CN117285333A - 氧化铝陶瓷数控刀具的制造工艺 - Google Patents

氧化铝陶瓷数控刀具的制造工艺 Download PDF

Info

Publication number
CN117285333A
CN117285333A CN202311060230.2A CN202311060230A CN117285333A CN 117285333 A CN117285333 A CN 117285333A CN 202311060230 A CN202311060230 A CN 202311060230A CN 117285333 A CN117285333 A CN 117285333A
Authority
CN
China
Prior art keywords
blank
sintering
pressure
numerical control
manufacturing process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311060230.2A
Other languages
English (en)
Inventor
李�杰
李鑫
张亚飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Lerui Cutting Tools Co ltd
Original Assignee
Henan Lerui Cutting Tools Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Lerui Cutting Tools Co ltd filed Critical Henan Lerui Cutting Tools Co ltd
Priority to CN202311060230.2A priority Critical patent/CN117285333A/zh
Publication of CN117285333A publication Critical patent/CN117285333A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了氧化铝陶瓷数控刀具的制造工艺,包括以下步骤:粉体配料,称量氧化铝粉末作为原料;球磨和干燥,将氧化铝粉末放入球磨机中打磨;造粒和压制,使用造粒机制粒;静压和干燥,使用等静压机二次压制;预烧结,进行预烧结;气压烧结,进行高压烧结;毛坯检验,坯料探伤检测;毛坯磨削,毛坯磨削加工;尺寸检验,测量成品刀具的外部尺寸。本发明通过真空气氛炉预烧结和高压气氛烧结炉二次处理可以提供更好的烧结效果,真空烧结可以消除氧化反应,减少气体和杂质的残留,有利于陶瓷材料的致密化和颗粒结合,而高压气氛烧结可提供更高的烧结温度和压力条件,有助于进一步提高陶瓷的致密性和强度。

Description

氧化铝陶瓷数控刀具的制造工艺
技术领域
本发明涉及制造工艺领域,具体为氧化铝陶瓷数控刀具的制造工艺。
背景技术
传统的氧化铝陶瓷数控刀具制作通常使用以下几种常见的方法:
粉末冶金方法:这是制造氧化铝陶瓷刀具最常见的方法之一,它包括混合粉末、压制、烧结和加工等步骤,首先,将高纯度的氧化铝陶瓷粉末与适量的有机添加剂混合,并通过压制将其成形,然后,成形件会在高温下进行烧结,使粉末颗粒结合成致密的陶瓷,最后,经过烧结的刀具进行必要的加工和整形,以获得所需的尺寸和形状;
注塑成型方法:这是另一种常用的制造氧化铝陶瓷刀具的方法,在此方法中,先将氧化铝陶瓷粉末与有机添加剂和可溶性聚合物混合,形成可注塑的糊状物,然后,将糊状物通过注塑工艺注入模具中,在模具中形成刀具的初步形状,最后,将注塑成型的刀具进行烧结和加工,以获得最终的陶瓷刀具;
筑模法:这种方法常用于制造一些特殊形状或较大尺寸的氧化铝陶瓷刀具,首先,根据刀具的形状和尺寸,制作一个刀具模具,然后,将陶瓷粉末与有机添加剂混合,填充到模具中,并通过振动等方法使其充实,接下来,模具中的陶瓷绿体经过干燥和烧结等步骤,形成最终的刀具;
传统瓷数控刀具的加工精度受制于制造工艺的限制,使得成品刀具的致密性和强度有限,由于瓷刀具的脆性和机械性能特点,加工过程中容易产生孔隙、裂纹和结构不均匀等问题。
发明内容
本发明的目的在于提供氧化铝陶瓷数控刀具的制造工艺,通过真空气氛炉预烧结和高压气氛烧结炉二次处理,解决了成品刀具的致密性和强度有限的问题。
为实现上述目的,本发明提供如下技术方案:
氧化铝陶瓷数控刀具的制造工艺,包括以下步骤:
步骤S1,粉体配料,使用精密电子天平称量适量的氧化铝粉末作为原料,然后按照比列添加材料,同时确保误差值在±5克以内;
步骤S2,球磨和干燥,将称量好的氧化铝粉末放入精密高速球磨机中,再加入适量的有机溶剂,然后球磨48小时,确保检测粒度在0.5~5微米,球磨完成后,使用干燥机将有机溶剂蒸发干燥,确保乙醇含量为0;
步骤S3,造粒和压制,将干燥后的原料放入造粒机中加工,确保造粒后的颗粒为0.3~1毫米,且颗粒形状为圆形,然后将颗粒原料通过3T数控压机压制成型;
步骤S4,静压和干燥,使用400T等静压机将坯料用200~400吨进行等静压二次压制,将二次压制后的坯料放入真空干燥炉中,使用500度真空干燥4小时;
步骤S5,预烧结,将真空干燥后的坯料放入真空气氛炉内,通过真空排除杂质气体后冲入惰性气体进行预烧结,烧结温度保持在1200~1500度,烧结时间为4~6小时;
步骤S6,气压烧结,将预烧结后的坯料自然冷却,然后放入高压气氛烧结炉中进行快速高压烧结,烧结温度保持在1300~1700度,烧结时间为5分钟;
步骤S7,毛坯检验,将烧结后的坯料使用超声探伤仪进行探伤检测,再使用硬度测试仪进行硬度测试,检测硬度需达到HV1600~2100范围,且探伤需无裂痕;
步骤S8,毛坯磨削,毛坯检验合格后,使用金刚石砂轮机进行磨削加工,磨削标准需符合图纸的参数要求;
步骤S9,尺寸检验,毛坯打磨合格后,按照图纸中的参数标准使用影像检测仪和显微镜测量成品刀具的外部尺寸;
进一步的,所述步骤S2中,在球磨时,添加的有机溶剂选用的是乙醇,操作时,将适量的乙醇缓慢加入球磨容器中,然后将球磨容器封好,确保容器密封良好,以防止溢出和外界杂质进入,将球磨容器放入球磨机中,并设置适当的球磨参数,如研磨时间、转速、球体材料和大小等,按照预定的程序开始球磨过程;
进一步的,所述步骤S4中,静压工艺中使用的是冷等静压机,操作时,将装有坯料的模具放入冷等静压机的工作台上,根据需要调整机器的参数,如压力、速度和保持时间等,然后启动冷等静压机,使机器施加压力到模具上,在压力的作用下,坯料在模具中形成所需的形状,在达到所需压力后,保持一段时间,使坯料充分固化和形成结构,最后释放冷等静压机的压力,使模具松开,小心取出成型的陶瓷坯料;
进一步的,所述步骤S4中,使用冷等静压后,再使用真空干燥炉干燥,干燥时,将陶瓷坯料小心地放置在真空干燥炉的加热盘或托盘上,确保坯料摆放平整且不重叠,以便热量均匀传递,然后将真空干燥炉的炉门关闭并确保密封良好,以确保在干燥过程中维持适当的真空环境,启动真空系统,通过抽气将炉内的气体抽除,创建真空环境,启动真空干燥炉的加热系统,使用500度真空干燥4小时;
进一步的,所述步骤S5中,预烧结时,使用的惰性气体为混合气体,混合气体由氩气、氧气和氮气混合而成;
进一步的,所述步骤S8中,毛坯磨削时,使用金刚砂轮机将毛坯的双端面磨削加工;
进一步的,所述步骤S8中,毛坯双端面磨削后,接着使用金刚砂轮机将毛坯周边毛刺磨削处理;
进一步的,所述步骤S8中,毛坯周边磨削完成后,再使用刃口珩磨机将数控刀具的刃口处打磨处理;
进一步的,所述步骤S9中,在进行尺寸检验前,使用电磁强化设备将打磨后的刀具电磁强化20分钟,强化功率为5W赫兹;
进一步的,所述步骤S9中,使用千分尺、卡规、显微镜、测量投影仪等,对刀具进行尺寸测量,根据使用的工具,可以进行直接测量、比较测量或光学测量等各种测量方法。
与现有技术相比,本发明的有益效果是:
本发明通过真空气氛炉预烧结和高压气氛烧结炉二次处理可以提供更好的烧结效果,真空烧结可以消除氧化反应,减少气体和杂质的残留,有利于陶瓷材料的致密化和颗粒结合,而高压气氛烧结可提供更高的烧结温度和压力条件,有助于进一步提高陶瓷的致密性和强度,同时可以获得更高的烧结温度和压力,从而提高瓷刀具的硬度和耐磨性,高硬度和良好的耐磨性是瓷数控刀具的重要性能指标,能够提高切削效率和刀具寿命;
本发明通过真空气氛炉预烧结和高压气氛烧结炉二次处理可以显著改善瓷刀具的致密性和结构均匀性,真空烧结和高压气氛提供了更好的温度和压力控制,消除了烧结过程中的孔隙、裂纹和结构不均匀的问题,使得瓷刀具的性能更加稳定和可靠,通过优化烧结条件,可以减少烧结收缩和变形,提高刀具的几何精度和表面质量,从而满足高精度加工的需求;
本发明在静压工艺中使用的是冷等静压机,使用冷等静压可以对陶瓷坯料施加更高的压力,以获得具有足够强度的生坯部件,这样压制后的坯料更紧密、更均匀,且密度更高。
附图说明
图1为本发明氧化铝陶瓷数控刀具的制造工艺流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种技术方案:
氧化铝陶瓷数控刀具的制造工艺,包括以下步骤:
步骤S1,粉体配料,使用精密电子天平称量适量的氧化铝粉末作为原料,然后按照比列添加材料,同时确保误差值在±5克以内;
步骤S2,球磨和干燥,将称量好的氧化铝粉末放入精密高速球磨机中,再加入适量的有机溶剂,然后球磨48小时,确保检测粒度在0.5~5微米,球磨完成后,使用干燥机将有机溶剂蒸发干燥,确保乙醇含量为0;
具体的,在球磨时,添加的有机溶剂选用的是乙醇,乙醇为挥发性溶剂,球磨和乙醇的共同作用,可以实现氧化铝粉末的细化、表面改性等,有助于提高氧化铝粉末的性能和应用价值;
操作时,将适量的乙醇缓慢加入球磨容器中,然后将球磨容器封好,确保容器密封良好,以防止溢出和外界杂质进入,将球磨容器放入球磨机中,并设置适当的球磨参数,如研磨时间、转速、球体材料和大小等,按照预定的程序开始球磨过程;
步骤S3,造粒和压制,将干燥后的原料放入造粒机中加工,确保造粒后的颗粒为0.3~1毫米,且颗粒形状为圆形,然后将颗粒原料通过3T数控压机压制成型;
步骤S4,静压和干燥,使用400T等静压机将坯料用200~400吨进行等静压二次压制,将二次压制后的坯料放入真空干燥炉中,使用500度真空干燥4小时;
具体的,静压工艺中使用的是冷等静压机,使用冷等静压可以对陶瓷坯料施加更高的压力,以获得具有足够强度的生坯部件,这样压制后的坯料更紧密、更均匀,且密度更高,使用冷等静压后,再使用真空干燥炉干燥,这样可以对坯料进行进一步的提纯;
操作时,将装有坯料的模具放入冷等静压机的工作台上,根据需要调整机器的参数,如压力、速度和保持时间等,然后启动冷等静压机,使机器施加压力到模具上,在压力的作用下,坯料在模具中形成所需的形状,在达到所需压力后,保持一段时间,使坯料充分固化和形成结构,最后释放冷等静压机的压力,使模具松开,小心取出成型的陶瓷坯料;
步骤S5,预烧结,将真空干燥后的坯料放入真空气氛炉内,通过真空排除杂质气体后冲入惰性气体进行预烧结,烧结温度保持在1200~1500度,烧结时间为4~6小时;
其中,预烧结时,使用的惰性气体为混合气体,混合气体由氩气、氧气和氮气混合而成;
可以理解的,氩气、氧气和氮气混合气体可以在烧结过程中减少氧化铝与氧气的直接接触,降低氧化铝表面的氧化反应,这有助于减少可能产生的氧化层和表面变化,保持陶瓷表面的纯度和稳定性,混合气体中的氧气和氮气可以提高烧结温度和速率,氧气的加入可以促进氧化铝的烧结反应,增加烧结速率,而氮气的加入则可以提供更高的气压,增加烧结温度,从而促进颗粒之间的结合;
步骤S6,气压烧结,将预烧结后的坯料自然冷却,然后放入高压气氛烧结炉中进行快速高压烧结,烧结温度保持在1300~1700度,烧结时间为5分钟;
步骤S7,毛坯检验,将烧结后的坯料使用超声探伤仪进行探伤检测,再使用硬度测试仪进行硬度测试,检测硬度需达到HV1600~2100范围,且探伤需无裂痕;
步骤S8,毛坯磨削,毛坯检验合格后,使用金刚石砂轮机进行磨削加工,磨削标准需符合图纸的参数要求;
具体的,毛坯磨削时,使用金刚砂轮机将毛坯的双端面磨削加工,毛坯双端面磨削后,接着使用金刚砂轮机将毛坯周边毛刺磨削处理,毛坯周边磨削完成后,再使用刃口珩磨机将数控刀具的刃口处打磨处理;
步骤S9,尺寸检验,毛坯打磨合格后,按照图纸中的参数标准使用影像检测仪和显微镜测量成品刀具的外部尺寸;
具体的,在进行尺寸检验前,使用电磁强化设备将打磨后的刀具电磁强化20分钟,强化功率为5W赫兹,这样内部粒子更加均匀;
操作时,使用千分尺、卡规、显微镜、测量投影仪等,对刀具进行尺寸测量,根据使用的工具,可以进行直接测量、比较测量或光学测量等各种测量方法。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

1.氧化铝陶瓷数控刀具的制造工艺,其特征在于,包括以下步骤:
步骤S1,粉体配料,使用精密电子天平称量适量的氧化铝粉末作为原料,然后按照比列添加材料,同时确保误差值在±5克以内;
步骤S2,球磨和干燥,将称量好的氧化铝粉末放入精密高速球磨机中,再加入适量的有机溶剂,然后球磨48小时,确保检测粒度在0.5~5微米,球磨完成后,使用干燥机将有机溶剂蒸发干燥,确保乙醇含量为0;
步骤S3,造粒和压制,将干燥后的原料放入造粒机中加工,确保造粒后的颗粒为0.3~1毫米,且颗粒形状为圆形,然后将颗粒原料通过数控压机压制成型;
步骤S4,静压和干燥,使用400T等静压机将坯料用200~400吨进行等静压二次压制,将二次压制后的坯料放入真空干燥炉中,使用500度真空干燥4小时;
步骤S5,预烧结,将真空干燥后的坯料放入真空气氛炉内,通过真空排除杂质气体后冲入惰性气体进行预烧结,烧结温度保持在1200~1500度,烧结时间为4~6小时;
步骤S6,气压烧结,将预烧结后的坯料自然冷却,然后放入高压气氛烧结炉中进行快速高压烧结,烧结温度保持在1300~1700度,烧结时间为5分钟;
步骤S7,毛坯检验,将烧结后的坯料使用超声探伤仪进行探伤检测,再使用硬度测试仪进行硬度测试,检测硬度需达到HV1600~2100范围,且探伤需无裂痕;
步骤S8,毛坯磨削,毛坯检验合格后,使用金刚石砂轮机进行磨削加工,磨削标准需符合图纸的参数要求;
步骤S9,尺寸检验,毛坯打磨合格后,按照图纸中的参数标准使用影像检测仪和显微镜测量成品刀具的外部尺寸。
2.根据权利要求1所述的氧化铝陶瓷数控刀具的制造工艺,其特征在于:所述步骤S2中,在球磨时,添加的有机溶剂选用的是乙醇,操作时,将适量的乙醇缓慢加入球磨容器中,然后将球磨容器封好,确保容器密封良好,以防止溢出和外界杂质进入,将球磨容器放入球磨机中,并设置适当的球磨参数,如研磨时间、转速、球体材料和大小等,按照预定的程序开始球磨过程。
3.根据权利要求1所述的氧化铝陶瓷数控刀具的制造工艺,其特征在于:所述步骤S4中,静压工艺中使用的是冷等静压机,操作时,将装有坯料的模具放入冷等静压机的工作台上,根据需要调整机器的参数,如压力、速度和保持时间等,然后启动冷等静压机,使机器施加压力到模具上,在压力的作用下,坯料在模具中形成所需的形状,在达到所需压力后,保持一段时间,使坯料充分固化和形成结构,最后释放冷等静压机的压力,使模具松开,小心取出成型的陶瓷坯料。
4.根据权利要求1所述的氧化铝陶瓷数控刀具的制造工艺,其特征在于:所述步骤S4中,使用冷等静压后,再使用真空干燥炉干燥,干燥时,将陶瓷坯料小心地放置在真空干燥炉的加热盘或托盘上,确保坯料摆放平整且不重叠,以便热量均匀传递,然后将真空干燥炉的炉门关闭并确保密封良好,以确保在干燥过程中维持适当的真空环境,启动真空系统,通过抽气将炉内的气体抽除,创建真空环境,启动真空干燥炉的加热系统,使用500度真空干燥4小时。
5.根据权利要求1所述的氧化铝陶瓷数控刀具的制造工艺,其特征在于:所述步骤S5中,预烧结时,使用的惰性气体为混合气体,混合气体由氩气、氧气和氮气混合而成。
6.根据权利要求1所述的氧化铝陶瓷数控刀具的制造工艺,其特征在于:所述步骤S8中,毛坯磨削时,使用金刚砂轮机将毛坯的双端面磨削加工,直至磨削至达到图纸要求即可。
7.根据权利要求1所述的氧化铝陶瓷数控刀具的制造工艺,其特征在于:所述步骤S8中,毛坯双端面磨削后,接着使用金刚砂轮机将毛坯周边毛刺磨削处理。
8.根据权利要求1所述的氧化铝陶瓷数控刀具的制造工艺,其特征在于:所述步骤S8中,毛坯周边磨削完成后,再使用刃口珩磨机将数控刀具的刃口处打磨处理。
9.根据权利要求1所述的氧化铝陶瓷数控刀具的制造工艺,其特征在于:所述步骤S9中,在进行尺寸检验前,使用电磁强化设备将打磨后的刀具电磁强化20分钟,强化功率为5W赫兹。
10.根据权利要求1所述的氧化铝陶瓷数控刀具的制造工艺,其特征在于:所述步骤S9中,使用千分尺、卡规、显微镜、测量投影仪等,对刀具进行尺寸测量,根据使用的工具,可以进行直接测量、比较测量或光学测量等各种测量方法。
CN202311060230.2A 2023-08-22 2023-08-22 氧化铝陶瓷数控刀具的制造工艺 Pending CN117285333A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311060230.2A CN117285333A (zh) 2023-08-22 2023-08-22 氧化铝陶瓷数控刀具的制造工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311060230.2A CN117285333A (zh) 2023-08-22 2023-08-22 氧化铝陶瓷数控刀具的制造工艺

Publications (1)

Publication Number Publication Date
CN117285333A true CN117285333A (zh) 2023-12-26

Family

ID=89239908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311060230.2A Pending CN117285333A (zh) 2023-08-22 2023-08-22 氧化铝陶瓷数控刀具的制造工艺

Country Status (1)

Country Link
CN (1) CN117285333A (zh)

Similar Documents

Publication Publication Date Title
CN104440620B (zh) 一种金刚石超薄切割砂轮的制备方法
CN105773449A (zh) 一种细粒度高厚度陶瓷结合剂砂轮的制造方法
CN106518060A (zh) 陶瓷手机后盖的制作方法
KR20070094648A (ko) 실리카 유리 제품의 제조방법
CN113402284A (zh) 一种解决软磁铁氧体烧结开裂的方法
CN101695822A (zh) 一种用于磁性材料切割的金刚石超薄切片配方及生产工艺
CN117285333A (zh) 氧化铝陶瓷数控刀具的制造工艺
CN113084718A (zh) 一种金属结合剂金刚石磨头的成型烧结工艺
CN101758465A (zh) 一种用于蓝宝石、水晶切割的金刚石超薄切片配方及生产工艺
JP4452059B2 (ja) 不透明シリカガラス成形体の製造方法
CN101695823A (zh) 一种用于晶圆切割的金刚石超薄切片配方及生产工艺
CN117285332A (zh) 氧化铝陶瓷数控刀具的制备方法
CN101758214A (zh) 一种用于铁氧体切割的金刚石超薄切片配方及生产工艺
CN101758442A (zh) 一种用于qfn基板切割的金刚石超薄切片配方及生产工艺
CN101698290A (zh) 一种用于陶瓷切割的金刚石超薄切片配方及生产工艺
CN101844331A (zh) 一种用于光学平板玻璃切割的金刚石超薄切片配方及生产工艺
CN101862828A (zh) 一种用于玻璃切割的金刚石超薄切片配方及生产工艺
CN101758213A (zh) 一种用于pcb基板切割的金刚石超薄切片配方及生产工艺
CN101700643A (zh) 一种用于碳化硅制品切割的金刚石超薄切片配方及生产工艺
WO2024117112A1 (ja) セラミックスボール用素材およびそれを用いたセラミックスボールの製造方法並びにセラミックスボール
CN116947524B (zh) 陶瓷结合剂细粒度金刚石蜂窝磨块的激光固化成形方法
CN101758217A (zh) 一种用于晶体化玻璃切割的金刚石超薄切片配方及生产工艺
JP2002283244A (ja) 仕上げ用砥石及びその製造方法
CN108655395B (zh) 一种提高复合片平整度及均匀性的方法
CN113500193A (zh) 一种医用钳金属手柄注射成型工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination