CN117318079A - 一种基于lcllc滤波的三电平并联静止无功发生器 - Google Patents
一种基于lcllc滤波的三电平并联静止无功发生器 Download PDFInfo
- Publication number
- CN117318079A CN117318079A CN202311159630.9A CN202311159630A CN117318079A CN 117318079 A CN117318079 A CN 117318079A CN 202311159630 A CN202311159630 A CN 202311159630A CN 117318079 A CN117318079 A CN 117318079A
- Authority
- CN
- China
- Prior art keywords
- lcllc
- grid
- filter
- power grid
- impedance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001914 filtration Methods 0.000 title description 3
- 230000003068 static effect Effects 0.000 title description 2
- 238000013016 damping Methods 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 36
- 230000008859 change Effects 0.000 claims abstract description 14
- 239000003990 capacitor Substances 0.000 claims description 29
- 230000000694 effects Effects 0.000 claims description 7
- 238000013459 approach Methods 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 230000004044 response Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 4
- 238000011835 investigation Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
- H02J3/1807—Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators
- H02J3/1814—Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators wherein al least one reactive element is actively controlled by a bridge converter, e.g. unified power flow controllers [UPFC]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/01—Arrangements for reducing harmonics or ripples
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/24—Arrangements for preventing or reducing oscillations of power in networks
- H02J3/241—The oscillation concerning frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/50—Controlling the sharing of the out-of-phase component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/539—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
- H02M7/5395—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明公开一种LCLLC并网逆变器有源阻尼的超前相位补偿的方法,具有提高系统在弱电网环境中应对电网阻抗变化的鲁棒性的功能,属于电能变换装置的直流‑交流变流器领域。电容电流反馈的有源阻尼用于阻尼LCLLC并网逆变器系统的谐振尖峰时,数字控制系统存在的延时会导致电容电流反馈存在相位滞后,可能无法有效阻尼谐振,导致系统失稳的问题,提出一种超前相位补偿方法。本发明提出在电容电流反馈回路中设计串联超前‑滞后补偿器,有效降低系统延时的影响,提高系统应对电网阻抗变化时的鲁棒性。
Description
技术领域
本发明涉及一种针对弱电网环境下LCLLC并网逆变器有源阻尼的延时补偿方法,属于电能变换装置的直流-交流变流器领域。
背景技术
电网标准对入网电流的谐波做了细致的规定,IEEE519-1992、IEEE1547-2008等标准规定电流谐波中35次及以上频率的谐波含量应小于0.3%,而LCL滤波器在实际应用中通常只关注入网电流的总谐波畸变率,难以满足电网对高次谐波的要求。为了满足电网标准对高次谐波的要求,减少滤波器成本,有学者提出一种LCLLC滤波器拓扑,并采用无源阻尼方法对其谐振峰进行抑制。目前,针对LCLLC滤波器的谐振尖峰抑制方法主要停留在无源阻尼阶段,其具体表现为,在电容支路或者谐振支路串联阻尼电阻,但这两种方法在降低滤波器滤波能力的同时,还会引入额外的热损耗,而并联阻尼电阻的方法会大大增加热损耗。由此,有学者提出一种应用于LCLLC并网逆变器的有源阻尼设计方法,通过电容支路的电流反馈来实现对滤波器谐振尖峰的抑制,但是该方法并没有考虑控制延时对系统的影响。
系统的控制延时会改变有源阻尼的控制特性。在传统采用数字控制的逆变器中,电容电流反馈等效电阻的正负性以采样频率fs的1/6为分界频率。当谐振频率等于fs/6时,无法通过电容电流反馈的控制方法维持数控LCL逆变器的稳定。在弱电网环境下,电网阻抗发生变化时,LCLLC并网逆变器的谐振频率会靠近甚至跨越fs/6,系统的幅值裕度可能会不足,存在失稳风险。
本发明针对数字控制下采用电容电流反馈的LCLLC并网逆变器在弱电网环境中存在失稳风险的问题,提出在电容电流反馈回路中串联超前相位补偿的控制方法。首先分析了控制延时及电网阻抗变化对系统的影响,然后通过在电容电流反馈回路中串联超前相位补偿器,补偿控制延时导致的相位滞后,增大有源阻尼等效电阻的分界频率,从而提高系统应对电网阻抗变化的鲁棒性。
发明内容
本发明针对在弱电网环境下LCLLC并网逆变器采用电容电流反馈的有源阻尼方法可能无法有效阻尼谐振的问题,提出一种超前相位补偿方法,有效降低系统延时的影响,提高系统应对电网阻抗变化时的鲁棒性。
1、一种针对弱电网环境下LCLLC并网逆变器的电容电流反馈的延时补偿方法,其特征在于所述LCLLC并网逆变器为全桥逆变器通过LCLLC滤波器接入电网。
2、如权利要求1所述的LCLLC滤波器,其特征在于,所述LCLLC滤波器包括桥臂器侧电感L1、网侧电感L2、谐振电容Cf、谐振电感Lf、滤波电容Cd、其中网侧电感L2的一端与滤波电容Cd的正极、谐振电容Cf的正极相连,谐振电容Cf的负极与谐振电感Lf的一端相连,滤波电容Cd的负极与谐振电感Lf的另一端相连,桥臂器侧电感L1的一端与滤波电容Cd的正极相连,网侧电感L2的另一端与电网相连。
3、如权利要求1所述的全桥逆变器,其特征在于,所述全桥逆变器包括四个开关管Q1、Q2、Q3、Q4,其中Q1的源极与Q2的漏极相连,Q3的源极与Q4的漏极相连,Q1的漏极与Q3的漏极相连,Q2的源极与Q4的源极相连,Q1的源极与桥臂器侧电感L2的另一端相连,Q3的源极与Cd的负极相连,Q1的漏极与直流侧电源的正极相连,Q2的源极与直流侧电源的负极相连。
4、如权利要求1所述的电容电流反馈的有源阻尼方法,其特征在于,由于控制延时的存在,当系统的谐振频率不同时,电容电流反馈的控制方法在谐振频率处的控制效果等效会存在差异,当电容电流反馈的等效阻抗可视为等效电阻Req0与等效电抗Xeq0的并联,当Req0为正电阻特性时,系统的环路增益会在谐振频率处穿越-180°;当电容电流反馈的等效电阻Req0为负电阻特性时,系统环路增益的相频曲线会两次穿越-180°,环路增益必须具备一正一负的幅值增益,才能保证系统的稳定。
5、如权利要求4所述的等效电阻Req0,其特征在于,设fs为系统的采样频率,fr1是系统的谐振频率,当f∈(0,fs/6)时,Req0为正电阻;当f∈(fs/6,fs/2)时,Req0为负电阻,fs/6是Req0为正或负电阻的分界频率。而当电网阻抗变化时,谐振频率可能会靠近甚至跨越fs/6,有源阻尼的等效并联电阻会变大甚至变为负电阻,系统可能会因为阻尼不足而发生谐振,而当fr1等于fs/6时,有源阻尼的控制效果等效为电容两端并联一个纯电感,无论电流反馈系数多大,均不能实现对谐振尖峰的阻尼。
6、如权利要求1所述的所述LCLLC并网逆变器在弱电网环境下,考虑电网阻抗最恶劣的情况,将其视为纯电感Lg,电网阻抗Lg与网侧电感L2的另一端相连,电网阻抗Lg的另一端与电网相连。
7、如权利要求6所述的LCLLC滤波器具有两个谐振尖峰,其谐振频率fr1、fr2为:
其中:
7、如权利要求6所述的LCLLC滤波器的谐振频率fr1,其特征在于,在弱电网环境下,随着电网阻抗的变化,所述LCLLC滤波器的谐振频率fr1也会发生变化。
8、如权利要求6所述的LCLLC滤波器的谐振频率fr1,在工程应用中,出于成本的考虑,fr1尽可能位于(fs/6,fs/2)内,但是在实际中,由于电网阻抗变化等因素影响,特别是在弱电网环境下,fr1有跨越fs/6的可能,在系统控制延时的作用下,电容电流反馈的有源阻尼控制方法难以保证LCLLC并网逆变器稳定运行的可靠性。
9、一种针对弱电网环境下LCLLC并网逆变器的电容电流反馈的延时补偿方法,可以有效提高有源阻尼的等效电阻的分界频率,其特征在于所述延时补偿方法可以将等效电阻的正负分界频率有效提高,在不提高滤波器成本的前提下,无论电网阻抗如何变化,有源阻尼的等效电阻不会跨越分界频率,所提延时补偿方法能够有效提高系统应对电网阻抗变化的鲁棒性。
10、如权利要求9所述的一种电容电流反馈的延时补偿方法,其特征在于通过确定控制导致的相位滞后角度的大小来设计相位补偿的角度,补偿控制延时导致的相位滞后,保证LCLLC并网逆变器系统的稳定性。
本发明的有益性如下:
1、当系统的谐振频率位于(fs/6,fs/2)时,在不增大滤波器电感参数的前提下,通过提高等效电阻的分界频率,保证有源阻尼的等效电阻恒为正电阻,提高了系统在弱电网环境下应对电网阻抗变化的鲁棒性。
2、所提控制方法简单易实现,并且可以采用多个控制器串联的形式来提高分界频率的调节范围,调节能力强。
附图说明
图1是本发明的所研究的LCLLC并网逆变器主电路及控制结构拓扑图。
图2是本发明的所研究的系统控制框图
图3是本发明的所研究的等效系统控制框图
图4是本发明所研究的原系统环路增益Bode图
图5是本发明所研究的采用延时补偿方法后的系统环路增益Bode图
具体实施方式
下面结合说明书附图对本发明做进一步的描述。
图1为单相LCLLC并网逆变器主电路及控制结构图,采用电容电流反馈的有源阻尼方法来抑制谐振尖峰。Q1、Q2、Q3、Q4为四个开关管,桥臂器侧电感L1、网侧电感L2、谐振电容Cf、谐振电感Lf、滤波电容Cd构成LCLLC滤波器,Lg为电网阻抗。
LCLLC滤波器的参数设计过程如下:
设PWM调制度为0.9,逆变器侧电流允许THD=15%,则:
其中fsw为开关频率,f0为基波频率,Lb为:
电容支路产生的无功功率小于总视在功率的3%,则滤波支路总电容C应小于:
开关频率尽可能远离LCLLC谐振频率的整数倍,设所设计的LCLLC滤波器谐振频率ω1=2πfr1,则:
根据Cd和Cf的设计原则,第二个谐振频率fr2不能靠近开关频率的整数倍,防止放大倍频谐波,fr2尽可能小,离着倍频谐波越远,开关倍频处的衰减越大,但是也要考虑参数变化的影响,应留有一定裕度,以防止谐振点偏离设计点并靠近开关频率的整数倍,造成谐波的放大。
令Cd=Cf=0.5C,且谐振支路满足:
其中ωsw为LC谐振支路的谐振频率。
在工程应用中,出于成本的考虑,fr1尽可能位于(fs/6,fs/2)内,但是在实际中,由于电网阻抗变化等因素影响,特别是在弱电网环境下,fr1有跨越fs/6的可能,在系统控制延时的作用下,电容电流反馈的有源阻尼控制方法难以保证LCLLC并网逆变器稳定运行的可靠性
根据图1可得到LCLLC并网逆变器系统控制框图,如图2所示。KPWM=Vin/Vtri,Vtri是三角载波的幅值;Gd(s)是系统中存在的1.5倍采样周期(1.5*Ts)的控制延时,表达式为:
在控制延时的作用下,有源阻尼的控制效果产生相位滞后,其等效为在电容两侧并联了一个随频率变化的阻抗Zeq0,等效阻抗Zeq0大小为:
在频率f处,延时产生的相位滞后角度大小为:
Zeq0可以等效为电阻Req0与电抗Xeq0的并联,其中:
由公式(10)、(11)可以得出,当f∈(0,fs/6)时,Req0为正电阻;当f∈(fs/6,fs/2)时,/>Req0为负电阻,fs/6是Req0为正或负电阻的分界频率。而当电网阻抗变化时,谐振频率可能会靠近fs/6,有源阻尼的等效并联电阻会变大,系统可能会因为阻尼不足发生谐振,而当fr1等于fs/6时,有源阻尼的控制效果等效为电容两端并联一个纯电感,无论电流反馈系数多大,均不能实现对谐振尖峰的阻尼。
图2等效变换可得图3,图3为LCLLC并网逆变器系统等效控制框图。
由图3,可以得到数控LCLLC逆变器系统的控制环路为:
其中:
当电网阻抗变化时,系统的控制环路T0(s)的Bode图如图4所示,由图4可知,当电网阻抗变大时,谐振频率会靠近甚至跨越分界频率fs/6,系统会失去稳定。
电网阻抗的变化会导致谐振频率发生变化,谐振频率靠近分界频率时,系统会因为幅值裕度不足而失去稳定。为了减小控制延时带来的相位滞后,提出使用超前相位补偿器,提高有源阻尼等效电阻的分界频率。
超前补偿器传递函数Gc(s)如下:
式中,常数k、a、T满足于k>0,a>1,T>0。
补偿后的等效并联阻抗大小为:
超前补偿器补偿的最大超前相位γ出现在频率fm处,其大小为:
补偿的最大相位为:
γ=arcsin[(a-1)/(a+1)] (15)
当fm与(1+2γ/π)·fs/6相等时,则有源阻尼等效电阻的分界频率可由fs/6提高到:
补偿后的系统环路增益T1(s)为:
其中:
电网阻抗发生变化时,补偿后的系统应保证有源阻尼的等效电阻恒为正电阻。此时,T1(s)的相频曲线会穿越-180°一次,只需使穿越频率处的幅值裕度大于0,即可保证系统稳定。
补偿后的系统系统其控制环路T1(s)的Bode图如图5所示。
以下为电容电流反馈延时补偿的设计步骤:
步骤1:选取Lg=0,计算LCLLC滤波器的谐振频率fr1,比较fr1与fs/6的大小关系,若谐振频率fr1大于fs/6,则在弱电网环境下,电网阻抗可能会导致谐振频率跨越fs/6分界点,系统可能失稳,需设计超前-滞后相位补偿器来提高有源阻尼分解频率。
步骤2:fr1应小于等效电阻的正负分界频率,通过公式(18),确定需补偿的相角,并结合公式(16)、(17),确定公式(14)中的参数T和a。
步骤3:通过确保穿越频率处的幅值裕度满足工程需求,确定公式(14)中的参数k。
若单个超前-滞后相位补偿器的补偿相位不足以实现让谐振频率fr1小于分界频率,则在电容电流反馈回路中串联多个超前-滞后相位补偿器,来实现经过补偿后的系统,其谐振频率fr1小于分界频率。
Claims (11)
1.一种针对弱电网环境下LCLLC并网逆变器的电容电流反馈的延时补偿方法,其特征在于所述LCLLC并网逆变器为全桥逆变器通过LCLLC滤波器接入电网。
2.如权利要求1所述的LCLLC滤波器,其特征在于,所述LCLLC滤波器包括桥臂器侧电感L1、网侧电感L2、谐振电容Cf、谐振电感Lf、滤波电容Cd、其中网侧电感L2的一端与滤波电容Cd的正极、谐振电容Cf的正极相连,谐振电容Cf的负极与谐振电感Lf的一端相连,滤波电容Cd的负极与谐振电感Lf的另一端相连,桥臂器侧电感L1的一端与滤波电容Cd的正极相连,网侧电感L2的另一端与电网相连。
3.如权利要求1所述的全桥逆变器,其特征在于,所述全桥逆变器包括四个开关管Q1、Q2、Q3、Q4,其中Q1的源极与Q2的漏极相连,Q3的源极与Q4的漏极相连,Q1的漏极与Q3的漏极相连,Q2的源极与Q4的源极相连,Q1的源极与桥臂器侧电感L2的另一端相连,Q3的源极与Cd的负极相连,Q1的漏极与直流侧电源的正极相连,Q2的源极与直流侧电源的负极相连。
4.如权利要求1所述的电容电流反馈的有源阻尼方法,其特征在于,由于控制延时的存在,当系统的谐振频率不同时,电容电流反馈的控制方法在谐振频率处的控制效果等效会存在差异,当电容电流反馈的等效阻抗可视为等效电阻Req0与等效电抗Xeq0的并联,当Req0为正电阻特性时,系统的环路增益会在谐振频率处穿越-180°;当电容电流反馈的等效电阻Req0为负电阻特性时,系统环路增益的相频曲线会两次穿越-180°,环路增益必须具备一正一负的幅值增益,才能保证系统的稳定。
5.如权利要求4所述的等效电阻Req0,其特征在于,设fs为系统的采样频率,fr1是系统的谐振频率,当f∈(0,fs/6)时,Req0为正电阻;当f∈(fs/6,fs/2)时,Req0为负电阻,fs/6是Req0为正或负电阻的分界频率。而当电网阻抗变化时,谐振频率可能会靠近甚至跨越fs/6,有源阻尼的等效并联电阻会变大甚至变为负电阻,系统可能会因为阻尼不足而发生谐振,而当fr1等于fs/6时,有源阻尼的控制效果等效为电容两端并联一个纯电感,无论电流反馈系数多大,均不能实现对谐振尖峰的阻尼。
6.如权利要求1所述的所述LCLLC并网逆变器在弱电网环境下,考虑电网阻抗最恶劣的情况,将其视为纯电感Lg,电网阻抗Lg与网侧电感L2的另一端相连,电网阻抗Lg的另一端与电网相连。
7.如权利要求6所述的LCLLC滤波器具有两个谐振尖峰,其谐振频率fr1、fr2为:
其中:
8.如权利要求6所述的LCLLC滤波器的谐振频率fr1,其特征在于,在弱电网环境下,随着电网阻抗的变化,所述LCLLC滤波器的谐振频率fr1也会发生变化。
9.如权利要求6所述的LCLLC滤波器的谐振频率fr1,在工程应用中,出于成本的考虑,fr1尽可能位于(fs/6,fs/2)内,但是在实际中,由于电网阻抗变化等因素影响,特别是在弱电网环境下,fr1有跨越fs/6的可能,在系统控制延时的作用下,电容电流反馈的有源阻尼控制方法难以保证LCLLC并网逆变器稳定运行的可靠性。
10.一种针对弱电网环境下LCLLC并网逆变器的电容电流反馈的延时补偿方法,可以有效提高有源阻尼的等效电阻的分界频率,其特征在于所述延时补偿方法可以将等效电阻的正负分界频率有效提高,在不提高滤波器成本的前提下,无论电网阻抗如何变化,有源阻尼的等效电阻不会跨越分界频率,所提延时补偿方法能够有效提高系统应对电网阻抗变化的鲁棒性。
11.如权利要求9所述的一种电容电流反馈的延时补偿方法,其特征在于通过确定控制导致的相位滞后角度的大小来设计相位补偿的角度,补偿控制延时导致的相位滞后,保证LCLLC并网逆变器系统的稳定性。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311159630.9A CN117318079A (zh) | 2023-09-11 | 2023-09-11 | 一种基于lcllc滤波的三电平并联静止无功发生器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311159630.9A CN117318079A (zh) | 2023-09-11 | 2023-09-11 | 一种基于lcllc滤波的三电平并联静止无功发生器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117318079A true CN117318079A (zh) | 2023-12-29 |
Family
ID=89249005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311159630.9A Pending CN117318079A (zh) | 2023-09-11 | 2023-09-11 | 一种基于lcllc滤波的三电平并联静止无功发生器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117318079A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117937608A (zh) * | 2024-03-22 | 2024-04-26 | 厦门理工学院 | 并网逆变器的阻抗鲁棒性补偿方法、装置、设备及介质 |
-
2023
- 2023-09-11 CN CN202311159630.9A patent/CN117318079A/zh active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117937608A (zh) * | 2024-03-22 | 2024-04-26 | 厦门理工学院 | 并网逆变器的阻抗鲁棒性补偿方法、装置、设备及介质 |
CN117937608B (zh) * | 2024-03-22 | 2024-05-28 | 厦门理工学院 | 并网逆变器的阻抗鲁棒性补偿方法、装置、设备及介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Harmonics and stability analysis of single-phase grid-connected inverters in distributed power generation systems considering phase-locked loop impact | |
Jayalath et al. | An LCL-filter design with optimum total inductance and capacitance | |
CN110148943B (zh) | 一种抑制电网背景谐波影响的lcl并网逆变器阻抗重塑方法 | |
Shen et al. | A new feedback method for PR current control of LCL-filter-based grid-connected inverter | |
CN108306329A (zh) | 高压直流输电系统的正阻尼重构阻抗稳定控制方法 | |
CN113489049B (zh) | 一种并网逆变器网侧电流控制方法 | |
CN109524992B (zh) | 弱电网下并网变流器自适应控制方法及控制系统 | |
CN111245004A (zh) | 弱电网下高频SiC光伏并网逆变器的复合鲁棒控制方法 | |
CN117318079A (zh) | 一种基于lcllc滤波的三电平并联静止无功发生器 | |
CN109327048B (zh) | 一种并网变流器鲁棒锁相系统及方法 | |
Liu et al. | Passivity based damping design for grid-connected converter with improved stability | |
CN113285625A (zh) | 基于改进型有源阻尼法的光伏逆变器集群谐振抑制方法 | |
CN110233494A (zh) | 一种电网电压特定次分量前馈的并网逆变器控制方法 | |
Zeng et al. | Grid-voltage-feedback active damping with lead compensation for LCL-type inverter connected to weak grid | |
CN114865633A (zh) | 一种自适应准pr有源阻尼低频率谐波抑制方法 | |
CN112803416A (zh) | 一种抑制电网背景谐波的并网逆变器拓扑结构及控制方法 | |
Qian et al. | Passivity‐based output admittance shaping of the converter‐side current‐controlled grid‐tied inverter to improve the robustness to the grid impedance | |
Gao et al. | Current multi-loop control strategy for grid-connected inverter with LCL filter | |
Li et al. | Resonance damping and parameter design method for LCL-LC filter interfaced grid-connected photovoltaic inverters | |
Xiong et al. | Reactive power compensation and resonance damping for three-phase buck-type dynamic capacitor | |
Jin et al. | Stability analysis of multi-paralleled grid-connected inverters with LCL-filter in the weak grid | |
Chen et al. | $ H_ {\infty} $ Active Damping Filter Design for LCL-Type Grid-Tied Inverter Under Additive and Multiplicative Perturbations | |
Zhang et al. | Mitigating disturbance in harmonic voltage using grid-side current feedback for grid-connected LCL-filtered inverter | |
CN114844088A (zh) | 一种消除弱电网下数字控制lcl型并网逆变器谐振频率设计禁区的环路补偿方法 | |
Zhong et al. | Design and implementation of compound current control strategy for improved LCL-based shunt active power filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |