CN117313293A - Small signal equivalent modeling method, system, terminal and medium for direct-drive wind farm - Google Patents
Small signal equivalent modeling method, system, terminal and medium for direct-drive wind farm Download PDFInfo
- Publication number
- CN117313293A CN117313293A CN202311617946.8A CN202311617946A CN117313293A CN 117313293 A CN117313293 A CN 117313293A CN 202311617946 A CN202311617946 A CN 202311617946A CN 117313293 A CN117313293 A CN 117313293A
- Authority
- CN
- China
- Prior art keywords
- equivalent
- impedance
- wind turbine
- frequency band
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000004364 calculation method Methods 0.000 claims abstract description 59
- 230000035945 sensitivity Effects 0.000 claims abstract description 48
- 230000004931 aggregating effect Effects 0.000 claims abstract description 12
- 230000002776 aggregation Effects 0.000 claims description 23
- 238000004220 aggregation Methods 0.000 claims description 23
- 230000006870 function Effects 0.000 claims description 22
- 238000004422 calculation algorithm Methods 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 10
- 238000012937 correction Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012821 model calculation Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000010206 sensitivity analysis Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/18—Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/36—Circuit design at the analogue level
- G06F30/367—Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/04—Power grid distribution networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/06—Wind turbines or wind farms
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computational Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computer Networks & Wireless Communication (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
技术领域Technical field
本发明涉及风电场等值建模领域,具体涉及一种直驱风电场小信号等值建模方法、系统、终端及介质。The invention relates to the field of equivalent modeling of wind farms, and specifically relates to a direct-drive wind farm small signal equivalent modeling method, system, terminal and medium.
背景技术Background technique
大规模风电场详细阻抗模型阶数高,数值分析面临“维数灾”的问题。为了降低阻抗模型阶数,提高小扰动稳定分析效率,可以采用风电场等值的方法进行简化处理。The detailed impedance model of large-scale wind farms has a high order, and numerical analysis faces the problem of "curse of dimensionality". In order to reduce the order of the impedance model and improve the efficiency of small disturbance stability analysis, the wind farm equivalent method can be used to simplify the process.
目前,风电场等值方法主要可分为容量加权平均法和参数辨识法。容量加权平均法通过对风电场内部风电机组物理参数进行聚合,获得等值风电机组参数。参数辨识法根据风电场并网点动态响应的实测或仿真数据,对等值风电机组参数进行辨识。At present, wind farm equivalent methods can be mainly divided into capacity weighted average method and parameter identification method. The capacity weighted average method obtains equivalent wind turbine parameters by aggregating the physical parameters of wind turbines within the wind farm. The parameter identification method identifies the equivalent wind turbine parameters based on the actual measured or simulated data of the dynamic response of the wind farm grid connection point.
然而,以上等值方法更多是来自大信号分析的研究,等值目标多为等值前后时域波形对应,不关注等值前后频域特性的一致性,不适于进行小信号分析。部分研究通过比较等值前后主导模态、同步振荡频带等频域指标提升等值模型的频域特性一致性。但这类方法只关注特定频段内的等值精确度,等值模型无法反映全频段的动态特性,且往往在风电场工况改变后原等值模型精度下降,无法满足分析要求。However, the above equivalent methods are more derived from the research of large signal analysis. The equivalent targets are mostly the correspondence of time domain waveforms before and after the equivalent. They do not pay attention to the consistency of the frequency domain characteristics before and after the equivalent, and are not suitable for small signal analysis. Some studies improve the consistency of the frequency domain characteristics of the equivalent model by comparing frequency domain indicators such as dominant modes and synchronous oscillation frequency bands before and after equivalence. However, this type of method only focuses on the equivalent accuracy within a specific frequency band. The equivalent model cannot reflect the dynamic characteristics of the entire frequency band, and the accuracy of the original equivalent model often decreases after the wind farm operating conditions change, making it unable to meet the analysis requirements.
发明内容Contents of the invention
为解决上述问题,本发明提供一种直驱风电场小信号等值建模方法、系统、终端及介质,将聚合计算等值与参数辨识修正结合,能够快速得到等值模型,且模型在时域和频域均有较好的精确度,可以运用于时域分析、阻抗特性分析等。In order to solve the above problems, the present invention provides a direct drive wind farm small signal equivalent modeling method, system, terminal and medium, which combines the aggregation calculation of equivalents with parameter identification and correction, and can quickly obtain the equivalent model, and the model can be used in real time. It has good accuracy in both domain and frequency domain, and can be used in time domain analysis, impedance characteristic analysis, etc.
第一方面,本发放的技术方案提供一种直驱风电场小信号等值建模方法,包括以下步骤:Firstly, this technical solution provides a small-signal equivalent modeling method for direct-drive wind farms, which includes the following steps:
采用多机等值建模原则,将每条支路上的风电机组等值为一台扩容风电机组;Using the multi-machine equivalent modeling principle, the wind turbines on each branch are equivalent to an expanded wind turbine;
对扩容风电机组的风电机组阻抗进行聚合近似计算获得风电机组等值阻抗模型,风电机组等值阻抗模型是关于电路参数和控制参数的函数;The wind turbine impedance of the expanded wind turbine is aggregated and approximated to obtain the wind turbine equivalent impedance model. The wind turbine equivalent impedance model is a function of circuit parameters and control parameters;
在全频段内计算风电机组等值前支路的详细阻抗对各个参数的灵敏度,将全频段划分为多个频段,选出每个频段内灵敏度最大的至少一个参数作为当前频段的主导因素参数;Calculate the sensitivity of the detailed impedance of the equivalent front branch of the wind turbine to each parameter in the entire frequency band, divide the entire frequency band into multiple frequency bands, and select at least one parameter with the highest sensitivity in each frequency band as the dominant factor parameter of the current frequency band;
针对每个频段,对当前频段的主导因素参数进行辨识以修正聚合近似计算形成的误差;For each frequency band, the dominant factor parameters of the current frequency band are identified to correct the errors caused by the aggregation approximation calculation;
通过聚合近似计算的风电机组等值阻抗模型和主导因素参数辨识结果,获得最终的风电机组等值阻抗模型。By aggregating the approximately calculated wind turbine equivalent impedance model and the dominant factor parameter identification results, the final wind turbine equivalent impedance model is obtained.
在一个可选的实施方式中,对扩容风电机组的风电机组阻抗进行聚合近似计算获得风电机组等值阻抗模型,具体包括:In an optional implementation, the wind turbine impedance of the expanded wind turbine is aggregated and approximated to obtain a wind turbine equivalent impedance model, which specifically includes:
(a)忽略集电线路影响,将同一支路的多个风电机组作为纯并联关系,同时认为同一支路的风电机组的运行工作点、电路参数和控制参数均相同,各个风电机组的阻抗相同,假定支路上有N台风电机组直接并联,则风电机组聚合阻抗表示为:(a) Ignore the influence of the collector line, treat multiple wind turbines in the same branch as a purely parallel relationship, and consider that the operating points, circuit parameters and control parameters of the wind turbines in the same branch are the same, and the impedance of each wind turbine is the same , assuming that there are N wind turbines directly connected in parallel on the branch, the aggregate impedance of the wind turbines is expressed as:
(1) (1)
其中,Z g为滤波器阻抗,Z gsc为电网侧变换器阻抗,Z ig、Z ug为锁相环阻抗,E为单位矩阵;Among them, Z g is the filter impedance, Z gsc is the grid side converter impedance, Z ig and Z ug are the phase locked loop impedances, and E is the unit matrix;
(b)根据并联原则得到等值前后风机机组各部分阻抗数量关系,公式表示为:(b) According to the principle of parallel connection, the quantitative relationship between the impedances of each part of the fan unit before and after equal value is obtained. The formula is expressed as:
(2)。 (2).
在一个可选的实施方式中,在全频段内计算风电机组等值前支路的详细阻抗对各个参数的灵敏度,将全频段划分为多个频段,选出每个频段内灵敏度最大的至少一个参数作为当前频段的主导因素参数,具体包括:In an optional implementation, the sensitivity of the detailed impedance of the equivalent front branch of the wind turbine to each parameter is calculated in the entire frequency band, the entire frequency band is divided into multiple frequency bands, and at least one with the highest sensitivity in each frequency band is selected. Parameters are the dominant factor parameters of the current frequency band, specifically including:
(a)定义风电机组的控制参数和电路参数集合,表示为:(a) Define the control parameters and circuit parameter set of the wind turbine, expressed as:
x WT_para={x 1,x 2,……,x D}(3) x WT_para ={ x 1 , x 2 , … , x D } (3)
其中,D表示参数个数;Among them, D represents the number of parameters;
(b)在全频段[H1,H2]赫兹范围内,每h赫兹步长对所有参数计算一次灵敏度,灵敏度K s计算公式表示为:(b) In the full frequency range [H1, H2] Hertz, the sensitivity is calculated for all parameters every h Hertz step. The sensitivity K s calculation formula is expressed as:
K si=(4) K si = (4)
K si表示第i个参数的灵敏度; K si represents the sensitivity of the i-th parameter;
(c)将全频段划分为M个频段,在每个频段内计算每个参数的灵敏度的平均值,选出每个频段内灵敏度平均值最大的至少一个参数作为当前频段的主导因素参数。(c) Divide the entire frequency band into M frequency bands, calculate the average sensitivity of each parameter in each frequency band, and select at least one parameter with the largest average sensitivity in each frequency band as the dominant factor parameter of the current frequency band.
在一个可选的实施方式中,针对每个频段,对当前频段的主导因素参数进行辨识以修正聚合近似计算形成的误差,具体包括:In an optional implementation, for each frequency band, the dominant factor parameters of the current frequency band are identified to correct the error caused by the aggregated approximation calculation, specifically including:
针对每个频段,采用粒子群算法对当前频段的主导因素参数进行辨识,粒子群算法的适应度函数为:For each frequency band, the particle swarm algorithm is used to identify the dominant factor parameters of the current frequency band. The fitness function of the particle swarm algorithm is:
(5) (5)
其中,Zbr表示风电机组等值前支路的详细阻抗,Zbr eq表示支路等值阻抗;Among them, Z br represents the detailed impedance of the equivalent front branch of the wind turbine, and Z br eq represents the equivalent impedance of the branch;
s为频域算子,s m,min,s m,max表示第 m个频段区间的边界点,为第m个频段的第j个主导因素参数。s is the frequency domain operator, s m, min , s m, max represent the boundary point of the m-th frequency band interval, is the j-th dominant factor parameter of the m-th frequency band.
在一个可选的实施方式中,通过聚合近似计算的风电机组等值阻抗模型和主导因素参数辨识结果,获得最终的风电机组等值阻抗模型,具体包括:In an optional implementation, the final wind turbine equivalent impedance model is obtained by aggregating the approximately calculated wind turbine equivalent impedance model and the dominant factor parameter identification results, which specifically includes:
通过公式(1)和公式(5),得到最终的风电机组等值阻抗模型,表达式为:Through formula (1) and formula (5), the final wind turbine equivalent impedance model is obtained, and the expression is:
(7) (7)
其中,d表示dq坐标系下的d轴分量,q表示dq坐标系下的q轴分量。Among them, d represents the d-axis component in the dq coordinate system, and q represents the q-axis component in the dq coordinate system.
在一个可选的实施方式中,对扩容风电机组的风电机组阻抗进行聚合近似计算获得风电机组等值阻抗模型时,还包括以下步骤:In an optional implementation, when performing an aggregated approximate calculation on the wind turbine impedance of the expanded wind turbine unit to obtain the wind turbine equivalent impedance model, the following steps are also included:
对扩容风电机组的集电线路阻抗进行聚合近似计算获得集电线路等值阻抗模型;Perform an aggregate approximate calculation on the collector line impedance of the expanded wind turbine to obtain the collector line equivalent impedance model;
对扩容风电机组的变压器阻抗进行聚合近似计算获得变压器等值阻抗模型。The transformer equivalent impedance model is obtained by aggregate approximate calculation of the transformer impedance of the expanded wind turbine.
在一个可选的实施方式中,对扩容风电机组的集电线路阻抗进行聚合近似计算获得集电线路等值阻抗模型,具体包括:In an optional implementation, an aggregate approximate calculation is performed on the collector line impedance of the expanded wind turbine to obtain a collector line equivalent impedance model, which specifically includes:
采用恒功率损耗法进行等值,认为等值前后集电线路上的功率损耗不便,将集电线路等效为一个聚合阻抗,则集电线路等值阻抗模型表达式为:The constant power loss method is used for equivalence. It is considered that the power loss on the collector line before and after equivalence is inconvenient. The collector line is equivalent to an aggregate impedance. Then the expression of the collector line equivalent impedance model is:
(8) (8)
其中,Z Li为第i台机组支路的线路阻抗;P Li为流过阻抗Z Li的损耗;Among them, Z Li is the line impedance of the i-th unit branch; P Li is the loss flowing through the impedance Z Li ;
对扩容风电机组的变压器阻抗进行聚合近似计算获得变压器等值阻抗模型,具体包括:Perform an aggregated approximate calculation on the transformer impedance of the expanded wind turbine to obtain the transformer equivalent impedance model, which includes:
将风电机组的机端变压器等值为一台位于等值风电机组机端的扩容变压器,扩容变压器阻抗为所有风电机组机端变压器阻抗的并联,则扩容变压器等值容量和等值阻抗的计算公式表示为:If the end transformer of a wind turbine is equivalent to an expansion transformer located at the end of an equivalent wind turbine, and the impedance of the expansion transformer is the parallel connection of the impedances of all wind turbine end transformers, then the calculation formula for the equivalent capacity and equivalent impedance of the expansion transformer is expressed for:
(9) (9)
其中,S T_eq、Z T_eq分别为扩容变压器的等值容量和等值阻抗,S Ti、Z Ti为原风电场内第i个风电机组机端变压器的容量和阻抗。Among them, S T_eq and Z T_eq are the equivalent capacity and equivalent impedance of the expansion transformer respectively, and S Ti and Z Ti are the capacity and impedance of the i -th wind turbine unit end transformer in the original wind farm.
第二方面,本发明的技术方案提供一种直驱风电场小信号等值建模系统,包括,In the second aspect, the technical solution of the present invention provides a direct-driven wind farm small signal equivalent modeling system, including:
等值阻抗模型聚合计算模块:采用多机等值建模原则,将每条支路上的风电机组等值为一台扩容风电机组;对扩容风电机组的风电机组阻抗进行聚合近似计算获得风电机组等值阻抗模型,风电机组等值阻抗模型是关于电路参数和控制参数的函数;Equivalent impedance model aggregation calculation module: Using the multi-machine equivalent modeling principle, the wind turbines on each branch are equivalent to an expanded wind turbine; the wind turbine impedance of the expanded wind turbine is aggregated and approximated to obtain the wind turbine, etc. Value impedance model, the wind turbine equivalent impedance model is a function of circuit parameters and control parameters;
主导因素参数选取模块:在全频段内计算风电机组等值前支路的详细阻抗对各个参数的灵敏度,将全频段划分为多个频段,选出每个频段内灵敏度最大的至少一个参数作为当前频段的主导因素参数;Dominant factor parameter selection module: Calculate the sensitivity of the detailed impedance of the equivalent front branch of the wind turbine to each parameter in the entire frequency band, divide the entire frequency band into multiple frequency bands, and select at least one parameter with the highest sensitivity in each frequency band as the current The dominant factor parameters of the frequency band;
主导因素参数辨识模块:针对每个频段,对当前频段的主导因素参数进行辨识以修正聚合近似计算形成的误差;Dominant factor parameter identification module: For each frequency band, identify the dominant factor parameters of the current frequency band to correct the error caused by the aggregation approximation calculation;
等值阻抗模型修正模块:通过聚合近似计算的风电机组等值阻抗模型和主导因素参数辨识结果,获得最终的风电机组等值阻抗模型。Equivalent impedance model correction module: By aggregating the approximately calculated wind turbine equivalent impedance model and the dominant factor parameter identification results, the final wind turbine equivalent impedance model is obtained.
第三方面,本发明的技术方案提供一种终端,包括:In a third aspect, the technical solution of the present invention provides a terminal, including:
存储器,用于存储直驱风电场小信号等值建模程序;Memory used to store small signal equivalent modeling programs for direct drive wind farms;
处理器,用于执行所述直驱风电场小信号等值建模程序时实现如上述任一项所述直驱风电场小信号等值建模方法的步骤。A processor, configured to implement the steps of the direct drive wind farm small signal equivalent modeling method described in any one of the above when executing the direct drive wind farm small signal equivalent modeling program.
第四方面,本发明的技术方案提供一种计算机可读存储介质,所述可读存储介质上存储有直驱风电场小信号等值建模程序,所述直驱风电场小信号等值建模程序被处理器执行时实现如上述任一项所述直驱风电场小信号等值建模方法的步骤。In the fourth aspect, the technical solution of the present invention provides a computer-readable storage medium. A direct-drive wind farm small signal equivalent modeling program is stored on the readable storage medium. The direct-drive wind farm small signal equivalent modeling program is When the module program is executed by the processor, the steps of the direct drive wind farm small signal equivalent modeling method described in any of the above items are implemented.
本发明提供的一种直驱风电场小信号等值建模方法、系统、终端及介质,相对于现有技术,具有以下有益效果:首先根据阻抗串并联原则进行阻抗聚合近似计算,其次基于实测阻抗数据对聚合阻抗计算模型中的关键参数进行分频段辨识,通过参数辨识修正阻抗聚合近似计算带来的误差,能够快速得到等值模型,且对关键参数进行分频段辨识,使得等值阻抗模型在时域和频域均有较好的精确度,可以运用于时域分析、阻抗特性分析等,且能够在运行点变化的情况下保持阻抗特性精确度,从而适用于风电场并网稳定性分析与稳定域演化。The invention provides a direct-drive wind farm small signal equivalent modeling method, system, terminal and medium. Compared with the existing technology, it has the following beneficial effects: first, impedance aggregation approximate calculation is performed based on the impedance series and parallel principle, and secondly, based on actual measurement The impedance data identifies the key parameters in the aggregated impedance calculation model by frequency bands. The error caused by the impedance aggregation approximate calculation is corrected through parameter identification. The equivalent model can be quickly obtained, and the key parameters are identified by frequency bands to make the equivalent impedance model. It has good accuracy in both time domain and frequency domain, and can be used in time domain analysis, impedance characteristic analysis, etc., and can maintain the accuracy of impedance characteristics when the operating point changes, thus being suitable for the stability of wind farm grid connection. Analysis and stable domain evolution.
附图说明Description of drawings
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions of the prior art more clearly, the following will briefly introduce the drawings needed to describe the embodiments or the prior art. Obviously, the drawings in the following description are only For some embodiments of the present invention, those of ordinary skill in the art can also obtain other drawings based on these drawings without exerting creative efforts.
图1是直驱风电场示意图。Figure 1 is a schematic diagram of a direct drive wind farm.
图2是本发明实施例提供的一种直驱风电场小信号等值建模方法流程示意图。Figure 2 is a schematic flow chart of a direct-drive wind farm small signal equivalent modeling method provided by an embodiment of the present invention.
图3是相同工作点下详细模型、计算参数等值模型和辨识参数等值模型阻抗示意图。Figure 3 is a schematic impedance diagram of the detailed model, calculation parameter equivalent model and identification parameter equivalent model under the same operating point.
图4是不同工作点下详细模型、计算参数等值模型和辨识参数等值模型阻抗示意图。Figure 4 is a schematic diagram of the impedance of the detailed model, calculation parameter equivalent model and identification parameter equivalent model under different operating points.
图5是本发明实施例提供的一种直驱风电场小信号等值建模系统结构示意框图。Figure 5 is a schematic structural block diagram of a direct drive wind farm small signal equivalent modeling system provided by an embodiment of the present invention.
图6是本发明实施例五提供的一种终端的结构示意图。Figure 6 is a schematic structural diagram of a terminal provided in Embodiment 5 of the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to enable those skilled in the art to better understand the solution of the present invention, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. Obviously, the described embodiments are only some of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field to which the invention belongs. The terminology used herein in the description of the invention is for the purpose of describing specific embodiments only and is not intended to limit the invention.
下面对本发明中出现的关键术语进行解释。Key terms appearing in the present invention are explained below.
PMSG:Permanent Magnet Synchronous Generator,直驱永磁同步风电机组。PMSG: Permanent Magnet Synchronous Generator, direct drive permanent magnet synchronous wind turbine unit.
Grid:电网。Grid: Grid.
SVG:Static Var Generator,静止无功发生器。SVG: Static Var Generator, static var generator.
图1是直驱风电场示意图,直驱风电机组阻抗ZWT的元素是高阶的。而风电场一般含有数十上百台风电机组以及多条集电线路,其阻抗阶数高达上千阶,计算复杂度显著上升。为便于在线分析系统小扰动稳定域,本章提出了风电场阻抗聚合计算和关键参数辨识的等值方法。首先根据阻抗串并联原则,提出了阻抗聚合近似计算方法。其次,基于实测阻抗数据,提出了聚合阻抗关键参数的辨识方法。通过参数辨识,可以修正阻抗聚合近似计算所带来的误差。Figure 1 is a schematic diagram of a direct drive wind farm. The elements of the direct drive wind turbine impedance Z WT are high-order. Wind farms generally contain dozens or hundreds of wind turbines and multiple collector lines, with impedance levels reaching thousands of levels, significantly increasing the computational complexity. In order to facilitate online analysis of the system's small-disturbance stability region, this chapter proposes an equivalent method for wind farm impedance aggregation calculation and key parameter identification. Firstly, based on the principle of series and parallel impedance, an approximate calculation method of impedance aggregation is proposed. Secondly, based on the measured impedance data, an identification method for key parameters of aggregate impedance is proposed. Through parameter identification, the error caused by the approximate calculation of impedance aggregation can be corrected.
图2是本发明实施例提供的一种直驱风电场小信号等值建模方法流程示意图。其中,图2执行主体可以为一种直驱风电场小信号等值建模系统。本发明实施例提供的直驱风电场小信号等值建模方法由计算机设备执行,相应地,直驱风电场小信号等值建模系统运行于计算机设备中。根据不同的需求,该流程图中步骤的顺序可以改变,某些可以省略。Figure 2 is a schematic flow chart of a direct-drive wind farm small signal equivalent modeling method provided by an embodiment of the present invention. Among them, the execution subject in Figure 2 can be a direct-drive wind farm small signal equivalent modeling system. The direct-drive wind farm small signal equivalent modeling method provided by the embodiment of the present invention is executed by computer equipment. Correspondingly, the direct-drive wind farm small signal equivalent modeling system runs in the computer equipment. Depending on different needs, the order of steps in this flowchart can be changed, and some can be omitted.
如图2所示,该方法包括以下步骤。As shown in Figure 2, the method includes the following steps.
S1,采用多机等值建模原则,将每条支路上的风电机组等值为一台扩容风电机组。S1, using the multi-machine equivalent modeling principle, the wind turbines on each branch are equivalent to an expanded wind turbine.
S2,对扩容风电机组的风电机组阻抗进行聚合近似计算获得风电机组等值阻抗模型,风电机组等值阻抗模型是关于电路参数和控制参数的函数。S2. Perform an aggregated approximate calculation on the wind turbine impedance of the expanded wind turbine to obtain the wind turbine equivalent impedance model. The wind turbine equivalent impedance model is a function of circuit parameters and control parameters.
S3,在全频段内计算风电机组等值前支路的详细阻抗对各个参数的灵敏度,将全频段划分为多个频段,选出每个频段内灵敏度最大的至少一个参数作为当前频段的主导因素参数。S3, calculate the sensitivity of the detailed impedance of the equivalent front branch of the wind turbine to each parameter in the entire frequency band, divide the entire frequency band into multiple frequency bands, and select at least one parameter with the highest sensitivity in each frequency band as the dominant factor of the current frequency band parameter.
S4,针对每个频段,对当前频段的主导因素参数进行辨识以修正聚合近似计算形成的误差。S4. For each frequency band, identify the dominant factor parameters of the current frequency band to correct the error caused by the aggregation approximation calculation.
S5,通过聚合近似计算的风电机组等值阻抗模型和主导因素参数辨识结果,获得最终的风电机组等值阻抗模型。S5: Obtain the final wind turbine equivalent impedance model by aggregating the approximately calculated wind turbine equivalent impedance model and the dominant factor parameter identification results.
根据国际电工委员会(IEC)和美国西部电力协调委员会(WECC)制定的风电场时域大信号建模导则,一个由同型风电机组构成的风电场可等效为一台扩容风电机组。然而阻抗频域模型在宽频带范围内呈现强耦合特性,单台等值机组难以保证其准确性。本文采用多机等值建模原则,可以兼顾准确性和计算效率。由于同一支路下各台风电机组型号与电气参数通常相同,每条支路上的风电机组可等值为一台扩容风电机组。According to the wind farm time domain large signal modeling guidelines formulated by the International Electrotechnical Commission (IEC) and the Western Electric Power Coordination Council (WECC), a wind farm composed of wind turbines of the same type can be equivalent to an expanded wind turbine. However, the impedance frequency domain model exhibits strong coupling characteristics in a wide frequency range, and it is difficult for a single equivalent unit to guarantee its accuracy. This paper adopts the principle of multi-machine equivalent modeling, which can take into account both accuracy and computational efficiency. Since the models and electrical parameters of wind turbines on the same branch are usually the same, the wind turbines on each branch can be equivalent to an expanded wind turbine.
以下对本实施例的阻抗等值模型的聚合近似计算进行说明,一般对风电场的阻抗等值模型计算包括风电机组阻抗、集电线路阻抗和变压器阻抗三个方面的模型计算。由于风电机组阻抗远大于集电线路与变压器阻抗之和,本实施例后续参数辨识的对象选定为风电机组阻抗,即对风电机组等值阻抗模型的主导因素参数进行辨识,修正风电机组等值阻抗模型的聚合近似计算的误差。The following is a description of the aggregated approximate calculation of the impedance equivalent model in this embodiment. Generally, the calculation of the impedance equivalent model of a wind farm includes model calculations in three aspects: wind turbine impedance, collector line impedance and transformer impedance. Since the impedance of the wind turbine is much greater than the sum of the impedances of the collector line and the transformer, the object of subsequent parameter identification in this embodiment is selected as the impedance of the wind turbine, that is, the dominant factor parameters of the equivalent impedance model of the wind turbine are identified, and the equivalent value of the wind turbine is corrected Error in the calculation of the aggregate approximation of the impedance model.
(一)风电机组等值阻抗模型聚合近似计算(1) Aggregation approximate calculation of wind turbine equivalent impedance model
由于直驱风机阻抗通常远大于集电线路与变压器阻抗之和,可假定风电场支路上N台机组直接并联。在直驱风电场中风电机组阻抗远大于集电线路阻抗,因此可在等值推导部分忽略集电线路影响,认为风电机组为纯并联关系。同时,认为同一支路的风电机组的运行工作点、电路参数和控制参数均相同。因此各个风电机组的阻抗也认为是相同,本实施例直驱式风电场的风电机组聚合阻抗近似表示为:Since the impedance of direct-drive wind turbines is usually much greater than the sum of the impedances of the collector line and the transformer, it can be assumed that N units on the wind farm branch are directly connected in parallel. In a direct drive wind farm, the impedance of the wind turbine is much greater than the impedance of the collector line, so the influence of the collector line can be ignored in the equivalent derivation part, and the wind turbine is considered to be in a pure parallel relationship. At the same time, it is considered that the operating points, circuit parameters and control parameters of wind turbines in the same branch are the same. Therefore, the impedance of each wind turbine is also considered to be the same. The aggregate impedance of the wind turbines in the direct-drive wind farm in this embodiment is approximately expressed as:
(1) (1)
其中,Z g为滤波器阻抗,Z gsc为电网侧变换器阻抗,Z ig、Z ug为锁相环阻抗,E为单位矩阵。Among them, Z g is the filter impedance, Z gsc is the grid side converter impedance, Z ig and Z ug are the phase locked loop impedances, and E is the unit matrix.
根据并联原则得到等值前后风机机组各部分阻抗数量关系,公式表示为:According to the principle of parallel connection, the quantitative relationship between the impedances of each part of the fan unit before and after equal value is obtained, and the formula is expressed as:
(2) (2)
(二)集电线路等值阻抗模块聚合近似计算(2) Aggregation approximate calculation of equivalent impedance module of collector line
集电线路采用恒功率损耗法进行等值,即认为等值前后集电线路上的功率损耗不变,将风电场集电网络等效为一个聚合阻抗。本实施例中,集电线路等值阻抗模型表达式为:The collector lines are equalized using the constant power loss method, that is, the power loss on the collector lines is considered unchanged before and after the equalization, and the wind farm collector network is equivalent to an aggregate impedance. In this embodiment, the equivalent impedance model expression of the collector line is:
(3) (3)
其中,Z Li为第i台机组支路的线路阻抗;P Li为流过阻抗Z Li的损耗。Among them, Z Li is the line impedance of the i-th unit branch; P Li is the loss flowing through the impedance Z Li .
(三)变压器等值阻抗模型聚合近似计算(3) Aggregation approximate calculation of transformer equivalent impedance model
对于风电场内风电机组的机端变压器,将其等值为一台位于等值风电机组机端的扩容变压器。扩容变压器容量为原风电场内所有风电机组机端变压器容量之和。扩容变压器阻抗为所有风电机组机端变压器阻抗的并联,本实施例中扩容变压器等值容量和等值阻抗的计算公式表示为:For the machine-side transformer of the wind turbine in the wind farm, it is equivalent to an expansion transformer located at the machine-side of the equivalent wind turbine. The capacity of the expansion transformer is the sum of the capacities of all wind turbine generator-side transformers in the original wind farm. The impedance of the expansion transformer is the parallel connection of the impedances of all wind turbine generator end transformers. In this embodiment, the calculation formula for the equivalent capacity and equivalent impedance of the expansion transformer is expressed as:
(4) (4)
其中,S T_eq、Z T_eq分别为扩容变压器的等值容量和等值阻抗,S Ti、Z Ti为原风电场内第i个风电机组机端变压器的容量和阻抗。Among them, S T_eq and Z T_eq are the equivalent capacity and equivalent impedance of the expansion transformer respectively, and S Ti and Z Ti are the capacity and impedance of the i -th wind turbine unit end transformer in the original wind farm.
上一节的阻抗聚合近似计算存在误差,可通过修正部分关键参数提高风电场支路等值阻抗的准确度。传统的等值参数辨识多针对大扰动下时域等值模型。若将其应用于小信号模型等值,难以保证等值阻抗在全频段内的准确性。由于阻抗在宽频带范围内呈现强非线性,本实施例提出分频段主导参数修正的方法。There are errors in the impedance aggregation approximate calculation in the previous section. The accuracy of the equivalent impedance of the wind farm branch can be improved by correcting some key parameters. Traditional equivalent parameter identification is mostly aimed at time domain equivalent models under large disturbances. If it is applied to the equivalent value of the small signal model, it is difficult to ensure the accuracy of the equivalent impedance in the entire frequency band. Since the impedance exhibits strong nonlinearity in a wide frequency band, this embodiment proposes a method of modifying the dominant parameters in frequency bands.
首先,对宽频带阻抗的参数灵敏度进行分析。由于直驱风机阻抗通常远大于集电线路与变压器阻抗之和,参数辨识的对象选定为等值风电机组。公式(1)中的近似计算阻抗Zbr是关于电路参数和控制参数的函数。等值模型的部分控制参数和电气参数如下表格所示,从这些参数中选出主导因素参数。First, the parameter sensitivity of broadband impedance is analyzed. Since the impedance of direct-drive wind turbines is usually much greater than the sum of the impedances of the collector line and the transformer, the object of parameter identification is selected as the equivalent wind turbine unit. The approximately calculated impedance Z br in equation (1) is a function of circuit parameters and control parameters. Some control parameters and electrical parameters of the equivalent model are shown in the table below. Select the dominant factor parameters from these parameters.
表1:直驱风机部分参数表Table 1: Partial parameter table of direct drive fan
本实施例首先在在全频段内计算风电机组等值前支路的详细阻抗对各个参数的灵敏度,然后将全频段划分为多个频段,选出每个频段内灵敏度最大的至少一个参数作为当前频段的主导因素参数。This embodiment first calculates the sensitivity of the detailed impedance of the equivalent front branch of the wind turbine to each parameter in the full frequency band, then divides the full frequency band into multiple frequency bands, and selects at least one parameter with the highest sensitivity in each frequency band as the current The dominant factor parameters of the frequency band.
定义风电机组的控制参数和电路参数集合,表示为:Define the control parameters and circuit parameter set of the wind turbine, expressed as:
x WT_para={x 1,x 2,……,x D} (5) x WT_para ={ x 1 , x 2 , ... , x D } (5)
其中,D表示参数个数Among them, D represents the number of parameters
为获得阻抗特性的主导因素参数,进行阻抗灵敏度分析。本实施例在全频段内计算风电机组等值前支路的详细阻抗对各个参数的灵敏度,灵敏度K s计算公式表示为:In order to obtain the dominant factor parameters of impedance characteristics, impedance sensitivity analysis is performed. This embodiment calculates the sensitivity of the detailed impedance of the equivalent front branch of the wind turbine generator to each parameter in the full frequency band. The sensitivity K s calculation formula is expressed as:
K si=(6) K si = (6)
K si表示第i个参数的灵敏度。 K si represents the sensitivity of the i-th parameter.
公式(6)的灵敏度K s是关于频域算子s的函数,由于阻抗具有强非线性特性,灵敏度在宽频带范围内呈现非线性特性。本实施例在宽频带[H1,H2]赫兹范围,每h赫兹步长对所有参数计算一次公式(6)表示的灵敏度K s,例如在0-1000Hz范围内每1Hz步长对所有参数计算一次灵敏度。The sensitivity K s of formula (6) is a function of the frequency domain operator s. Since the impedance has strong nonlinear characteristics, the sensitivity exhibits nonlinear characteristics in a wide frequency range. In this embodiment, in the wide frequency band [H1, H2] Hertz range, the sensitivity K s represented by formula (6) is calculated once every h Hertz step for all parameters. For example, in the range of 0-1000 Hz, all parameters are calculated once every 1 Hz step. sensitivity.
对所有参数计算若干灵敏度之后,根据各个参数的灵敏度找出主导因素参数。本实施例将全频段划分为M个频段,在每个频段找到当前频段的主导因素参数。具体地,在每个频段内计算每个参数的灵敏度的平均值,选出每个频段内灵敏度平均值最大的至少一个参数作为当前频段的主导因素参数。After calculating several sensitivities for all parameters, the dominant factor parameters are found based on the sensitivity of each parameter. In this embodiment, the entire frequency band is divided into M frequency bands, and the dominant factor parameters of the current frequency band are found in each frequency band. Specifically, the average value of the sensitivity of each parameter is calculated in each frequency band, and at least one parameter with the largest average sensitivity in each frequency band is selected as the dominant factor parameter of the current frequency band.
经计算,在每个频段,直驱风机电流内环的比例、积分系数,锁相环的比例积分系数,滤波器的电阻和电感这几个参数的灵敏度均比其他参数的灵敏度高。将这几个参数作为主导因素参数。After calculation, in each frequency band, the sensitivity of the proportional and integral coefficients of the direct-drive fan current inner loop, the proportional and integral coefficients of the phase-locked loop, and the resistance and inductance of the filter are all higher than those of other parameters. Consider these parameters as the dominant factor parameters.
通过直驱风机的阻抗表达式对等值后风电机组的控制参数和电路参数进行推导,可得到直驱风电机组在小集电线路阻抗情况下的控制参数等值计算方法,表示为:By deriving the equivalent control parameters and circuit parameters of the wind turbine through the impedance expression of the direct drive wind turbine, the equivalent calculation method of the control parameters of the direct drive wind turbine under the condition of small collector line impedance can be obtained, which is expressed as:
(7) (7)
其中,k p、k i为直驱风机电流内环的比例、积分系数,k p-PLL、k i-PLL为锁相环的比例积分系数,L g、R g为滤波器的电阻和电感,下标eq代表等值后对应参数。Among them, k p and k i are the proportional and integral coefficients of the direct drive fan current inner loop, k p -PLL and k i -PLL are the proportional and integral coefficients of the phase locked loop, L g and R g are the resistance and inductance of the filter. , the subscript eq represents the corresponding parameter after equivalent value.
最后,对主导因素参数进行修正。选取等值前目标支路的阻抗作为等值的目标,通过将等值前后的阻抗进行对比,选取各频段的主导因素参数作为辨识对象进行分段辨识,对各个频段修正计算等值部分形成的误差。Finally, the parameters of the dominant factors are modified. Select the impedance of the target branch before equivalence as the equivalence target. By comparing the impedance before and after equivalence, select the dominant factor parameters of each frequency band as the identification object for segmentation identification, and correct and calculate the equivalent part of each frequency band. error.
本实施例采用粒子群算法对小信号等值参数进行分频段的辨识。粒子群算法是一种基于种群全局搜索的自适应迭代算法,具有对优化函数要求低、收敛速度快等优点。预先对粒子群算法进行训练,采用实测阻抗数据进行训练,实测阻抗数据可以是利用RTLab扫频测量得到的实际直驱风电机组的阻抗特性。RT-LAB是由加拿大Opal-RT Technologies推出的一套工业级的系统实时仿真平台。频率扫描法可通过在机组端注入扰动对机组的阻抗特性进行测量。This embodiment uses particle swarm algorithm to identify small signal equivalent parameters in frequency bands. Particle swarm optimization is an adaptive iterative algorithm based on population global search, which has the advantages of low optimization function requirements and fast convergence speed. The particle swarm algorithm is trained in advance and is trained using measured impedance data. The measured impedance data can be the impedance characteristics of actual direct-drive wind turbines measured using RTLab frequency sweep. RT-LAB is an industrial-grade system real-time simulation platform launched by Canada's Opal-RT Technologies. The frequency scanning method can measure the impedance characteristics of the unit by injecting disturbances at the unit end.
针对第m个分区内的参数辨识,PSO 算法的适应度函数可写为:For parameter identification in the m-th partition, the fitness function of the PSO algorithm can be written as:
(8) (8)
其中,Zbr表示风电机组等值前支路的详细阻抗,Zbr eq表示支路等值阻抗。Among them, Z br represents the detailed impedance of the equivalent front branch of the wind turbine, and Z br eq represents the equivalent impedance of the branch.
s为频域算子,s m,min,s m,max表示第 m个频段区间的边界点,为第m个频段的第j个主导因素参数,m=1、2、…、M。s is the frequency domain operator, s m, min , s m, max represent the boundary point of the m-th frequency band interval, is the j-th dominant factor parameter of the m-th frequency band, m=1, 2,...,M.
通过公式(1)的阻抗聚合近似计算和公式(8)的主导参数辨识,可以得到支路等值阻抗表达式为:Through the impedance aggregation approximate calculation of formula (1) and the dominant parameter identification of formula (8), the branch equivalent impedance expression can be obtained as:
(9) (9)
其中,d表示dq坐标系下的d轴分量,q表示dq坐标系下的q轴分量。Among them, d represents the d-axis component in the dq coordinate system, and q represents the q-axis component in the dq coordinate system.
dq坐标系是一种基于三相电流或电压的数学模型,它可以将三相电路转换为两相电路进行分析和计算。dq_坐标系由两个相互垂真的轴组成,d 轴与三相电压或电流的相位一致,q轴与d 轴垂直。dq坐标系可以将三相电压或电流转换为两个正交的 dq轴分量,从而简化了计算和分析的复杂度,常用于矢量控制。The dq coordinate system is a mathematical model based on three-phase current or voltage, which can convert a three-phase circuit into a two-phase circuit for analysis and calculation. The dq_coordinate system consists of two mutually perpendicular axes, the d-axis is consistent with the phase of the three-phase voltage or current, and the q-axis is perpendicular to the d-axis. The dq coordinate system can convert three-phase voltage or current into two orthogonal dq-axis components, thereby simplifying the complexity of calculation and analysis, and is often used in vector control.
选取同一支路下的八台风机进行等值效果的验证。为尽量贴合风电场实际运行情况,算例设定此同一支路下的八台风机发出的有功功率不同。首先,使用等值计算方法计算等值模型参数,随后对计算等值阻抗模型关键参数的灵敏度进行分析,最后进行基于粒子群算法的阻抗特性参数辨识。Eight fans under the same branch were selected to verify the equivalent effect. In order to match the actual operating conditions of the wind farm as much as possible, the calculation example sets the active power generated by the eight wind turbines in the same branch to be different. First, the equivalent model parameters are calculated using the equivalent calculation method, then the sensitivity of the key parameters of the equivalent impedance model is analyzed, and finally the impedance characteristic parameters are identified based on the particle swarm algorithm.
相同工作点下详细阻抗模型、计算参数等值阻抗模型和辨识参数等值阻抗模型如图3所示。由图3可知,仅采用计算等值形成等值模型的阻抗特性与原始支路模型阻抗特性相差较大,无法满足小干扰分析的需要。因此需要采用粒子群算法进行参数辨识,修正计算等值误差。由图3可知,在进行基于粒子群算法的参数辨识后,辨识参数等值阻抗模型与原始支路模型的阻抗特性基本一致,等值精确度大幅度提高。具体而言,各项阻抗的误差在0.5%以内。The detailed impedance model, calculation parameter equivalent impedance model and identification parameter equivalent impedance model under the same operating point are shown in Figure 3. As can be seen from Figure 3, the impedance characteristics of the equivalent model formed by calculating equivalent values are quite different from the impedance characteristics of the original branch model, which cannot meet the needs of small interference analysis. Therefore, the particle swarm algorithm needs to be used for parameter identification and correction of calculation equivalent errors. As can be seen from Figure 3, after parameter identification based on particle swarm algorithm, the impedance characteristics of the identified parameter equivalent impedance model are basically consistent with the original branch model, and the equivalent accuracy is greatly improved. Specifically, the error of each impedance is within 0.5%.
为验证等值模型在不同工作点下的准确性。对比了支路功率分别为10 MW,15 MW,20 MW的详细阻抗模型和辨识参数等值阻抗模型,结果如图4所示。在不同的有功功率下Zdd,Zqd 的阻抗值不变,不受功率运行点的影响。而Zdq,Zqq的幅值随功率的增加而增加。可以得出本方法所提的等值模型在不同的工作点下都具有高准确度。因此,等值模型可以适用于不同工况的稳定性分析。In order to verify the accuracy of the equivalent model at different operating points. The detailed impedance model and the identification parameter equivalent impedance model with branch powers of 10 MW, 15 MW and 20 MW were compared. The results are shown in Figure 4. Under different active powers, the impedance values of Zdd and Zqd remain unchanged and are not affected by the power operating point. The amplitudes of Zdq and Zqq increase with the increase of power. It can be concluded that the equivalent model proposed by this method has high accuracy at different operating points. Therefore, the equivalent model can be applied to stability analysis under different working conditions.
上文中对于一种直驱风电场小信号等值建模方法的实施例进行了详细描述,基于上述实施例描述的直驱风电场小信号等值建模方法,本发明实施例还提供了一种与该方法对应的直驱风电场小信号等值建模系统。The above describes in detail an embodiment of a direct drive wind farm small signal equivalent modeling method. Based on the direct drive wind farm small signal equivalent modeling method described in the above embodiment, embodiments of the present invention also provide a A small-signal equivalent modeling system for direct-drive wind farms corresponding to this method.
图5是本发明实施例提供的一种直驱风电场小信号等值建模系统结构示意框图,直驱风电场小信号等值建模系统500根据其所执行的功能,可以被划分为多个功能模块,如图5所示。所述功能模块可以包括:等值阻抗模型聚合计算模块510、主导因素参数选取模块520、主导因素参数辨识模块530、等值阻抗模型修正模块540。本发明所称的模块是指一种能够被至少一个处理器所执行并且能够完成固定功能的一系列计算机程序段,其存储在存储器中。Figure 5 is a schematic structural block diagram of a direct-drive wind farm small-signal equivalent modeling system provided by an embodiment of the present invention. The direct-drive wind farm small-signal equivalent modeling system 500 can be divided into multiple systems according to the functions it performs. functional modules, as shown in Figure 5. The functional modules may include: an equivalent impedance model aggregation calculation module 510, a dominant factor parameter selection module 520, a dominant factor parameter identification module 530, and an equivalent impedance model modification module 540. The module referred to in the present invention refers to a series of computer program segments that can be executed by at least one processor and can complete fixed functions, which are stored in the memory.
等值阻抗模型聚合计算模块510:采用多机等值建模原则,将每条支路上的风电机组等值为一台扩容风电机组;对扩容风电机组的风电机组阻抗进行聚合近似计算获得风电机组等值阻抗模型,风电机组等值阻抗模型是关于电路参数和控制参数的函数。Equivalent impedance model aggregation calculation module 510: Using the multi-machine equivalent modeling principle, the wind turbines on each branch are equivalent to an expanded wind turbine; the wind turbine impedance of the expanded wind turbine is aggregated and approximated to obtain the wind turbine Equivalent impedance model, the wind turbine equivalent impedance model is a function of circuit parameters and control parameters.
主导因素参数选取模块520:在全频段内计算风电机组等值前支路的详细阻抗对各个参数的灵敏度,将全频段划分为多个频段,选出每个频段内灵敏度最大的至少一个参数作为当前频段的主导因素参数。Dominant factor parameter selection module 520: Calculate the sensitivity of the detailed impedance of the equivalent front branch of the wind turbine generator to each parameter in the entire frequency band, divide the entire frequency band into multiple frequency bands, and select at least one parameter with the highest sensitivity in each frequency band as The dominant factor parameters of the current frequency band.
主导因素参数辨识模块530:针对每个频段,对当前频段的主导因素参数进行辨识以修正聚合近似计算形成的误差。Dominant factor parameter identification module 530: For each frequency band, identify the dominant factor parameters of the current frequency band to correct errors caused by aggregated approximation calculations.
等值阻抗模型修正模块540:通过聚合近似计算的风电机组等值阻抗模型和主导因素参数辨识结果,获得最终的风电机组等值阻抗模型。Equivalent impedance model modification module 540: Obtain the final wind turbine equivalent impedance model by aggregating the approximately calculated wind turbine equivalent impedance model and the dominant factor parameter identification results.
本实施例的直驱风电场小信号等值建模系统用于实现前述的直驱风电场小信号等值建模方法,因此该系统中的具体实施方式可见前文中的直驱风电场小信号等值建模方法的实施例部分,所以,其具体实施方式可以参照相应的各个部分实施例的描述,在此不再展开介绍。The small signal equivalent modeling system of the direct drive wind farm in this embodiment is used to implement the aforementioned small signal equivalent modeling method of the direct drive wind farm. Therefore, the specific implementation in the system can be found in the direct drive wind farm small signal in the previous article. The equivalent modeling method is an embodiment part. Therefore, its specific implementation can be referred to the description of the corresponding embodiments, and will not be introduced here.
另外,由于本实施例的直驱风电场小信号等值建模系统用于实现前述的直驱风电场小信号等值建模方法,因此其作用与上述方法的作用相对应,这里不再赘述。In addition, since the small signal equivalent modeling system of the direct drive wind farm in this embodiment is used to implement the aforementioned small signal equivalent modeling method of the direct drive wind farm, its function corresponds to the function of the above method, and will not be described again here. .
图6为本发明实施例提供的一种终端600的结构示意图,包括:处理器610、存储器620及通信单元630。所述处理器610用于实现存储器620中保存的直驱风电场小信号等值建模程序时实现以下步骤:FIG. 6 is a schematic structural diagram of a terminal 600 provided by an embodiment of the present invention, including a processor 610, a memory 620 and a communication unit 630. The processor 610 implements the following steps when used to implement the direct drive wind farm small signal equivalent modeling program stored in the memory 620:
采用多机等值建模原则,将每条支路上的风电机组等值为一台扩容风电机组;Using the multi-machine equivalent modeling principle, the wind turbines on each branch are equivalent to an expanded wind turbine;
对扩容风电机组的风电机组阻抗进行聚合近似计算获得风电机组等值阻抗模型,风电机组等值阻抗模型是关于电路参数和控制参数的函数;The wind turbine impedance of the expanded wind turbine is aggregated and approximated to obtain the wind turbine equivalent impedance model. The wind turbine equivalent impedance model is a function of circuit parameters and control parameters;
在全频段内计算风电机组等值前支路的详细阻抗对各个参数的灵敏度,将全频段划分为多个频段,选出每个频段内灵敏度最大的至少一个参数作为当前频段的主导因素参数;Calculate the sensitivity of the detailed impedance of the equivalent front branch of the wind turbine to each parameter in the entire frequency band, divide the entire frequency band into multiple frequency bands, and select at least one parameter with the highest sensitivity in each frequency band as the dominant factor parameter of the current frequency band;
针对每个频段,对当前频段的主导因素参数进行辨识以修正聚合近似计算形成的误差;For each frequency band, the dominant factor parameters of the current frequency band are identified to correct the errors caused by the aggregation approximation calculation;
通过聚合近似计算的风电机组等值阻抗模型和主导因素参数辨识结果,获得最终的风电机组等值阻抗模型。By aggregating the approximately calculated wind turbine equivalent impedance model and the dominant factor parameter identification results, the final wind turbine equivalent impedance model is obtained.
该终端600包括处理器610、存储器620及通信单元630。这些组件通过一条或多条总线进行通信,本领域技术人员可以理解,图中示出的服务器的结构并不构成对本发明的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。The terminal 600 includes a processor 610, a memory 620 and a communication unit 630. These components communicate through one or more buses. Those skilled in the art can understand that the structure of the server shown in the figure does not limit the invention. It can be a bus structure, a star structure, or More or fewer components may be included than shown, or certain components may be combined, or may be arranged differently.
其中,该存储器620可以用于存储处理器610的执行指令,存储器620可以由任何类型的易失性或非易失性存储终端或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。当存储器620中的执行指令由处理器610执行时,使得终端600能够执行以下上述方法实施例中的部分或全部步骤。Among them, the memory 620 can be used to store execution instructions of the processor 610. The memory 620 can be implemented by any type of volatile or non-volatile storage terminals or their combination, such as static random access memory (SRAM), electronic Erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk . When the execution instructions in the memory 620 are executed by the processor 610, the terminal 600 is enabled to perform some or all of the steps in the following method embodiments.
处理器610为存储终端的控制中心,利用各种接口和线路连接整个电子终端的各个部分,通过运行或执行存储在存储器620内的软件程序和/或模块,以及调用存储在存储器内的数据,以执行电子终端的各种功能和/或处理数据。所述处理器可以由集成电路(Integrated Circuit,简称IC) 组成,例如可以由单颗封装的IC 所组成,也可以由连接多颗相同功能或不同功能的封装IC而组成。举例来说,处理器610可以仅包括中央处理器(Central Processing Unit,简称CPU)。在本发明实施方式中,CPU可以是单运算核心,也可以包括多运算核心。The processor 610 is the control center of the storage terminal, using various interfaces and lines to connect various parts of the entire electronic terminal, by running or executing software programs and/or modules stored in the memory 620, and calling data stored in the memory, To perform various functions of the electronic terminal and/or process data. The processor may be composed of an integrated circuit (IC for short), for example, it may be composed of a single packaged IC, or it may be composed of multiple packaged ICs connected with the same function or different functions. For example, the processor 610 may only include a central processing unit (Central Processing Unit, CPU for short). In the embodiment of the present invention, the CPU may be a single computing core or may include multiple computing cores.
通信单元630,用于建立通信信道,从而使所述存储终端可以与其它终端进行通信。接收其他终端发送的用户数据或者向其他终端发送用户数据。The communication unit 630 is used to establish a communication channel so that the storage terminal can communicate with other terminals. Receive user data sent by other terminals or send user data to other terminals.
本发明还提供一种计算机存储介质,这里所说的存储介质可为磁碟、光盘、只读存储记忆体(英文:read-only memory,简称:ROM)或随机存储记忆体(英文:random accessmemory,简称:RAM)等。The invention also provides a computer storage medium. The storage medium here can be a magnetic disk, an optical disk, a read-only memory (ROM) or a random access memory (English: random access memory). , abbreviation: RAM), etc.
计算机存储介质存储有直驱风电场小信号等值建模程序,所述直驱风电场小信号等值建模程序被处理器执行时实现以下步骤:The computer storage medium stores a direct drive wind farm small signal equivalent modeling program. When the direct drive wind farm small signal equivalent modeling program is executed by the processor, the following steps are implemented:
采用多机等值建模原则,将每条支路上的风电机组等值为一台扩容风电机组;Using the multi-machine equivalent modeling principle, the wind turbines on each branch are equivalent to an expanded wind turbine;
对扩容风电机组的风电机组阻抗进行聚合近似计算获得风电机组等值阻抗模型,风电机组等值阻抗模型是关于电路参数和控制参数的函数;The wind turbine impedance of the expanded wind turbine is aggregated and approximated to obtain the wind turbine equivalent impedance model. The wind turbine equivalent impedance model is a function of circuit parameters and control parameters;
在全频段内计算风电机组等值前支路的详细阻抗对各个参数的灵敏度,将全频段划分为多个频段,选出每个频段内灵敏度最大的至少一个参数作为当前频段的主导因素参数;Calculate the sensitivity of the detailed impedance of the equivalent front branch of the wind turbine to each parameter in the entire frequency band, divide the entire frequency band into multiple frequency bands, and select at least one parameter with the highest sensitivity in each frequency band as the dominant factor parameter of the current frequency band;
针对每个频段,对当前频段的主导因素参数进行辨识以修正聚合近似计算形成的误差;For each frequency band, the dominant factor parameters of the current frequency band are identified to correct the errors caused by the aggregation approximation calculation;
通过聚合近似计算的风电机组等值阻抗模型和主导因素参数辨识结果,获得最终的风电机组等值阻抗模型。By aggregating the approximately calculated wind turbine equivalent impedance model and the dominant factor parameter identification results, the final wind turbine equivalent impedance model is obtained.
本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中如U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,包括若干指令用以使得一台计算机终端(可以是个人计算机,服务器,或者第二终端、网络终端等)执行本发明各个实施例所述方法的全部或部分步骤。Those skilled in the art can clearly understand that the technology in the embodiments of the present invention can be implemented by means of software plus the necessary general hardware platform. Based on this understanding, the technical solutions in the embodiments of the present invention can be embodied in the form of software products in essence or in part that contribute to the existing technology. The computer software products are stored in a storage medium such as a USB flash drive or mobile phone. Hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code, including a number of instructions to make a computer terminal (It can be a personal computer, a server, or a second terminal, a network terminal, etc.) to execute all or part of the steps of the methods described in various embodiments of the present invention.
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided by the present invention, it should be understood that the disclosed systems, devices and methods can be implemented in other ways. For example, the device embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented. On the other hand, the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。In addition, each functional unit in various embodiments of the present invention can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
以上公开的仅为本发明的优选实施方式,但本发明并非局限于此,任何本领域的技术人员能思之的没有创造性的变化,以及在不脱离本发明原理前提下所作的若干改进和润饰,都应落在本发明的保护范围内。What is disclosed above is only the preferred embodiment of the present invention, but the present invention is not limited thereto. Any non-creative changes that those skilled in the art can think of, as well as several improvements and modifications made without departing from the principles of the present invention can be made. , should all fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311617946.8A CN117313293B (en) | 2023-11-30 | 2023-11-30 | A direct drive wind farm small signal equivalent modeling method, system, terminal and medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311617946.8A CN117313293B (en) | 2023-11-30 | 2023-11-30 | A direct drive wind farm small signal equivalent modeling method, system, terminal and medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117313293A true CN117313293A (en) | 2023-12-29 |
CN117313293B CN117313293B (en) | 2024-02-27 |
Family
ID=89274182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311617946.8A Active CN117313293B (en) | 2023-11-30 | 2023-11-30 | A direct drive wind farm small signal equivalent modeling method, system, terminal and medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117313293B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118278292A (en) * | 2024-06-03 | 2024-07-02 | 山东大学 | PMSG impedance parameter automatic identification method |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB694634A (en) * | 1949-08-15 | 1953-07-22 | Post Office | Improvements in or relating to wide-band two-phase networks |
SU1599803A1 (en) * | 1988-05-10 | 1990-10-15 | Ульяновский политехнический институт | Method of measuring parameters of multi-component two-terminal networks by means of a.c.bridges |
US20170187454A1 (en) * | 2015-12-28 | 2017-06-29 | Wisconsin Alumni Research Foundation | Location-Aware Communication System Using Visible Light Transmission |
CN107451364A (en) * | 2017-08-03 | 2017-12-08 | 华北电力大学 | A kind of discrimination method of DFIG wind power plants equivalent parameters |
CN108304681A (en) * | 2018-03-13 | 2018-07-20 | 江苏大学 | Farm model polymerization based on 3 kinds of operation areas of Wind turbines |
CN108460228A (en) * | 2018-03-21 | 2018-08-28 | 电子科技大学 | A method of it is equivalent that wind power plant being carried out based on multi-objective optimization algorithm |
WO2020192145A1 (en) * | 2019-03-27 | 2020-10-01 | 中国电力科学研究院有限公司 | Method, apparatus and device for determining number of powered-on units of ultra-high voltage direct-current transmitting end alternating-current system, and storage medium |
CN111737919A (en) * | 2020-06-26 | 2020-10-02 | 西安热工研究院有限公司 | A direct-drive wind farm grouping method suitable for subsynchronous oscillation analysis |
CN111884259A (en) * | 2020-08-04 | 2020-11-03 | 浙江大学 | An adaptive equivalence method for site-level wind turbines considering the stability characteristics of small disturbances in the system |
CN112217203A (en) * | 2020-09-28 | 2021-01-12 | 西安热工研究院有限公司 | Direct-drive wind power plant subsynchronous oscillation equivalence method capable of keeping model structure |
US20210124086A1 (en) * | 2019-10-11 | 2021-04-29 | W.D. Von Gonten Laboratories, LLC | Methods For Modeling Multiple Simultaneously Propagating Hydraulic Fractures |
CN115563876A (en) * | 2022-10-20 | 2023-01-03 | 国网河南省电力公司电力科学研究院 | Wind power plant dynamic equivalent modeling method based on step-by-step parameter identification |
US20230033138A1 (en) * | 2020-12-31 | 2023-02-02 | Hangzhou Broncus Medical Co., Ltd. | Radio frequency operation prompting method, electronic device, and computer-readable storage medium |
CN115833170A (en) * | 2022-11-21 | 2023-03-21 | 国网重庆市电力公司电力科学研究院 | A continuous high-frequency resonance suppression method for back-to-back flexible DC systems |
US20230118255A1 (en) * | 2021-01-28 | 2023-04-20 | Southeast University | Method for modeling sequence impedance of modular multilevel converter under phase locked loop coupling |
CN116187082A (en) * | 2023-03-08 | 2023-05-30 | 国网黑龙江省电力有限公司 | Single-machine equivalent modeling method for wind power plant |
CN116738636A (en) * | 2023-06-15 | 2023-09-12 | 安徽新力电业科技咨询有限责任公司 | Multi-machine equivalent method of doubly-fed wind power station considering impedance characteristics and synchronization mechanism |
-
2023
- 2023-11-30 CN CN202311617946.8A patent/CN117313293B/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB694634A (en) * | 1949-08-15 | 1953-07-22 | Post Office | Improvements in or relating to wide-band two-phase networks |
SU1599803A1 (en) * | 1988-05-10 | 1990-10-15 | Ульяновский политехнический институт | Method of measuring parameters of multi-component two-terminal networks by means of a.c.bridges |
US20170187454A1 (en) * | 2015-12-28 | 2017-06-29 | Wisconsin Alumni Research Foundation | Location-Aware Communication System Using Visible Light Transmission |
CN107451364A (en) * | 2017-08-03 | 2017-12-08 | 华北电力大学 | A kind of discrimination method of DFIG wind power plants equivalent parameters |
CN108304681A (en) * | 2018-03-13 | 2018-07-20 | 江苏大学 | Farm model polymerization based on 3 kinds of operation areas of Wind turbines |
CN108460228A (en) * | 2018-03-21 | 2018-08-28 | 电子科技大学 | A method of it is equivalent that wind power plant being carried out based on multi-objective optimization algorithm |
WO2020192145A1 (en) * | 2019-03-27 | 2020-10-01 | 中国电力科学研究院有限公司 | Method, apparatus and device for determining number of powered-on units of ultra-high voltage direct-current transmitting end alternating-current system, and storage medium |
US20210124086A1 (en) * | 2019-10-11 | 2021-04-29 | W.D. Von Gonten Laboratories, LLC | Methods For Modeling Multiple Simultaneously Propagating Hydraulic Fractures |
CN111737919A (en) * | 2020-06-26 | 2020-10-02 | 西安热工研究院有限公司 | A direct-drive wind farm grouping method suitable for subsynchronous oscillation analysis |
CN111884259A (en) * | 2020-08-04 | 2020-11-03 | 浙江大学 | An adaptive equivalence method for site-level wind turbines considering the stability characteristics of small disturbances in the system |
CN112217203A (en) * | 2020-09-28 | 2021-01-12 | 西安热工研究院有限公司 | Direct-drive wind power plant subsynchronous oscillation equivalence method capable of keeping model structure |
US20230033138A1 (en) * | 2020-12-31 | 2023-02-02 | Hangzhou Broncus Medical Co., Ltd. | Radio frequency operation prompting method, electronic device, and computer-readable storage medium |
US20230118255A1 (en) * | 2021-01-28 | 2023-04-20 | Southeast University | Method for modeling sequence impedance of modular multilevel converter under phase locked loop coupling |
CN115563876A (en) * | 2022-10-20 | 2023-01-03 | 国网河南省电力公司电力科学研究院 | Wind power plant dynamic equivalent modeling method based on step-by-step parameter identification |
CN115833170A (en) * | 2022-11-21 | 2023-03-21 | 国网重庆市电力公司电力科学研究院 | A continuous high-frequency resonance suppression method for back-to-back flexible DC systems |
CN116187082A (en) * | 2023-03-08 | 2023-05-30 | 国网黑龙江省电力有限公司 | Single-machine equivalent modeling method for wind power plant |
CN116738636A (en) * | 2023-06-15 | 2023-09-12 | 安徽新力电业科技咨询有限责任公司 | Multi-machine equivalent method of doubly-fed wind power station considering impedance characteristics and synchronization mechanism |
Non-Patent Citations (5)
Title |
---|
安之;沈沉;郑泽天;王志文;魏巍;: "考虑风电随机性的直驱风机风电场等值模型评价方法", 中国电机工程学报, no. 22 * |
张保会;李光辉;王进;郝治国;郭丹阳;王小立;: "风电接入对继电保护的影响(一)――鼠笼式风电场电磁暂态等值建模", 电力自动化设备, no. 01, 10 January 2013 (2013-01-10) * |
张明远;肖仕武;田恬;张海华;毕天姝;梁福波;: "基于阻抗灵敏度的直驱风电场并网次同步振荡影响因素及参数调整分析", 电网技术, no. 09, 18 July 2018 (2018-07-18) * |
梅耀丹 等: "基于分频段辨识的永磁直驱风电场小信号等值方法", 《广东电力》, vol. 36, no. 09, pages 77 - 86 * |
锁军;袁丽丽;彭书涛;刘坤雄;覃智君;阳育德;: "基于阻抗测量的风电场谐振特性分析", 电力系统保护与控制, no. 24 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118278292A (en) * | 2024-06-03 | 2024-07-02 | 山东大学 | PMSG impedance parameter automatic identification method |
Also Published As
Publication number | Publication date |
---|---|
CN117313293B (en) | 2024-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111797510A (en) | Method and system for calculating short circuit ratio of new energy station | |
CN112260326B (en) | A method and system for calculating the equivalent short-circuit ratio of a new energy cluster | |
CN117313293B (en) | A direct drive wind farm small signal equivalent modeling method, system, terminal and medium | |
CN109301814A (en) | A method and system for analyzing wind power capacity connected to power grid | |
CN111009921A (en) | Oscillation analysis method of grid-connected DFIG based on Nyquist stability criterion | |
CN116683477A (en) | Broadband suppression method, device, equipment and storage medium for wind power grid-connected system | |
CN111884259A (en) | An adaptive equivalence method for site-level wind turbines considering the stability characteristics of small disturbances in the system | |
CN110034573B (en) | Small interference stability optimization method and device for VSC-HVDC (voltage source converter-high voltage direct current) containing alternating current-direct current hybrid system | |
CN114301055A (en) | Method and system for obtaining interharmonic power flow in power system based on broadband measurement | |
CN109638871B (en) | Main network dividing method of large-scale alternating current-direct current hybrid system considering wind power access | |
CN115021256B (en) | Automatic generation method for electromagnetic transient model of large-scale alternating current and direct current power transmission system | |
CN110445174B (en) | A Transient Stability Evaluation Method of Wind Farm System Considering the Effect of Random Wind Speed | |
CN108418242A (en) | A dynamic equivalence method for DFIG based on similarity coherence | |
CN108258725B (en) | A dynamic equivalence method for doubly-fed wind turbines based on equivalent power angle coherence | |
CN117269838B (en) | Method and system for determining short-circuit current of network-structured power electronic equipment | |
CN113078670A (en) | Method for evaluating resonance stability of receiving-end power grid under effect of hybrid cascade direct-current transmission | |
CN115549093B (en) | A method and system for online modeling and oscillation analysis of a new energy power system | |
CN112765932B (en) | Method and device for analyzing influence of SVG on doubly-fed grid-connected system | |
CN113482852B (en) | Permanent magnet direct drive wind power converter control method, terminal and storage medium | |
CN104679937B (en) | A kind of estimation error and parameter adaptive adjusting method suitable for implicit projection algorithm | |
CN110212570B (en) | Wind power plant equivalent model based on MMSE mining and construction method and application thereof | |
CN109088413B (en) | Dynamic reactive power planning and site selection method and device for direct-current receiving-end power grid | |
CN115085266A (en) | Parameter calculation method, system, memory and device for dynamic equivalent synchronous generator | |
CN114899826B (en) | A generalized short-circuit ratio calculation method, system, device and storage medium | |
WO2024152406A1 (en) | Linear power flow model, optimization method therefor, and power distribution network operation stability evaluation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |