细胞的培养上清液中的SARS-CoV-2病毒载量,与野生型病毒相比,式(Ia)和式(IIa)显示出对新出现的变体毒株相当的抗病毒活性。在实施例中,在24hpi时式(Ia)的南非(谱系:B.1.351)变体(图7A)和苏格兰(谱系:B.1.222)变体(图7B)的IC50值为9.27μM和2.64μM,而在24hpi时式(IIa)的南非(谱系:B.1.351)变体(图7C)的IC50值为3.00μM并且苏格兰(谱系:B.1.222)变体(图7D)的IC50值为1.39μM。对于苏格兰和南非变体,式(IIb)的化合物表现出甚至更低IC50值。例如,在实施例中,式(IIb)提供了低IC50值的范围,包括:0.5-0.19μM、0.2-0.31μM、0.32-0.6μM或0.6-.8μM。
除了上述之外,所述进入抑制剂方法和组合物非常适用于多种SARS-CoV-2变体。在实施例中,所述变体可以包含所关注变体(VOI),所述所关注变体包含和B.1.427和B.1.429(2021年2月26日;2021年6月29日)、B.1.525(2021年2月26日)、B.1.526(2021年2月26日)、B.1.617.1(2021年5月7日)、B.1.617.3(2021年5月7日)和P.2(2021年2月26日)。在仍其它实施例中,用于测量针对SARS-CoV的抗病毒功效的所述系统可以适用于被监测的变体(VBM),包含B.1.1.7和Q谱系(2021年9月21日)、B.1.351和后代谱系(2021年9月21日)、P.1和后代谱系(2021年9月21日)、B.1.427和B.1.429(2021年9月21日)、B.1.427/B.1.429(2021年9月21日)、B.1.525(2021年9月21日)、B.1.526(2021年9月21日)、B.1.617.1(2021年9月21日)、B.1.617.3(2021年9月21日)和P.2(2021年9月21日)。在其它实施例中,经考虑所述组合物和方法适用于多种不同的冠状病毒,包含MERS-CoV、SARS-CoV、NL63-CoV、229E-CoV、OC43-CoV、HKU1-CoV、WIV1-CoV、MHV、HKU9-CoV、PEDV-CoV或SDCV。
G.在添加SARS-CoV-2感染的细胞的不同时间之后的式(Ia)和式(II)的抗病毒功效
为了确定式(Ia)和式(IIa)的化合物在病毒生命周期的哪个阶段赋予其抗病毒效果,本方法包含添加测定的时间。测定的实验方案描述于图8A中。在实施例中,观察到当两种化合物添加-2hpi时,与媒剂对照相比,SARS-CoV-2传染性降低超过80%。在一些实施例中,当在感染时添加化合物时,观察到SARS-CoV-2传染性降低约40%。在其它实施例中,并且当化合物添加+4hpi时,与媒剂对照相比,SARS-CoV-2感染没有显著差异(图8B)。总之,在实施例中,式(Ia)和式(IIa)与ACE2和SARS-CoV-2刺突RBD结合界面相互作用,由此预防蛋白质复合物的缔合。在实施例中,当在感染前应用时,所述化合物能够更容易地迁移至其靶标以胜过ACE2和S-RBD/刺突复合物。事实上,本公开表明,当添加-2hpi时,与媒剂对照相比,式(IIb)的化合物的SARS-CoV-2传染性将表现出降低超过85%、90%或95%。因此,在实施例中,式(Ia)和式(IIa)包括可应用于受试者以预防和治疗SARS-CoV-2感染的药物组合物。
H.ACE2:刺突RBD处的化合物结合诱导ACE2中的侧链构象变化
在实施例中,公开了评估化合物与ACE2:刺突RBD复合物结合的影响的方法。具体地,诱导-拟合对接(IFD)用于评估由化合物的结合诱导的推定构象变化。在实施例中,在与ACE2:刺突RBD结合时,式(Ia)和式(II)的化合物诱导显著的侧链构象变化。在一个实施例中,在式(Ia)与S-RBD/ACE2复合物结合时(如通过柔性对接所测量的),残基Y505和R403在空间中被转置(参见图13A)。在另一个实施例中,ACE2残基N33、H34和R393的侧链构象变化在IFD时被改变(参见N33的适度旋转和Y505的显著远离)。在另外的实施例中,式(Ia)的化合物与S-RBD/ACE2复合物的结合显著改变了式(Ia)与结合袋结合的模式(图13B)。值得注意的是,在其它实施例中,结合袋中几个残基的侧链构象保持不变。在实例中,这些残基包含S-RBD的E406和D405,以及ACE2的D30、E37、A386、E387、Q388和P389。
在实施例中,在式(IIa)的IFD上观察到显著的侧链构象变化(图13C)。在一些实施例中,这些残基包含R403、Y453、Y495和Y505(S-RBD),以及N33、H34、E37、D38和K353(ACE2)。在其它实施例中,S-RBD残基D405和E406以及ACE2残基R393的侧链构象不会在式(IIa)的IFD时变化。如式(Ia)的化合物所见,在与ACE2:刺突RBD结合时,式(IIa)本身的结合构象也改变(图13D)。本发明考虑在式(IIa)衍生物与ACE2:刺突RBD结合时诱导侧链构象变化。所述衍生物包括式(IIb)(图2C)、式(IIc)(图2D)、式(IId)(图2E)和式(IIe)(图2F)。在其它实施例中,本发明考虑了在与其它本文所公开的化合物的ACE2:刺突RBD结合时诱导侧链构象变化,所述化合物包含式(IIIa)(图2G)、式(IIIb)(图2H)、式(IIIc)(图2I)、式(IV)(图2J)、式(V)(图2K)、式(VI)(图2L)、式(VII)(图2M)、式(VIII)(图2N)、式(IX)(图2O)和式(X)(图2P)。
I.式(IIa)的化学性质
在实施例中,除了量化其与RDV的协同作用之外,还计算了式(IIa)的各种生物物理性质。首先,SwissADME网络门户用于计算所有化合物的各种生物物理性质。接下来,分析所述化合物的动力学以显示或反驳与RDV的协同作用。在实施例中,式(II)(例如式(IIa))的所述分析导致至少2.27的Log Po/w值,表明高渗透性和中等溶解度。此外,式(IIa)具有高胃肠吸收,但预期不会抑制CYP2C9、CYP2D6和CYP3A4,这表明化合物毒性低。另外,在实施例中,式(IIa)满足所有Lipnski五倍率法则,并被预测表现出高药物可能性而PAINS(泛测定干扰化合物)。
还公开了组合疗法和重新利用的药物的用途。所述疗法适合于靶向病毒生命周期的不同阶段,与单一疗法相比,导致更好的病毒学和生理学应答。这种方法提高了治疗的总体功效,降低了单个药物的剂量要求,改善了毒性特征,并降低了产生耐药性的机会。在其它实施例中,体外单分子蛋白质折叠实验用于设计靶向S-RBD等的替代性折叠构象状态的药物。
J.RDV/式(Ia)和RDV/式(IIa)的组合抗病毒功效
如上文所描述的,证明了式(Ia)和式(IIa)在阻断SARS-CoV-2进入细胞中的有效性。另外,本公开提供了评估式(Ia)/式(IIa)与RDV的组合抗病毒效果的方法。如上文所描述的,使用SARS-CoV-2感染的UNCN1T细胞,在式(Ia)和式(IIa)的不同固定剂量组合下确定RDV的剂量-应答曲线(参见图9A和图10A)。在一些实施例中,在感染的UNCN1T细胞中使用SARS-CoV-2,在RDV的不同固定剂量组合下确定式(Ia)和式(IIa)的剂量-应答曲线(图9B和图10B)。RDV/式(Ia)和RDV/式(IIa)的单次和组合治疗的剂量-应答百分比抑制矩阵分别在图9C和图10C中示出。最后,在SARS-CoV-2感染的UNCN1T细胞24hpi中,使用SynergyFinderv.2基于Loewe加和性模型计算组合治疗的3-D相互作用景观。协同图分别用红色和绿色突出显示协同和拮抗剂量区。负Loewe协同作用评分表示拮抗药物组合,0至10的评分表示药物组合的相加作用,并且高于10的评分表示协同药物组合。
在实施例中,RDV/式(Ia)组合的Loewe协同作用评分为-30.69,表明具有拮抗作用(图9D)。然而,在其它实施例中,RDV/式(IIa)的Loewe协同作用评分为26.64,表明具有协同作用(图10D)。在实施例中,RDV(RdRp抑制剂)与式(Ia)和/或式(IIa)之间的协同相互作用包括式(IIa)和RDV的剂量分别减少至少28.3倍和2.3倍。在实施例中,这些发现支持针对单一疗法组合使用两种化合物(RDV和式(IIa))。在实施例中,靶向病毒生命周期的两个关键阶段,即细胞进入(式(IIa))和复制(RDV)的组合疗法提高了总体治疗功效,并降低了与一种药物相关的耐药性的机会。值得注意的是,使用RDV和式(Ia)进行的研究导致与Loewe协同作用评分相关的数据出现了一些中度偏差。值得注意的是,减少RDV剂量预期减少其不利的副作用,所述副作用显著限制了其在临床环境中的使用。因此,在抗病毒治疗领域,可以采用与其它潜在协同化合物(例如,其它核苷类似物、利巴韦林等)的组合疗法。
如上文所描述的,S-RBD/刺突复合物抑制的机制的动力学研究揭示了式(Ia)和式(IIa)作为S-RBD/刺突复合物的抑制剂(例如非竞争性抑制剂)。在实施例中,如上文所描述的,显示出式(IIa)不单独仅与Hu-1S-RBD结合和仅与ACE2结合(图11A和图11B)。这些结果表明,本发明的进入抑制剂通过新的和令人惊讶的机制特异性地阻断S-RBD/刺突复合物。进一步地,鉴于S-RBD/刺突复合物的进入抑制剂的特异性,宿主哺乳动物的细胞酶和其它内源性过程的功能不会被拮抗。在其它实施例中,向受试者施用式I或式(II)很少或没有体液炎症免疫应答(例如,在进入抑制剂施用之后IFN-γ浓度低至没有增加)。在实施例中,所述进入抑制剂通过破坏通常在S-RBD/棘突和/或ACE2中观察到的细胞外构象变化来阻断S-RBD/棘突复合物的进入和复制。在其它实施例中,进入抑制剂对于诊断和/或作为SARS-CoV生命周期中研究S-RBD/刺突复合物的模型是有价值的。
在实施例中,可以通过交换进入抑制剂(例如,式(Ia)、式(IIa)、式(V)、式(VI)、式(VII)等)或其前体的化学基团来产生或合成衍生物。可以对衍生物进行各种测定,以在基于复制细胞的测定(例如基于慢病毒的假病毒测定、测量IC50的抗病毒测定、鉴定衍生物的作用的阶段的药物添加测定等)中确定复制抑制的生物活性。另外,可以对进入抑制剂进行修饰,以获得生物利用度、跨膜屏障能力、溶解度、活性或例如稳定性提高的衍生物。衍生物也可以通过例如在规定的培养基中培养能够产生有机化合物的微生物,并将从培养物中获得的有机化合物与进入抑制剂或其前体以及另外的药剂反应来合成。衍生物也可以通过任何有机化学方法合成。可以构建含有进入抑制剂的衍生物或其前体的化学化合物的化合物文库。此类文库使得能够随机高通量筛选具有改善的特性,例如生物利用度、活性、稳定性等的衍生物。
在特定实施例中,采用了用于治疗SARS-CoV和其它冠状病毒的各种衍生物。
在某些实施例中,所述进入抑制剂化合物是如下所示的式I、II和/或III的衍生物:
其盐,
其中R1、R2、R3、R4、R6、R7、R8和R9中的每一个独立地是氢、卤素、硝基(-NO2)、醛、羰基、羧基、羟基、胺、芳基、杂芳基、芳氧基、杂芳氧基、-O(C1-C4)烷基、-O(C1-C4)卤代烷基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
R5独立地是氢、卤素、醛、羰基、羧基、羟基、胺、芳基、杂芳基、芳氧基、杂芳氧基、(C1-C4)烷基、(C1-C4)卤代烷基、-O(C1-C4)烷基或-O(C1-C4)卤代烷基;
R10、R11、R12、R13、R14、R15、R16、R17和R18中的每一个独立地是氢、卤素、硝基(-NO2)、醛、羰基、羧基、羟基、胺、芳基、杂芳基、芳氧基、杂芳氧基、-O(C1-C4)烷基、-O(C1-C4)卤代烷基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
Y是O、S、S(═O)、S(=O)2、羰基、羧基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
Z是O、S、S(═O)、S(=O)2、羰基、羧基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
Y1是O、S、S(=O)、S(=O)2、硝基(-NO2)、脂肪族腈、羰基、羧基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
X1是S、O、NH或CRa1,X2是N或CRa2,X3是N或CRa3,并且X4是(C1-C4)烷基,其中Ra1、Ra2和Ra3中的每一个独立地是氢、卤素、羟基、(C1-C4)烷基、(C1-C4)卤代烷基、芳基、杂芳基、芳氧基、杂芳氧基、-O(C1-C4)烷基或-O(C1-C4)卤代烷基;
L不存在或是CRa4,其中Ra4是氢、卤素、羟基、(C1-C4)烷基、(C1-C4)卤代烷基、芳基、杂芳基、芳氧基、杂芳氧基、-O(C1-C4)烷基或-O(C1-C4)卤代烷基;并且
M不存在,是NH或N,其中当M是N时,M和X4结合以形成环状基团。
在一些实施例中,式I、II或III也可以是其衍生物或药学上可接受的盐。
包含任何R-基团或化学取代基的式的任何描述可以单独或以任何组合用于本文所描述的任何化学式,并且式包含所有构象和立体异构体,包含非对映异构体、差向异构体和对映异构体。本文所描述的化合物可以具有不对称中心。因此,含有不对称取代的原子的式可以以光学活性形式或外消旋形式被分离。除非具体地指出特定的立体化学或异构形式,否则一种结构的所有手性、非对映异构、外消旋形式和所有几何异构形式都被预期。此外,本文所公开的组合物的任何特征可以与本文所公开的组合物的任何其它特征组合使用。
在其它实施例中,所述进入抑制剂化合物是如下所示的式I、II和/或III的衍生物:
/>
其盐,
其中R1、R2、R3、R4、R6、R7、R8和R9中的每一个独立地是氢、硝基(-NO2)、
O(C1-C4)烷基、-O(C1-C4)卤代烷基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
R5独立地是氢、卤素、(C1-C4)烷基、(C1-C4)卤代烷基、-O(C1-C4)烷基或-O(C1-C4)卤代烷基;
R10、R11、R12、R13、R14、R15、R16、R17和R18中的每一个独立地是氢、卤素、硝基(-NO2)、NH2、O(C1-C4)烷基、-O(C1-C4)卤代烷基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
Y是O、S、S(═O)或S(=O)2
Z是O、S、S(═O)或S(=O)2
Y1是O、S、S(=O)、S(=O)2、硝基(-NO2)或脂肪族腈;
X1是S、O或CRa1,X2是N或CRa2,X3是N或CRa3,并且X4是(C1-C4)烷基,其中Ra1、Ra2和Ra3中的每一个独立地是氢、卤素、(C1-C4)烷基、(C1-C4)卤代烷基、-O(C1-C4)烷基或-O(C1-C4)卤代烷基;
L不存在或是CRa4,其中Ra4是氢、(C1-C4)烷基、(C1-C4)卤代烷基、-O(C1-C4)烷基或-O(C1-C4)卤代烷基;并且
M不存在,是NH或N,其中当M是N时,M和X4结合以形成环状基团。
所述化合物或其盐(包含药学上可接受的盐)与SARS-CoV-1或SARS-CoV-2刺突蛋白受体结合结构域(RBD)和宿主细胞ACE-2受体的界面结合。
在实施例中,所述化合物具有下式:
在实施例中,所述化合物具有下式之一:
在实施例中,所述化合物或其盐具有下式之一:
在某些实施例中,本发明的化合物适于抑制病毒复制,或治疗或预防使用ACE2进入的病毒的病毒感染,所述病毒可以被本发明的化合物抑制。在其它实施例中,本发明的化合物适于调节哺乳动物(例如,鼠、人、水生哺乳动物等)ACE2对于本领域已知的任何其它ACE2相关适应症的活性。例如,本发明的化合物可以破坏或以其它方式调节负责调节心血管和肾脏系统(例如血压调节)的肾素-血管紧张素系统(RAS)中的ACE2的调节功能。
根据本发明的一个实施例,本文公开了抑制病毒复制的方法,所述方法包括施用具有核心式I、II或III的化合物:
其盐,
其中R1、R2、R3、R4、R6、R7、R8和R9中的每一个独立地是氢、卤素、硝基(-NO2)、醛、羰基、羧基、羟基、胺、芳基、杂芳基、芳氧基、杂芳氧基、-O(C1-C4)烷基、-O(C1-C4)卤代烷基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
R5独立地是氢、卤素、醛、羰基、羧基、羟基、胺、芳基、杂芳基、芳氧基、杂芳氧基、(C1-C4)烷基、(C1-C4)卤代烷基、-O(C1-C4)烷基或-O(C1-C4)卤代烷基;
R10、R11、R12、R13、R14、R15、R16、R17和R18中的每一个独立地是氢、卤素、硝基(-NO2)、醛、羰基、羧基、羟基、胺、芳基、杂芳基、芳氧基、杂芳氧基、-O(C1-C4)烷基、-O(C1-C4)卤代烷基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
Y是O、S、S(═O)、S(=O)2、羰基、羧基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
Z是O、S、S(═O)、S(=O)2、羰基、羧基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
Y1是O、S、S(=O)、S(=O)2、硝基(-NO2)、脂肪族腈、羰基、羧基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
X1是S、O、NH或CRa1,X2是N或CRa2,X3是N或CRa3,并且X4是(C1-C4)烷基,其中Ra1、Ra2和Ra3中的每一个独立地是氢、卤素、羟基、(C1-C4)烷基、(C1-C4)卤代烷基、芳基、杂芳基、芳氧基、杂芳氧基、-O(C1-C4)烷基或-O(C1-C4)卤代烷基;
L不存在或是CRa4,其中Ra4是氢、卤素、羟基、(C1-C4)烷基、(C1-C4)卤代烷基、芳基、杂芳基、芳氧基、杂芳氧基、-O(C1-C4)烷基或-O(C1-C4)卤代烷基;并且
M不存在,是NH或N,其中当M是N时,M和X4结合以形成环状基团。
包含任何R-基团或化学取代基的式的任何描述可以单独或以任何组合用于本文所描述的任何化学式,并且式包含所有构象和立体异构体,包含非对映异构体、差向异构体和对映异构体。本文所描述的化合物可以具有不对称中心。因此,含有不对称取代的原子的式可以以光学活性形式或外消旋形式被分离。除非具体地指出特定的立体化学或异构形式,否则一种结构的所有手性、非对映异构、外消旋形式和所有几何异构形式都被预期。此外本文所公开的组合物的任何特征可以与本文所公开的组合物的任何其它特征组合使用。在实施例中,式(Ia)包括:进入抑制剂类别I,包括式(Ia)(IC50=<0.25μM):6-甲基-2-硝基二苯并[d,g][1,6,2]二噻唑啉-7(6H)酮5,5,12-三氧化物。
在某些实施例中,所述化合物和方法被设计用作如冠状病毒科病毒、SARS病毒等网巢病毒目病毒(Nidovirales viruses)的进入抑制剂。在其它实施例中,进入抑制剂针对其它RNA病毒起作用,包含埃博拉、流感、MERS-CoV和委内瑞拉马脑炎病毒。
在某些实施例中,本发明还包含包括本文所公开的进入抑制剂(参加表2)或其药学上可接受的盐和/或和药学上可接受的载体的药物组合物。
如果在这些组合物中利用本发明的化合物的药学上可接受的盐,这些盐可以源自无机或有机酸和碱。此类酸盐包含(作为示例性列表)如下:乙酸盐、己二酸盐、藻酸盐、天冬氨酸盐、苯甲酸盐、苯磺酸盐、硫酸氢盐、丁酸盐、柠檬酸盐、樟脑酸盐、樟脑磺酸盐、环戊烷丙酸盐、二葡萄糖酸盐、十二烷基硫酸盐、乙磺酸盐、富马酸盐、葡糖庚酸盐、甘油磷酸盐、半硫酸盐、庚酸盐、己酸盐、盐酸盐、氢溴酸盐、氢碘酸盐、2-羟基乙磺酸盐、乳酸盐、马来酸盐、甲磺酸盐、2-萘磺酸盐、烟酸盐、草酸盐、恩波酸盐、果胶酸盐、过硫酸盐、3-苯基-丙酸盐、苦味酸盐、新戊酸盐、丙酸盐、琥珀酸盐、酒石酸盐、硫氰酸盐、甲苯磺酸盐和十一酸盐等。碱盐包含铵盐、碱金属盐,如钠盐和钾盐;碱土金属盐,如钙盐和镁盐;具有有机碱的盐,如二环己胺盐、N-甲基-D-葡糖胺以及具有氨基酸的盐,如精氨酸、赖氨酸等。
在某些实施例中,本发明的组合物和方法中使用的化合物也可以通过附加适当的官能度来修饰以增强选择性生物学性质。此类修饰是本领域中已知的并且包含增加生物渗透到给定生物系统(例如,血液、淋巴系统、中枢神经系统)中、增加口服利用度、增加溶解度以允许注射施用、改变代谢以及改变排泄速率的那些修饰。本文所提供的抗病毒组合物可以任选地包含一种或多种另外的组分,如载体、稳定剂、免疫系统刺激物质、消毒剂、化学或以其它方式灭活的病毒物质或另外的病毒抑制化合物。在某些实施例中,可以用于这些组合物的药学上可接受的载体包含但不局限于:离子交换剂、氧化铝、硬脂酸铝、卵磷脂、血清蛋白如人血清白蛋白、缓冲物质如磷酸盐、甘氨酸、山梨酸、山梨酸钾、饱和植物脂肪酸的偏甘油酯混合物、水、盐或电解质,如硫酸鱼精蛋白、磷酸氢二钠、磷酸氢钾、氯化钠、锌盐、胶体二氧化硅、三硅酸镁、聚乙烯吡咯烷酮、基于纤维素的物质、聚乙二醇、羧甲基纤维素钠、聚丙烯酸酯、蜡、聚乙烯-聚氧丙烯嵌段聚合物、聚乙二醇和羊毛脂。
还应当理解的是,用于任何特定患者的具体剂量和治疗方案将取决于各种因素,包含药物组合物的活性、年龄、体重、总体健康状况、性别、饮食、施用时间、排泄率、药物组合和治疗医师的判断以及被治疗的特定疾病的严重程度。活性成分的量也将取决于组合物中特定的化合物和/或抗病毒剂(如果存在的话)。
向受试者施用进入抑制剂或其衍生物的剂量范围是产生期望的效果由此改善感染的症状的剂量范围。具体地,本发明的化合物有效地抗网巢病毒目病毒,如包括S-RBD结构域并在感染的生命周期期间形成S-RBD/ACE2复合物的SARS-CoV-2。例如,如本文所使用的,用于SARS-CoV-1和SARS-CoV-2感染的药学有效量是指施用的量,以便在感染被证明的整个期间维持遏制或抑制循环病毒的量,所述感染被证明是如抗病毒抗体的存在、可培养病毒的存在和/或患者血清中的病毒抗原的存在或医疗专业人员可鉴定的症状。例如,抗病毒抗体的存在可以通过使用标准ELISA或蛋白质印迹测定来确定。
剂量通常随着年龄、感染程度、体重、免疫耐受性和禁忌症(如果存在的话)而变化。剂量也将由化合物可能伴随的任何不良副作用的存在来确定。期望尽可能将不良副作用保持在最低限度。本领域技术人员可以容易地确定所用组合物的调配物的适当剂量、时间表和施用方法,以便在个体患者中达到期望的有效浓度。然而,剂量可以变化,例如,从约0.001mg/kg/天至约150mg/kg/天,或任选地从约1至约50mg/kg/天。
在一个实施例中,ACE2:以0.1mg/ml至0.5、1、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、110、120、130、140、150、160、170、180、190或200mg/ml中的约任何一种的浓度(+/-10%误差)向受试者施用SARS-CoV-2刺突RBD进入抑制剂化合物、组合物或药物组合物(“进入抑制剂”)或所述进入抑制剂的组合。
在另一个实施例中,以约0.01至100.0或200.0mg/kg的接受者受试者的体重的剂量向受试者施用进入抑制剂化合物或其药学上可接受的盐。在某些实施例中,根据SARS-CoV-S相关疾病的类型和严重程度,约1μg/kg至50mg/kg(例如,0.1-20mg/kg)的化合物是施用于患者的初始候选剂量,无论是通过例如一次或多次单独施用,还是通过连续输注。在另一个实施例中,约1μg/kg至15mg/kg(例如,0.1mg/kg-10mg/kg)的化合物是向患者施用的初始候选剂量。典型的日剂量可以在约1μg/kg至100mg/kg或更高的范围内,这取决于几个因素,例如,所治疗的特定哺乳动物、个体患者的临床病状、病症的起因、药剂的递送位点、施用方法、施用时间表和开业医生已知的其它因素。然而,其它剂量方案可以是有用的。
本发明的抗病毒组合物可以以任何医学上有效的方式施用于接受受试者,包含肠内、胃肠外、局部、经粘膜、肌内、静脉内和吸入递送方法。
在某些实施例中,本发明的组合物被调配用于对如哺乳动物或人类等生物体的药物施用。在一些实施例中,本发明的组合物被调配用于对家畜、家养的动物、野生动物(例如,如蝙蝠、穿山甲等媒介动物)和/或水生哺乳动物的药物施用。本发明的此类药物组合物可以口服施用、肠胃外施用、通过吸入喷雾施用、局部施用、经直肠施用、经鼻施用、经颊施用、经阴道施用或通过植入式储药器施用。如本文所使用的术语“肠胃外”包含皮下、静脉内、肌内、关节内、滑膜内、胸骨内、鞘内、肝内、病灶内以及颅内注射或输注技术。
在某些实施例中,所述组合物口服、腹膜内或静脉内施用。化合物或药物组合物也可以通过非口服途径(例如,眼用、吸入和透皮)施用。本发明的组合物的无菌可注射形式可以是水性或油性的悬浮液。这些悬浮液可以使用适当的分散剂或湿润剂以及悬浮剂根据本领域中已知的技术进行调配。无菌可注射的配制品也可以是在无毒的肠胃外可接受的稀释剂或溶剂(例如1,3-丁二醇溶液)中的无菌可注射溶液剂或悬浮液。可以采用的可接受的媒剂和溶剂是水、林格氏溶液(Ringer's solution)和等渗氯化钠溶液。另外,无菌的不挥发性油照常规用作溶剂或悬浮介质。出于此目的,可以采用任何温和的不挥发性油,包含合成的甘油单酯或甘油二酯。如油酸等脂肪酸以及其甘油酯衍生物可用于制备可注射物,天然的药学上可接受的油,如橄榄油或蓖麻油,特别是以其聚氧乙烯化形式也是如此。这些油溶液或悬浮液也可以含有长链醇稀释剂或分散剂,如《瑞士药典(Pharmacopeia Helvetica)》中所描述的稀释剂或分散剂,或类似的醇。
本发明的药物组合物可以以任何口服可接受的剂型口服施用,所述剂型包含但不限于胶囊、片剂、水性悬浮液或溶液。在用于口服使用的片剂情况下,常见使用的载体包含乳糖和玉米淀粉。通常还添加润滑剂,如硬脂酸镁。对于呈胶囊形式的口服施用,有用的稀释剂包含乳糖和干燥的玉米淀粉。当要求口服使用的水性悬浮液时,将活性成分与乳化剂和悬浮剂组合。如果期望的话,还可以添加某些甜味剂、调味剂或着色剂。在某些实施例中,对于直肠施用,本发明的药物组合物可以以栓剂的形式施用。可以通过将药剂与合适的非刺激性赋形剂混合来制备这些,其在室温下呈固体但在直肠温度下呈液体并且因此将在直肠中融化以释放药物。此类材料包含可可脂、蜂蜡以及聚乙二醇。
在胃肠外施用的实施例中,药物组合物可以与至少一种药学上可接受的赋形剂一起以单位剂量的可注射形式(例如,溶液、悬浮液、乳液)调配。此类赋形剂通常无毒且无治疗作用。此类赋形剂的实例是水、水性媒剂,如盐水、林格氏溶液、葡萄糖溶液和汉克氏溶液,以及非水性媒剂,如不挥发性油(例如,玉米、棉籽、花生和芝麻)、油酸乙酯和肉豆蔻酸异丙酯。无菌盐水是优选的赋形剂。赋形剂可以含有少量添加剂,如增强溶解度、等渗性和化学稳定性的物质,例如抗氧化剂、缓冲液和防腐剂。当口服(或直肠)施用时,通常将化合物调配成单位剂型,如片剂、胶囊、栓剂或扁囊剂。此类调配物通常包含固体、半固体或液体载体或稀释剂。示例性稀释剂和赋形剂是乳糖、葡萄糖、蔗糖、山梨醇、甘露醇、淀粉、阿拉伯树胶、磷酸钙、矿物油、可可油、木犀油、藻酸盐、黄蓍胶、明胶、甲基纤维素、聚氧乙烯、脱水山梨糖醇单月桂酸酯、羟基苯甲酸甲酯、羟基苯甲酸丙酯、滑石和硬脂酸镁。
在一些实施例中,静脉内施用根据本发明的药物组合物。在某些实施例中,本发明的药物组合物还可以局部施用,尤其是在治疗靶标包含易于通过局部施涂接近的区域或器官时,包含眼部、皮肤或下部肠道的疾病。用于这些区域或器官中的每一个的适当的局部调配物是易于制备的。在某些实施例中,针对下部肠道的局部应用可以以直肠栓剂调配物或合适的灌肠剂调配物的形式实现。还可以使用局部透皮贴剂。
对于局部应用,药物组合物可以调配在合适的软膏中,所述软膏含有悬浮或溶解于一种或多种载体中的活性组分。用于本发明的化合物的局部施用的载体包含但不限于矿物油、液体矿脂、白矿脂、丙二醇、聚氧乙烯、聚氧丙烯化合物、乳化蜡以及水。可替代地,药物组合物可以调配在合适的洗液或乳膏中,所述洗液或乳膏含有悬浮或溶解于一种或多种药学上可接受的载体中的活性组分。合适的载体包含但不限于矿物油、脱水山梨糖醇单硬脂酸酯、聚山梨醇酯60、十六烷基酯蜡、鲸蜡硬脂醇、2-辛基十二烷醇、苯甲醇和水。对于眼科使用,药物组合物可以调配为等渗pH调节的无菌盐水中的微粒化悬浮液,或优选地等渗pH调节的无菌盐水中的溶液,具有或不具有如苯扎氯铵等防腐剂。可替代地,对于眼科使用,可以将药物组合物调配在如凡士林等软膏中。
在实施例中,本发明的药物组合物可以通过鼻用气溶胶或吸入剂施用。此类组合物根据药物调配领域中熟知的技术制备,并且可以使用苯甲醇或其它适合的防腐剂、用于增强生物利用度的吸收促进剂、氟碳化合物和/或其它常规的增溶剂或分散剂制备为盐水中的溶液。在实施例中,上文所描述的组合物中存在的进入抑制剂化合物的量应足以引起受试者的疾病状态的可检测降低和/或病毒复制的可测量降低。
在某些实施例中,本发明提供了治疗怀疑患有SARS-CoV-1和/或SARS-CoV-2感染的生物体的方法。在某些方面,此类方法可以包含用于鉴定怀疑患有SARS-CoV-1和/或SARS-CoV-2感染的生物体的步骤。此类鉴定可以通过对特定病毒感染具有特异性的诊断程序进行。这可以包含检测病毒感染的症状,以及检测生物样品中的病毒特异性抗原、抗体或核酸。如本文所使用的术语“生物样品”可以包含细胞培养物或其萃取物;从哺乳动物或其萃取物中获得的活检材料;和血液、唾液、尿液、粪便、眼泪或其它体液或其萃取物。术语“生物样品”还包含活生物体。
在某些实施例中,本发明提供了用于向怀疑已经暴露于或将暴露于SARS-CoV-1和/或SARS-CoV-2的生物体施用本发明的药物组合物的方法。在某些实施例中,本发明的组分或药物组合物在施用后几乎立即提供预防和/或治疗效果。
实例
以下实例不旨在限制权利要求的范围。
实例1-使用计算机辅助药物设计鉴定潜在抑制剂。
在实施例中,约800万种药物样化合物通过计算机对接程序运行,以鉴定潜在的SARS-CoV-2进入抑制剂(参见图1A)。文库由来自MayBridge Hitfinder化合物的化合物、来自锌数据库(zinc.docking.org)、ChEMBL、Bingo、JChemforExcel、ChemDiff和BindingMOAD(https://www.click2drug.org/index.php#Databases)的小分子组成,并且所有化合物是使用薛定谔套件(纽约的薛定谔公司(LLC,NY))的‘LigPrep’程序以其对接就绪构象制备的。S-RBD/ACE2复合物[蛋白质数据库条目6M0J;Lan等人2020]用于计算机筛查。薛定谔套件(纽约的薛定谔公司)的“蛋白质制备向导(Protein Preparation Wizard)”产生了对接就绪结构,其添加了氢原子、缺失的侧链,并将质子化状态分配给组氨酸、谷氨酰胺和天冬酰胺残基,同时优化了氢原子的取向。使用OPLS_2005力场对所得结构进行10,000次迭代以去除空间冲突,从而使能量最小化。通过SiteMap(薛定谔套件)和SiteID(新泽西州普林斯顿Certera的SybylX-2.1)鉴定潜在的化合物结合位点。选择存在于S-RBD/ACE2的界面处的结合袋用于文库化合物的对接(界面残基和袋的细节在‘结果’章节中给出)。在大小的网格盒中,初始对接使用了具有SP(简单精度)的薛定谔套件的Glide程序。基于对接评分的前500种化合物使用Glide的XP(额外精度)选项重新对接。然后,这些结果被人工可视化,用于化合物与蛋白质(S-RBD和ACE2)之间的相互作用。最终选择了五种化合物(式(I)、(II)、(IIIa)、(IIIb)和(IIIc)),用于在基于细胞的测定中测试其体外抑制活性(表2)。为了深入了解这些化合物的结合模式并评估结合位点残基的灵活性,使用薛定谔套件的IFD程序进行了灵活对接。
关于与ACE2复合的B.1.351变体的S-RBD的分子建模,利用了P.1变体的S-RBD/ACE2复合物晶体结构(PDB条目7NXC)。使用薛定谔套件的主要建模程序,将P.1变体中的突变K417T改变为K471N,以产生B.1.351S-RBD变体的结构。然后将该结构用于式(Ia)和式(IIa)的‘诱导拟合对接’。
实例2-药剂和细胞系。
RDV(GS-5734)获自赛立克化学品有限责任公司(Selleck Chemicals LLC)(德克萨斯州休斯顿(Houston,TX))。SARS-CoV-2进入抑制剂获自MolPort公司(MolPort)(拉脱维亚里加(Riga,Latvia))。Calu-3(ATCC HTB-55)、Vero E6(CRL-1586)和Vero-STAT1敲除细胞(CCL-81-VHG)获自ATCC。Vero E6和Vero-STAT1敲除细胞在含有10%胎牛血清(FBS)、2mMl-谷氨酰胺、100单位/ml青霉素、100单位/ml链霉素和10mM HEPES(pH 7.4)的DMEM中培养。Calu-3细胞在含有10% FBS的伊格尔氏最低基本培养基(Eagle's Minimum EssentialMedium)(ATCC 30–2003)中培养。UNCN1T细胞(人支气管上皮细胞系;卡拉法斯特公司(Kerafast)目录号ENC011)在BEGM培养基(支气管上皮细胞生长培养基;龙沙公司(Lonza)目录号CC-3170)中在FNC(雅典娜酶系统公司(Athena Enzyme Systems)目录号0407)包被的96孔板中培养。除非另有说明,本研究中使用的所有其它药剂(分子生物学级精细化学品)购自西格玛奥德里奇公司(Sigma-Aldrich)(密苏里州圣路易斯(St.Louis,MO))。
实例3-ACE2:SARS-CoV-2刺突RBD抑制剂筛选测定。
六种化合物(式(I)、(II)、(IIIa)、(IIIb)、(IIIc)和(IV))在0.25至5.00μM的浓度范围内使用ACE2:SARS-CoV-2刺突抑制剂筛选测定试剂盒(BPS生物科学公司(BPSBioscience)目录号79936)按照制造商的说明进行测试三次。简而言之,将ACE2蛋白在冰上解冻,使用1X PBS稀释至1μg/ml,以50μl/孔应用于试剂盒中提供的96孔镀镍板上,并在室温下轻轻摇动温育1小时。然后将板用1X免疫缓冲液1洗涤三次,每孔添加100μl的1X阻断缓冲液2,并在室温下缓慢摇动温育10分钟。接下来,添加10μl的化合物,一式三份,并在室温下缓慢摇动温育1小时。将十μl的5% DMSO用作媒剂对照物。之后,每孔添加5nM SARS-CoV-2刺突(RBD)-Fc(20μl)并在室温下缓慢摇动温育10分钟。将板用1X免疫缓冲液1再洗涤三次,每孔添加100μl的1X阻断缓冲液2,并在室温下缓慢摇动温育10分钟。接下来,每板的孔添加1:1000稀释的抗小鼠-Fc-HRP并在室温下缓慢摇动温育1小时。最后,如上文所描述的将板重新洗涤,并添加HRP底物以产生化学发光,使用SpectraMax i3x多模式酶标仪(美国加利福尼亚州圣何塞的分子装置公司(Molecular Devices,San Jose,CA))测量所述化学发光。
实例4-MTT细胞活力测定
优选实施例的MTT细胞活力测定利用以20,000个细胞/孔的密度接种在含有对每种细胞类型具有特异性的100μl完全培养基的96孔板中的HEK-293T-hACE2、UNCN1T、Vero-STAT1敲除和Calu-3细胞。将细胞在37℃下在湿润的5% CO2温育箱中温育12小时以进行粘附。在温育12小时之后,用新鲜培养基替换培养基,并用浓度范围介于0.001至100μM之间的五种化合物处理HEK-293T-hACE2细胞。用式(Ia)和式(IIa)处理Calu-3、UNCN1T和VeroSTAT1敲除细胞。未经处理的细胞被认为是阴性对照,并且DMSO处理的细胞被认为是媒剂对照。在处理之后,将细胞在37℃下在湿润的5% CO2温育箱中温育。在处理后七十二小时,将20μl的MTT底物(5mg/ml)添加到每个孔中并在37℃下在黑暗中再温育4小时。然后将培养基小心去除,并将蓝色甲臜晶体溶解于200μl的DMSO中,并用620nm的参考滤波器在595nm处读取紫色。
在替代性实施例中,将Vero和HepG2细胞以15,000-25,000个细胞/孔的密度接种在含有补充有10% FBS(美国的吉博科公司(Gibco,USA))和1% Penstrep(美国的吉博科公司)的100μL的完全DMEM(美国的吉博科公司)的96孔板中。将细胞在37℃下在湿润的5%CO2温育箱中温育12小时以进行粘附。在温育12小时之后,用新鲜培养基替换培养基并用范围介于(XX至YY)之间的化合物浓度处理细胞。未经处理的细胞被认为是阴性对照并且DMSO处理的细胞被认为是媒剂。在处理之后,将细胞在37℃下在CO2温育箱中再次温育。在处理后48小时,将20μL的MTT底物(5mg/mL)添加在每个孔中并在37℃下在黑暗中温育4小时。在处理后4小时,将培养基小心去除并将蓝色甲臜晶体溶解于200μL的DMSO中并在595nm处读取紫色。
实例5-表达SARS-CoV-2刺突糖蛋白的基于慢病毒的假病毒的产生和滴定
对于假分型(图5A-5F),产生表达SARS-CoV-2刺突蛋白的慢病毒颗粒,如Crawford等人所描述的(《病毒学杂志(Jour.of Virol.)》,第95卷,第24期)。简而言之,按照制造商的说明,使用jetPRIME转染药剂(波利普斯转染公司(Polyplus-transfection);纽约)将3×106个HEK-293T细胞与含有表达荧光素酶和ZsGreen的慢病毒主链的质粒(BEI目录号NR-52516)、表达HIV Gag-Pol的慢病毒辅助质粒(BEE目录号NR-52517)、表达HIV Tat的慢病毒辅助质粒(BEI目录号NR-52518)和表达HIV Rev的慢病毒辅助质粒(BEI目录号NR-52519),以及表达SARS-CoV-2的刺突蛋白的质粒共转染。转染后48小时,通过以1200rpm离心10分钟并通过0.45μM滤波器过滤以除去细胞碎片来收获含有假病毒颗粒的培养物上清液,并且然后以等分试样储存在-80℃冰箱中用于下游应用。使用表达人ACE2受体的工程化HEK-293T细胞确定病毒滴度。为此,在聚-l-赖氨酸包被的96孔板中,每孔接种12,500个HEK293T-hACE2细胞。在接种之后24小时,用补充有凝聚胺(5mg/ml)的完全DMEM连续稀释慢病毒颗粒,并将50μl的每种稀释液添加到四个重复的孔中。在添加后48小时,通过使用bright-glo荧光素酶测定系统(威斯康星州麦迪逊市的普洛麦格公司(Promega,Madison,WI);目录号E2610)测量细胞裂解物中的萤火虫荧光素酶活性来确定假病毒转导效率。使用SpectraMaxi3x多模式酶标仪(美国加利福尼亚州圣何塞的分子装置公司)测量发光并且针对病毒稀释度绘制相对发光单位(RLU)。
实例6-SARS-CoV-2进入抑制剂筛选测定
为了筛选SARS-CoV-2进入抑制剂,在开始测定之前24小时,将20,000个HEK-293T-hACE2细胞每孔接种在聚-l-赖氨酸包被的96孔板中。在测定设置的当天,将不同浓度的化合物与表达SARS-CoV-2刺突蛋白的慢病毒颗粒(1.00×105RLU/孔)混合并在37℃下温育30分钟,随后将50μl慢病毒颗粒-化合物复合物添加到补充有凝聚胺(5mg/ml)的细胞中。在48小时之后,如上文所描述的测量萤火虫荧光素酶的活性,以计算化合物阻断经转导的假病毒颗粒进入HEK-293T-hACE2细胞的能力。
实例7-SARS-CoV-2储备液的产生和滴定
SARS-CoV-2分离株USA-WI1/2020(BEI目录号NR-52384)、hCoV-19/南非/KRISP-EC-K005321/2020(BEI目录号NR-54008)和hCoV-19/苏格兰/CVR2224/2020(BEI目录号NR-53945)在Vero-STAT-1敲除细胞中传代。使用蚀斑测定确定病毒滴度。简而言之,将Vero E6细胞接种在6孔板中。在24小时之后,将细胞用无菌1X PBS洗涤。将病毒储备液连续稀释并添加到具有新鲜培养基的细胞中,一式两份,并将板在37℃下温育1小时,每15分钟偶尔摇动一次。然后,每孔添加2ml的含有5% FBS和抗生素的最小必需培养基(MEM)中的0.5%琼脂糖。将板在37℃下温育72小时。然后,将细胞用4%多聚甲醛固定过夜,接着去除覆盖层并用0.2%晶体紫染色以可视化PFU。所有测定在BSL-3实验室环境下进行。用于所有抗病毒测定的病毒储备液在从BEI获得的初始储备液的传代1-2中产生。
实例8-选定化合物的抗病毒活性的评估
通过各种方式筛选进入抑制剂化合物的抗病毒活性。在优选实施例中,在感染之前24小时以20,000个细胞/孔,或者在以与之前相同的接种密度感染Calu-3细胞之前48小时将UNCN1T或Vero-STAT1敲除细胞接种在96孔板中。在感染之前2小时,将范围介于0.001μM与10μM之间的不同化合物(参见图2A-2M)添加到细胞中。使用Opti-MEM I还原血清培养基(赛默飞世尔公司(Thermo Fisher)目录号31985062)用0.1MOI的SARS-CoV-2感染细胞并在37℃下与5% CO2一起温育1小时。对于媒剂对照,用相同浓度的DMSO处理细胞。模拟感染的细胞仅接受Opti-MEM I还原血清培养基。在病毒温育结束时,将接种物去除,将细胞用1XPBS洗涤三次,并添加补充有相同浓度化合物的新鲜培养基。在(感染后小时)24hpi和48hpi时收集培养物上清液。按照制造商的说明,使用具有靶向SARS-CoV-2的E基因的引物探针的RT-QPCR,使用PrimeDirect Probe RT-qPCR Mix(美国塔卡拉生物公司(TaKaRa Bio USA,Inc))和应用生物系统公司(Applied Biosystems)QuantStudio3实时PCR系统(美国马萨诸塞州沃尔瑟姆的应用生物系统公司(Applied Biosystems,Waltham,MA,USA))在培养上清液中定量SARS-CoV-2病毒载量。用于SARS-CoV-2 RNA定量的引物和探针如下:E_Sarbeco_F1:5'-ACAGGTACGTTAATAGTTAATAGCGT-3'(400nM)、E_Sarbeco_R2:5'-ATATTGCAGCAGTACGCACACA-3'(400nM)和E_Sarbeco_P1:5'-FAM-ACACTAGCCATCCTTACTGCGCTTCG-BHQ1-3'(200nM),如WHO所建议的。使用来自热灭活的SARS-CoV-2,分离株USA-WA1/2020(BEI目录号NR-52347)的定量PCR(qPCR)对照RNA计算SARS-CoV-2基因组等效拷贝。相对于接受DMSO的媒剂对照孔(认为0%抑制)和阴性对照孔(未感染的细胞)中的病毒载量,计算式(Ia)和式(IIa)处理的细胞中的SARS-CoV-2复制的抑制百分比。使用Graph Pad Prism 8.0软件,使用四参数可变斜率S形剂量-应答模型计算IC50值。
实例8-化合物添加测定的时间
将Vero-STAT1敲除细胞接种在24孔板中并温育过夜。第二天,将式(Ia)(5μM)和式(IIa)(5μM)在感染之前-2小时、感染期间(0小时)和+4hpi添加到细胞中。然后用0.1MOISARS-CoV-2感染细胞。在24hpi使收集培养物上清液,并使用RT-qPCR计算不同暴露条件下病毒复制的抑制百分比。
实例9-测量式(Ia)/式(IIa)和RDV的组合抗病毒潜力
为了确定式(Ia)/RDV和式(IIa)/RDV对SARS-CoV-2复制的可能协同抗病毒作用,在SARS-CoV-2感染的UNCN1T细胞中测试了式(Ia)/RDV和式(IIa)/RDV的组合剂量。对于这些测定,在感染之前24小时将细胞接种在96孔板(20,000个细胞/孔)中,并且然后在感染之前2小时用化合物的相应组合处理。如上文所描述的,用0.1MOI的SARS-CoV-2分离株USA-WI1/2020感染细胞。如上文所描述的,通过RT-qPCR确定每个剂量组合的病毒复制的抑制百分比。化合物的1:1固定剂量组合的病毒复制的抑制百分比用于产生剂量-应答图。使用Chou和Talalay开发的多种药物效应方程,使用CompuSyn算法(https://www.combosyn.com)计算CI。CI值<1表示协同作用,CI值>1表示拮抗作用,并且值等于1表示相加作用(30,31)。基于Loewe加和性模型,使用SynergyFinder v.2(32)计算RDV/式(Ia)和RDV/式(IIa)的单一和组合治疗在SARS-CoV-2感染的UNCN1T Vero-STAT1敲除细胞24hpi和3-D相互作用景观中的剂量-应答抑制百分比矩阵。
实例10-微量热泳(MST)测定
一比一比率的S-RBD和ACE2用于微量热泳(MST)测定中以确定化合物与S-RBD/ACE2复合物的结合亲和力。相同的MST方法用于确定化合物与单独的S-RBD(图11A)和单独的ACE2(图11B)的结合亲和力。为了制备用于测定的S-RBD,克隆、表达并纯化表示含有6xHis-N末端标签的祖先SARS-CoV-2原型毒株“Hu-1”(NCBI参考序列:NC_045512.2)的刺突蛋白(S-RBD)的受体结合结构域至接近均质性。在需要的地方,6xHis-标签被TEV蛋白酶在S-RBD与6xHis-标签之间插入的位点处切割。ACE2购自商业供应商(艾博抗公司(Abcam)和/或北京百普赛斯生物科技股份有限公司(Acrobiosystems))。一比一比率的S-RBD和ACE2用于微量热泳(MST)测定中以确定化合物与S-RBD/ACE2复合物的结合亲和力。为了监测荧光随温度的变化(MST测定),用Monolith NTTMHis-标签标记试剂盒RED-tris-NTA MO-L008(NanoTemper公司(NanoTemper))标记S-RBD或ACE2。将数据拟合到二次方程以获得Kd(结合亲和力)。这种相同的方法用于测量提供299nM的Kd的式(IIa)与Hu-1的结合亲和力(图12A)、提供200nM的Kd的式(IIa)与δ的结合亲和力(图12B)、提供31nM的Kd的式(IIb)与Hu-1的结合亲和力(图12C)和提供90nM的Kd的式(IIb)与δ的结合亲和力(图12D)。
实例11-统计分析
使用GraphPad Prism(版本8.0),使用四参数可变斜率S形剂量-应答模型计算CC50和IC50值。使用Chou和Talalay的多种药物效应方程,使用CompuSyn算法(https://www.combosyn.com)计算CI。基于SynergyFinder v.2中包含的Loewe加和性模型计算RDV与式(IIa)之间的3-D相互作用景观。
实例12-选定化合物的抑制活性的评估
在另一种方法中,Vero-STAT1敲除细胞(CCL-81-VHGTM)在补充有含有10%胎牛血清、2mM L-谷氨酰胺、(100单位/ml)青霉素和(100单位/ml)链霉素的DMEM的10mMHEPES缓冲液中培养。UNCN1T细胞(人支气管上皮细胞系;卡拉法斯特公司;目录号ENC011)在BEGM(支气管上皮细胞生长)培养基(龙沙公司,目录号CC-3170)中在FNC(雅典娜酶系统公司;目录号0407)包被的板中培养。将细胞在37℃下用5% CO2温育。在感染之前20-30小时,将10,000-30,000个细胞/孔接种在96孔板中。在感染之前2小时向细胞中添加不同浓度的式(IIa)和式(Ia)或式(IIb)(10μM、5μM、1μM、0.5μM、0.1μM、0.01μM和0.001μM)。使用I还原血清培养基(赛默飞世尔公司,目录号31985062),在0.1MOI下用SARS-CoV-2(分离株USA-WI1/2020;BEI目录号NR-52384)感染细胞,然后在37℃下在5% CO2中温育1小时。对于阳性对照,用与添加的药物等效的相同量的DMSO处理细胞。模拟感染的细胞仅接受/>I还原血清培养基。在病毒温育结束时,将接种物去除,将细胞用1X PBS洗涤3次,并添加补充有相同浓度药物的新鲜培养基。在感染和SARS-CoV-2后24小时和48小时收集培养物上清液,并使用具有靶向SARS-CoV-2的E基因的引物探针的RT-QPCR定量病毒载量,如先前所描述的(1)。使用来自同一热灭活的SARS-CoV-2分离株的定量PCR(qPCR)对照RNA计算SARS-CoV-2基因组等效拷贝。相对于仅用DMSO处理的阳性对照孔(认为0%抑制)和阴性对照孔(未感染的细胞)中的病毒浓度,计算式(IIa)、式(Ia)或式(IIb)化合物对SARS-CoV-2复制的抑制百分比。使用Graph Pad Prism 8.0软件,使用四参数可变斜率S形剂量-应答模型计算细胞IC50值。
实例13-细胞病变效应的评估
在一些实施例中,按照制造商的说明,使用CellTiter-Glo发光细胞活力测定(威斯康星州麦迪逊市的普洛麦格公司;目录号G9243)确定细胞病变效应(CPE)(在该测定中,通过定量ATP来确定培养物中活细胞的数量,这表明代谢活性细胞的存在。发光读数与培养物中活细胞的数量成正比)。在用无细胞的空白孔的RLU值归一化之后,针对药物浓度的对数绘制RLU值。抗病毒活性由病毒复制的抑制程度确定。所有实验一式三份进行,并且由两位不同的研究人员重复两次。
应当理解,虽然已经结合详细描述描述了本发明,但前面的描述旨在说明而不是限制本发明的范围,本发明的范围由所附权利要求的范围限定。其它实施例、优点和修改在以下权利要求的范围内。对构成本文一部分的附图的任何参考仅通过说明的方式示出。应当理解,在不脱离本公开的范围的情况下,可以利用其它实施例,并且可以进行结构改变。本文所讨论和/或引用的所有出版物以其整体并入本文。
视情况而定,在前面的描述或所附权利要求或附图中公开的特征(以其具体形式或者在用于执行所公开的功能的手段或者用于获得所公开的结果的方法或过程方面表示)可单独地或以此类特征的任意组合用于以其不同形式实现本发明。

Claims (21)

1.一种用于病毒感染的医学疗法或预防性治疗的化合物,其具有下式之一:
其药学上可接受的盐,
其中R1、R2、R3、R4、R6、R7、R8和R9中的每一个独立地是氢、卤素、硝基(-NO2)、醛、羰基、羧基、羟基、胺、芳基、杂芳基、芳氧基、杂芳氧基、-O(C1-C4)烷基、-O(C1-C4)卤代烷基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
R5独立地是氢、卤素、醛、羰基、羧基、羟基、胺、芳基、杂芳基、芳氧基、杂芳氧基、(C1-C4)烷基、(C1-C4)卤代烷基、-O(C1-C4)烷基或-O(C1-C4)卤代烷基;
R10、R11、R12、R13、R14、R15、R16、R17和R18中的每一个独立地是氢、卤素、硝基(-NO2)、醛、羰基、羧基、羟基、胺、芳基、杂芳基、芳氧基、杂芳氧基、-O(C1-C4)烷基、-O(C1-C4)卤代烷基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
Y是O、S、S(═O)、S(=O)2、羰基、羧基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
Z是O、S、S(═O)、S(=O)2、羰基、羧基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
Y1是O、S、S(=O)、S(=O)2、硝基(-NO2)、脂肪族腈、羰基、羧基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
X1是S、O、NH或CRa1,X2是N或CRa2,X3是N或CRa3,并且X4是(C1-C4)烷基,其中Ra1、Ra2和Ra3中的每一个独立地是氢、卤素、羟基、(C1-C4)烷基、(C1-C4)卤代烷基、芳基、杂芳基、芳氧基、杂芳氧基、-O(C1-C4)烷基或-O(C1-C4)卤代烷基;L不存在或是CRa4,其中Ra4是氢、卤素、羟基、(C1-C4)烷基、(C1-C4)卤代烷基、芳基、杂芳基、芳氧基、杂芳氧基、-O(C1-C4)烷基或-O(C1-C4)卤代烷基;并且
M不存在,是NH或N,其中当M是N时,M和X4结合以形成环状基团。
2.根据权利要求1所述的化合物,其中R1、R2、R3、R4、R6、R7、R8和R9中的每一个独立地是氢、硝基(-NO2)、O(C1-C4)烷基、-O(C1-C4)卤代烷基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
R5独立地是氢、卤素、(C1-C4)烷基、(C1-C4)卤代烷基、-O(C1-C4)烷基或-O(C1-C4)卤代烷基;
R10、R11、R12、R13、R14、R15、R16、R17和R18中的每一个独立地是氢、卤素、硝基(-NO2)、NH2、O(C1-C4)烷基、-O(C1-C4)卤代烷基、(C1-C6)烷基或被一个或多个卤素取代的(C1-C6)烷基;
Y是O、S、S(═O)或S(=O)2
Z是O、S、S(═O)或S(=O)2
Y1是O、S、S(=O)、S(=O)2、硝基(-NO2)或脂肪族腈;
X1是S、O或CRa1,X2是N或CRa2,X3是N或CRa3,并且X4是(C1-C4)烷基,其中Ra1、Ra2和Ra3中的每一个独立地是氢、卤素、(C1-C4)烷基、(C1-C4)卤代烷基、-O(C1-C4)烷基或-O(C1-C4)卤代烷基;
L不存在或是CRa4,其中Ra4是氢、(C1-C4)烷基、(C1-C4)卤代烷基、-O(C1-C4)烷基或-O(C1-C4)卤代烷基;并且
M不存在,是NH或N,其中当M是N时,M和X4结合以形成环状基团。
3.根据权利要求1至2中任一项所述的化合物,
4.根据权利要求1至2中任一项所述的化合物,其中式(I)的化合物是
5.根据权利要求1至2中任一项所述的化合物,其中式(II)的化合物是
6.根据权利要求1至2中任一项所述的化合物,其中式(III)的化合物是
7.一种药物组合物,其包括:
根据权利要求1至2中任一项所述的化合物;以及
药学上可接受的载体。
8.一种用于预防和/或治疗有需要的哺乳动物的病毒感染的方法,所述方法包括:
向哺乳动物施用有效量的根据权利要求8所述的药物化合物,其中所述药物化合物或其药学上可接受的盐与SARS-CoV-1或SARS-CoV-2刺突蛋白受体结合结构域(RBD)和宿主细胞ACE-2受体的界面结合。
9.根据权利要求9所述的方法,其中所述病毒感染包括SARS-CoV-1、SARS-CoV-2、MERS-CoV、NL63-CoV、229E-CoV、OC43-CoV、HKU1-CoV、WIV1-CoV、MHV、HKU9-CoV、PEDV-CoV和/或SDCV的感染。
10.根据权利要求10所述的方法,其中所述哺乳动物是人。
11.根据权利要求11所述的方法,其中所述化合物或药物组合物是口服、腹膜内或静脉内施用的。
12.根据权利要求11所述的方法,其中所述化合物或药物组合物通过非口服途径施用。
13.根据权利要求13所述的方法,其中治疗有效量是阻断SARS-CoV-1或SARS-CoV-2病毒复制的量。
14.根据权利要求14所述的方法,其中治疗有效量是预防由SARS-CoV-1或SARS-CoV-2病毒的刺突蛋白介导的所述SARS-CoV-1或SARS-CoV-2病毒进入到所述哺乳动物的细胞中的量。
15.根据权利要求15所述的方法,其中施用式(II)的化合物,并且所述化合物包括所述SARS-CoV-1或SARS-CoV-2病毒的进入抑制剂。
16.根据权利要求16所述的方法,其中将另外的抗病毒剂与式I、II或III的化合物组合施用。
17.根据权利要求17所述的方法,其中所述另外的抗病毒剂是核苷类似物。
18.根据权利要求18所述的方法,其中所述核苷类似物是瑞德西韦(remdesivir)或利巴韦林(ribavirin)。
19.根据权利要求19所述的方法,其中所述化合物或药物组合物在纳摩尔范围内抑制病毒复制和/或预防由所述SARS-CoV-1或SARS-CoV-2病毒的所述刺突蛋白介导的所述SARS-CoV-1或SARS-CoV-2病毒进入到所述细胞中。
20.一种治疗SARS-CoV-2病毒的方法,所述方法包括向受试者施用化合物,其中所述化合物与SARS-CoV-2S-RBD/ACE2复合物结合,但不与单独的S-RBD或单独的ACE-2结合,其中所述化合物包括式(IIa)或其药学上可接受的盐。
21.根据权利要求21所述的方法,其中式(II)的化合物是
CN202280022542.1A 2021-03-03 2022-03-03 Covid-19进入抑制剂对covid-19复制的遏制 Pending CN117320748A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202163200366P 2021-03-03 2021-03-03
US63/200,366 2021-03-03
PCT/US2022/018749 WO2022187521A1 (en) 2021-03-03 2022-03-03 Suppression of covid-19 replication by covid-19 entry inhibitors

Publications (1)

Publication Number Publication Date
CN117320748A true CN117320748A (zh) 2023-12-29

Family

ID=83154532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280022542.1A Pending CN117320748A (zh) 2021-03-03 2022-03-03 Covid-19进入抑制剂对covid-19复制的遏制

Country Status (6)

Country Link
EP (1) EP4301407A1 (zh)
JP (1) JP2024512340A (zh)
CN (1) CN117320748A (zh)
AU (1) AU2022231012A1 (zh)
CA (1) CA3210209A1 (zh)
WO (1) WO2022187521A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090048332A1 (en) * 2007-08-14 2009-02-19 Hej Research Insitute Natural Novel Antioxidants
WO2010039545A2 (en) * 2008-09-23 2010-04-08 Georgetown University 1,2-benzisothiazolinone and isoindolinone derivatives
US10434116B2 (en) * 2014-04-07 2019-10-08 University Of Maryland, Baltimore Methods of treating coronavirus infection
UY36221A (es) * 2014-07-22 2016-02-29 Viiv Healthcare Uk Ltd Derivados de isoindolinona

Also Published As

Publication number Publication date
AU2022231012A1 (en) 2023-09-28
WO2022187521A1 (en) 2022-09-09
CA3210209A1 (en) 2022-09-09
EP4301407A1 (en) 2024-01-10
JP2024512340A (ja) 2024-03-19

Similar Documents

Publication Publication Date Title
AU2015334590B2 (en) Therapy for inhibition of single-stranded RNA virus replication
CN101641092A (zh) 磺酰基氨基脲、羰基氨基脲、氨基脲和脲、其药物组合物和治疗出血热病毒的方法,包括治疗与沙粒病毒相关的感染
Choudhary et al. Insights of severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic: a current review
JP6884112B2 (ja) インフルエンザを治療するための新規抗ウイルス性組成物
US9561239B2 (en) Compositions and methods for inhibiting norovirus infection
JP7393797B2 (ja) 高サイトカイン血症および重篤なインフルエンザの処置または予防のための方法および化合物
JP2023522689A (ja) CoV-229E又はCoV-OC43コロナウイルス感染症の治療において使用される4-(3-(ピリジン-3-イル)ピラゾロ[1,5-a]ピリミジン-5-イル)ピペラジン
JP7346710B2 (ja) 新型コロナウイルス感染症の予防又は治療用医薬組成物
TWI824188B (zh) 抑制冠狀病毒感染與複製的方法
WO2021244964A1 (en) Compositions and methods for treating infections and netopathy
CN117320748A (zh) Covid-19进入抑制剂对covid-19复制的遏制
BR112019021898A2 (pt) Inibidores da protease de zika vírus e métodos de uso dos mesmos
US11865111B2 (en) Antiviral drugs targeting the N-terminal domain (NTD) of the coronavirus spike receptor binding domain (RBD)
US10869873B2 (en) Methods and compositions for treating viral diseases
WO2022106489A1 (en) Compounds for coronavirus infection treatment and/or prevention
WO2022069684A1 (en) Treatment for viral infection
US20180179166A1 (en) Small molecule inhibitors of gp120-mediated hiv infection and methods of use
TW201428147A (zh) 藥物篩選方法
Schafer Novel Small Molecule Therapeutics and Mechanisms of Action for the Treatment of Filovirus Diseases
EP4308126A1 (en) Anti viral therapy
US20050020517A1 (en) Treatment of HIV infection through combined administration of tipranavir and capravirine
CN114432283A (zh) Sirtinol在制备预防和治疗冠状病毒的药物中的应用
Varricchio1Ϯ et al. Geneticin shows selective antiviral activity against SARS-CoV-2 by targeting programmed-1 ribosomal frameshifting
White et al. Master protocol: Finding treatments for COVID-19: A phase 2 multi-centre adaptive platform trial to assess antiviral pharmacodynamics in early symptomatic COVID-19 (PLATCOV)
Garver et al. A Kinase Inhibitor Cocktail as a Prophylaxis in the Syrian Golden Hamster Pirital Virus Model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication