CN117269751A - GIS isolating switch switching position confirmation method - Google Patents
GIS isolating switch switching position confirmation method Download PDFInfo
- Publication number
- CN117269751A CN117269751A CN202311561381.6A CN202311561381A CN117269751A CN 117269751 A CN117269751 A CN 117269751A CN 202311561381 A CN202311561381 A CN 202311561381A CN 117269751 A CN117269751 A CN 117269751A
- Authority
- CN
- China
- Prior art keywords
- power curve
- data
- curve
- density estimation
- standard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 238000012790 confirmation Methods 0.000 title claims abstract 5
- 230000009471 action Effects 0.000 claims abstract description 37
- 238000002790 cross-validation Methods 0.000 claims abstract description 29
- 230000008569 process Effects 0.000 claims abstract description 9
- 238000007781 pre-processing Methods 0.000 claims abstract description 7
- 238000002955 isolation Methods 0.000 claims description 15
- 238000012549 training Methods 0.000 claims description 13
- 238000010200 validation analysis Methods 0.000 claims description 11
- 238000004140 cleaning Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000012795 verification Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 238000004458 analytical method Methods 0.000 description 9
- 230000000875 corresponding effect Effects 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- 238000007619 statistical method Methods 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000003909 pattern recognition Methods 0.000 description 2
- 238000010187 selection method Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004940 physical analysis method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H31/00—Air-break switches for high tension without arc-extinguishing or arc-preventing means
- H01H31/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/327—Testing of circuit interrupters, switches or circuit-breakers
- G01R31/3271—Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
- G01R31/3275—Fault detection or status indication
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
技术领域Technical field
本发明属于电力设备监测技术领域,具体涉及一种GIS隔离开关分合位置确认方法。The invention belongs to the technical field of power equipment monitoring, and specifically relates to a method for confirming the opening and closing position of a GIS isolation switch.
背景技术Background technique
气体绝缘全封闭组合电器(GIS)是电力系统中实现电气设备分割和隔离的关键元件。然而,由于GIS隔离开关的机械结构容易受到装配失误和长时间使用导致结构损坏,从而引发故障。其中,分、合闸不到位问题对电力系统及人员安全构成最大威胁。Gas-insulated fully enclosed electrical appliances (GIS) are key components in the power system to achieve segmentation and isolation of electrical equipment. However, the mechanical structure of the GIS isolating switch is susceptible to assembly errors and structural damage caused by long-term use, leading to failure. Among them, the problem of insufficient opening and closing poses the greatest threat to the safety of the power system and personnel.
GIS隔离开关分、合位置检测技术包括直接检测法和状态感知法两类。直接检测法,因GIS隔离开关结构封闭、内部空间狭小、传动机构紧凑、且处在高压大电流环境运行。在高电位引入传感器,信号线难以引出,信号受强电磁环境干扰,破坏原有结构的密封性,且易带来绝缘隐患等原因,不适用于这一对象的检测。GIS isolation switch opening and closing position detection technology includes two types: direct detection method and status sensing method. Direct detection method, because the GIS isolation switch has a closed structure, small internal space, compact transmission mechanism, and operates in a high-voltage and high-current environment. When a sensor is introduced at a high potential, it is difficult to draw out the signal line. The signal is interfered by the strong electromagnetic environment, destroys the sealing of the original structure, and easily causes insulation hazards. It is not suitable for the detection of this object.
基于电机电流的状态感知方法与基于振动信号的状态感知方法理论上都具有GIS隔离开关机械状态的完整信息,都可以对GIS隔离开关的触头接触状态进行监测。但是,基于电机电流的状态感知方法,无法反映电压与电流的相位变化关系,且不同电机型号的电机电流具有一定程度的分散性,导致电流特征表现不明显。即使在电流特征比较明显的前提下,现有诊断算法也属于物理分析方法,通过对电流包络线的分析进行缺陷分析,属于阈值判断,这种判断会造成两个问题,第一,对于不同的隔离开关该阈值设置难以直接量化,都需要专家介入,对隔离开关的运动过程完成物理分析,然后再进行阈值对应,同时,也难以适应工业现场的因开关机械状态离散性造成的阈值因开关差异而产生的差异。The state sensing method based on motor current and the state sensing method based on vibration signal theoretically have complete information about the mechanical state of the GIS isolating switch, and both can monitor the contact status of the GIS isolating switch. However, the state sensing method based on motor current cannot reflect the phase change relationship between voltage and current, and motor currents of different motor models have a certain degree of dispersion, resulting in inconspicuous current characteristics. Even under the premise that the current characteristics are relatively obvious, the existing diagnosis algorithm belongs to the physical analysis method. The defect analysis through the analysis of the current envelope belongs to the threshold judgment. This judgment will cause two problems. First, for different The threshold setting of the isolating switch is difficult to directly quantify. It requires expert intervention to complete the physical analysis of the movement process of the isolating switch and then perform threshold correspondence. At the same time, it is also difficult to adapt to the threshold value of the industrial site caused by the discreteness of the mechanical state of the switch. Differences arising from differences.
基于振动信号的状态感知方法,只考虑了隔离开关在电磁力作用下的振动频率,而忽略了GIS隔离开关本体结构的固有频率,所得出的结论难以与实测信号进行匹配。采集数据量大,信号传输时间长,耗费存储空间大。The state sensing method based on vibration signals only considers the vibration frequency of the isolation switch under the action of electromagnetic force and ignores the natural frequency of the GIS isolation switch body structure. The conclusions drawn are difficult to match the measured signals. The amount of data collected is large, the signal transmission time is long, and the storage space is consumed.
以上现有技术都难以可靠的确认离开关的分、合动作指令下达后,关键的关注点是设备是否完成相应的动作,并能够及时发现隔离开关分、合位置异常状态,以避免可能发生的运行事故。而这对于电力系统的安全稳定运行至关重要。It is difficult for the above existing technologies to reliably confirm the opening and closing action instructions of the isolation switch. After the instruction is issued, the key focus is whether the equipment completes the corresponding action and can detect the abnormal status of the opening and closing position of the isolation switch in time to avoid possible accidents. Operational accident. This is crucial for the safe and stable operation of the power system.
发明内容Contents of the invention
为了更好地判断隔离开关位置,本发明提供了一种GIS隔离开关分合位置确认方法,通过核密度估计方法估计标准分闸功率曲线、标准合闸功率曲线和未知动作功率曲线对应的概率密度估计曲线,并计算相似性来判断分闸、合闸。In order to better judge the position of the isolating switch, the present invention provides a method for confirming the opening and closing position of the GIS isolating switch. The probability density corresponding to the standard opening power curve, the standard closing power curve and the unknown action power curve is estimated through the kernel density estimation method. Estimate the curve and calculate the similarity to judge opening and closing.
本发明的一种GIS隔离开关分合位置确认方法,步骤如下:A method for confirming the opening and closing position of a GIS isolating switch of the present invention, the steps are as follows:
步骤一:采集GIS隔离开关的电机实时功率,并进行数据预处理,得到未知动作功率曲线;Step 1: Collect the real-time power of the motor of the GIS isolation switch, and perform data preprocessing to obtain the unknown action power curve;
步骤二:使用核密度估计方法估计标准分闸功率曲线、标准合闸功率曲线和未知动作功率曲线对应的概率密度估计曲线;Step 2: Use the kernel density estimation method to estimate the probability density estimation curves corresponding to the standard opening power curve, standard closing power curve and unknown action power curve;
步骤三:采用交叉验证方法自适应选择核密度估计的带宽;Step 3: Use cross-validation method to adaptively select the bandwidth of kernel density estimation;
步骤四:计算未知动作功率曲线对应的核密度估计曲线与标准分闸功率曲线和标准合闸功率曲线的核密度估计曲线的相似性得分;基于相似性得分判断未知动作功率曲线是分闸还是合闸。Step 4: Calculate the similarity score between the kernel density estimation curve corresponding to the unknown action power curve and the kernel density estimation curve of the standard opening power curve and the standard closing power curve; determine whether the unknown action power curve is opening or closing based on the similarity score brake.
具体地,所述核密度估计计算过程为:Specifically, the kernel density estimation calculation process is:
; ;
; ;
其中:是在位置x处的概率密度估计;xi是第i个数据点,n是数据点总数;Kh是核函数,h是带宽。in: is the probability density estimate at position x; xi is the i-th data point, n is the total number of data points; K h is the kernel function, and h is the bandwidth.
具体地,所述交叉验证方法包括最小均方误差交叉验证和最小交叉验证估计。Specifically, the cross-validation method includes minimum mean square error cross-validation and minimum cross-validation estimation.
具体地,所述最小均方误差交叉验证:将数据集分为训练集和验证集,通常采用k折交叉验证,对于每个带宽值,对训练集进行核密度估计;使用概率密度估计曲线在验证集上计算均方误差;选择使均方误差最小化的带宽作为最佳带宽。Specifically, the minimum mean square error cross-validation: divide the data set into a training set and a verification set, usually using k-fold cross-validation, and perform kernel density estimation on the training set for each bandwidth value; use the probability density estimation curve in Calculate the mean square error on the validation set; select the bandwidth that minimizes the mean square error as the optimal bandwidth.
具体地,所述最小交叉验证估计:将数据集分为训练集和验证集;对于每个带宽值,对训练集进行核密度估计;使用概率密度估计曲线在验证集上计算期望均方误差;选择使期望均方误差最小化的带宽作为最佳带宽。Specifically, the minimum cross-validation estimation: divide the data set into a training set and a validation set; for each bandwidth value, perform kernel density estimation on the training set; use the probability density estimation curve to calculate the expected mean square error on the validation set; The bandwidth that minimizes the expected mean square error is selected as the optimal bandwidth.
具体地,所述步骤一中,采集GIS隔离开关的电机在运行过程中的电压和电流,并根据电压和电流计算电机实时功率,得到未知动作功率曲线。Specifically, in step one, the voltage and current of the motor of the GIS isolation switch during operation are collected, and the real-time power of the motor is calculated based on the voltage and current to obtain an unknown action power curve.
具体地,所述步骤一中,数据预处理包括数据清洗、数据格式化和数据对齐。Specifically, in step one, data preprocessing includes data cleaning, data formatting and data alignment.
具体地,所述数据清洗包括处理缺失数据、处理异常值和噪声过滤。Specifically, the data cleaning includes processing missing data, processing outliers and noise filtering.
具体地,所述数据格式化包括:检查标准分闸功率曲线、标准合闸功率曲线和未知动作功率曲线的数据点之间的时间间隔,确保它们在时间上一致;检查数据的格式。Specifically, the data formatting includes: checking the time intervals between the data points of the standard opening power curve, the standard closing power curve and the unknown action power curve to ensure that they are consistent in time; checking the format of the data.
具体地,所述数据对齐包括:Specifically, the data alignment includes:
时间对齐:根据时间戳信息,将标准分闸功率曲线、标准合闸功率曲线和未知动作功率曲线进行对齐,使它们在时间上一致;Time alignment: Based on the timestamp information, align the standard opening power curve, standard closing power curve and unknown action power curve to make them consistent in time;
插值:如果数据点在时间上不均匀分布,使用插值方法来获得均匀时间步长的数据。Interpolation: If the data points are not evenly distributed in time, use interpolation methods to obtain data with uniform time steps.
本发明可以在开关动作时实时进行状态判定,确保了电力系统的稳定运行。本发明采用核密度估计方法进行功率曲线相似性分析,相对于使用动态时间规整(DynamicTimeWarping,DTW)等传统曲线相似度分析方法,具有以下优点:The invention can perform status determination in real time during switch operation, ensuring stable operation of the power system. This invention uses the kernel density estimation method to perform power curve similarity analysis. Compared with traditional curve similarity analysis methods such as dynamic time warping (DTW), it has the following advantages:
不依赖对齐过程:核密度估计方法不需要进行曲线对齐的过程,而DTW等方法通常需要在进行相似性分析前对曲线进行时间或空间上的对齐,这可能涉及复杂的计算和参数选择。核密度估计方法通过在整个曲线上进行平滑估计,允许曲线之间的自由比较,而无需强制对齐。这样可以更灵活地应对曲线之间的变化和噪声。Does not rely on the alignment process: Kernel density estimation methods do not require the process of curve alignment, while methods such as DTW usually require temporal or spatial alignment of curves before performing similarity analysis, which may involve complex calculations and parameter selection. Kernel density estimation methods allow free comparisons between curves without forced alignment by performing smooth estimates across the entire curve. This allows for greater flexibility in dealing with changes between curves and noise.
适用性广泛:核密度估计方法是一种非参数方法,不依赖于曲线的具体形状或模型,因此适用于各种类型的曲线数据,包括连续型、离散型、单峰、多峰等。相比之下,DTW等方法通常依赖于曲线的具体形状和特性,对不同类型的曲线可能需要调整参数或修改算法。Wide applicability: The kernel density estimation method is a non-parametric method that does not depend on the specific shape or model of the curve, so it is suitable for various types of curve data, including continuous, discrete, unimodal, multimodal, etc. In contrast, methods such as DTW usually rely on the specific shape and characteristics of the curve, and different types of curves may need to adjust parameters or modify the algorithm.
提供概率密度信息:核密度估计方法不仅可以用于比较曲线的相似性,还提供了曲线上每个点的概率密度信息。这意味着可以更详细地了解曲线的分布特性,识别潜在的模态或峰值,并进一步进行统计分析。这种概率密度信息在许多应用领域,如异常检测、模式识别和统计分析中,具有重要价值。Provide probability density information: The kernel density estimation method can not only be used to compare the similarity of curves, but also provide probability density information for each point on the curve. This means that the distribution properties of the curve can be understood in more detail, potential modes or peaks can be identified, and further statistical analysis can be performed. This probability density information is of great value in many application areas, such as anomaly detection, pattern recognition, and statistical analysis.
非接触式监测:此方法只需对比已有的功率曲线数据,不需要额外的物理接触或设备干预,减少了潜在的风险。Non-contact monitoring: This method only needs to compare the existing power curve data and does not require additional physical contact or equipment intervention, reducing potential risks.
附图说明Description of the drawings
图1为标准分闸功率曲线;Figure 1 shows the standard opening power curve;
图2为标准合闸功率曲线;Figure 2 shows the standard closing power curve;
图3为未知动作功率曲线;Figure 3 shows the unknown action power curve;
图4为核密度估计曲线相似性比较图。Figure 4 is a comparison diagram of the similarity of kernel density estimation curves.
具体实施方式Detailed ways
下面结合实施例进一步详细阐明本发明。The present invention will be further explained in detail below with reference to the examples.
一种GIS隔离开关分合位置确认方法,步骤如下:A method for confirming the opening and closing position of a GIS isolating switch. The steps are as follows:
步骤一:采集GIS隔离开关的电机实时功率,并进行数据预处理,得到未知动作功率曲线。Step 1: Collect the real-time power of the motor of the GIS isolation switch, and perform data preprocessing to obtain the unknown action power curve.
采集GIS隔离开关的电机在运行过程中的电压和电流,并根据电压和电流计算电机实时功率,得到未知动作功率曲线。数据预处理包括数据清洗、数据格式化和数据对齐。Collect the voltage and current of the motor of the GIS isolation switch during operation, calculate the real-time power of the motor based on the voltage and current, and obtain the unknown action power curve. Data preprocessing includes data cleaning, data formatting and data alignment.
数据清洗是确保数据质量的关键步骤。在此阶段,需要执行以下任务:Data cleaning is a critical step to ensure data quality. At this stage, the following tasks need to be performed:
处理缺失数据:检查并填充缺失的数据点,或者考虑插值方法来填补缺失值;Handle missing data: Check and fill in missing data points, or consider interpolation methods to fill in missing values;
处理异常值:识别和处理可能的异常值或离群点,以防止它们影响估计的准确性;Handle outliers: Identify and handle possible outliers or outliers to prevent them from affecting the accuracy of estimates;
噪声过滤:考虑应用平滑或滤波技术,以减少数据中的噪声。Noise filtering: Consider applying smoothing or filtering techniques to reduce noise in your data.
数据格式化确保数据的一致性和可用性。在这一阶段,需要执行以下任务:Data formatting ensures data consistency and availability. At this stage, the following tasks need to be performed:
数据采样频率:检查标准分闸功率曲线、标准合闸功率曲线和未知动作功率曲线的数据点之间的时间间隔,确保它们在时间上一致;Data sampling frequency: Check the time intervals between the data points of the standard opening power curve, standard closing power curve and unknown action power curve to ensure that they are consistent in time;
数据格式:检查数据的格式,例如数据是否以适当的结构和类型存储。Data format: Check the format of the data, such as whether the data is stored in the appropriate structure and type.
数据对齐是为了确保标准分闸功率曲线、标准合闸功率曲线和未知动作功率曲线的数据在时间上对齐,以便后续的比较。执行以下任务来实现数据对齐:Data alignment is to ensure that the data of the standard opening power curve, standard closing power curve and unknown action power curve are aligned in time for subsequent comparison. Perform the following tasks to achieve data alignment:
时间对齐:根据时间戳信息,将标准分闸功率曲线、标准合闸功率曲线和未知动作功率曲线进行对齐,使它们在时间上一致;Time alignment: Based on the timestamp information, align the standard opening power curve, standard closing power curve and unknown action power curve to make them consistent in time;
插值:如果数据点在时间上不均匀分布,可以考虑使用插值方法来获得均匀时间步长的数据;Interpolation: If the data points are not uniformly distributed in time, consider using interpolation methods to obtain data with uniform time steps;
确保对齐后标准分闸功率曲线、标准合闸功率曲线的数据集和未知动作功率曲线的数据集包含相同数量的数据点或时间步长,以便进行后续的核密度估计和比较。Ensure that the aligned data sets of the standard opening power curve, the standard closing power curve and the unknown action power curve contain the same number of data points or time steps for subsequent kernel density estimation and comparison.
步骤二:使用核密度估计方法估计标准分闸功率曲线、标准合闸功率曲线和未知动作功率曲线对应的概率密度估计曲线。核密度估计的基本原理是通过在每个数据点附近放置核函数,然后将它们叠加起来估计概率密度。以下是核密度估计的基本公式:Step 2: Use the kernel density estimation method to estimate the probability density estimation curves corresponding to the standard opening power curve, standard closing power curve and unknown action power curve. The basic principle of kernel density estimation is to estimate the probability density by placing a kernel function near each data point and then superimposing them. The following is the basic formula for kernel density estimation:
; ;
其中:是在位置x处的概率密度估计;xi是第i个数据点,n是数据点总数。Kh是核函数,通常是标准正态分布的密度函数,具体形式为:in: is the probability density estimate at position x; xi is the i-th data point, and n is the total number of data points. K h is the kernel function, usually the density function of the standard normal distribution, the specific form is:
; ;
其中h是带宽,用于控制核函数的宽度。where h is the bandwidth, used to control the width of the kernel function.
核密度估计是一种非参数方法,用于估计数据的概率密度估计曲线。它通过在每个数据点周围放置核函数,然后将核函数叠加起来,以获得对整个数据分布的估计。核函数通常是以零为中心的对称函数,用于衡量数据点对估计的贡献。标准正态分布的密度函数通常用作核函数,但也可以选择其他核函数,如Epanechnikov核、三角核等。Kernel density estimation is a non-parametric method for estimating the probability density estimation curve of data. It works by placing a kernel function around each data point and then stacking the kernel functions together to obtain an estimate of the entire data distribution. The kernel function is usually a symmetric function centered around zero that measures the contribution of a data point to the estimate. The density function of the standard normal distribution is usually used as the kernel function, but other kernel functions can also be selected, such as Epanechnikov kernel, trigonometric kernel, etc.
核密度估计计算:对于第i个数据点xi,计算核函数在位置x处的值。这 个值衡量了数据点xi对在位置x处的估计的贡献。将所有数据点的贡献叠加起来,然后除以 样本大小n,得到在位置x处的概率密度估计。 Kernel density estimation calculation: For the i-th data point x i , calculate the value of the kernel function at position x . This value measures the contribution of data point xi to the estimate at location x. Adding up the contributions of all data points and dividing by the sample size n yields an estimate of the probability density at location x .
将核密度估计的结果可视化,绘制估计的核密度估计曲线。这将帮助直观地理解数据的分布情况以及未知动作功率曲线的概率密度估计。核密度估计是理解数据分布并进行概率密度估计的有用工具。使用核密度估计来获得标准分闸功率曲线、标准合闸功率曲线和未知动作功率曲线的概率密度估计曲线,以支持后续的相似性评估。Visualize the results of kernel density estimation and plot the estimated kernel density estimation curve. This will help to intuitively understand the distribution of the data and estimate the probability density of the unknown action power curve. Kernel density estimation is a useful tool for understanding data distributions and performing probability density estimates. Kernel density estimation is used to obtain the probability density estimation curves of the standard opening power curve, standard closing power curve and unknown action power curve to support subsequent similarity evaluation.
步骤三:自适应带宽选择。Step 3: Adaptive bandwidth selection.
在核密度估计中,选择适当的带宽是关键,因为它直接影响了概率密度估计曲线的形状和平滑度。将采用交叉验证方法来选择带宽,以确保概率密度估计的准确性和鲁棒性。In kernel density estimation, choosing an appropriate bandwidth is key because it directly affects the shape and smoothness of the probability density estimation curve. A cross-validation approach will be used to select the bandwidth to ensure the accuracy and robustness of the probability density estimates.
交叉验证是一种常用的带宽选择方法,它通过在数据集上进行多次核密度估计并评估性能来选择最佳带宽。常见的交叉验证方法包括最小均方误差交叉验证和最小交叉验证估计。Cross-validation is a commonly used bandwidth selection method that selects the optimal bandwidth by performing multiple kernel density estimates on a data set and evaluating performance. Common cross-validation methods include minimum mean square error cross-validation and minimum cross-validation estimation.
最小均方误差交叉验证:这种方法的目标是选择带宽,以最小化核密度估计与真实概率密度曲线之间的均方误差。具体步骤如下:将数据集分为训练集和验证集,通常采用k折交叉验证,其中k是交叉验证的折数;对于每个可能的带宽值,对训练集进行核密度估计;使用概率密度估计曲线在验证集上计算均方误差;选择使均方误差最小化的带宽作为最佳带宽。Minimum mean square error cross-validation: The goal of this method is to choose the bandwidth to minimize the mean square error between the kernel density estimate and the true probability density curve. The specific steps are as follows: Divide the data set into a training set and a validation set, usually using k-fold cross-validation, where k is the fold number of cross-validation; for each possible bandwidth value, perform kernel density estimation on the training set; use probability density The estimated curve calculates the mean square error on the validation set; the bandwidth that minimizes the mean square error is selected as the optimal bandwidth.
最小交叉验证估计:这种方法的目标是选择一个带宽,以最小化交叉验证估计的期望均方误差。具体步骤如下:将数据集分为训练集和验证集;对于每个可能的带宽值,对训练集进行核密度估计;使用概率密度估计曲线在验证集上计算期望均方误差;选择使期望均方误差最小化的带宽作为最佳带宽。Minimum cross-validation estimate: The goal of this method is to choose a bandwidth that minimizes the expected mean square error of the cross-validation estimate. The specific steps are as follows: divide the data set into a training set and a validation set; for each possible bandwidth value, perform kernel density estimation on the training set; use the probability density estimation curve to calculate the expected mean square error on the validation set; choose to make the expected mean square error The bandwidth that minimizes the square error is taken as the optimal bandwidth.
本发明综合采用上述两种带宽验证方法,取效果最好的,效果因实际的数据而不同。The present invention comprehensively adopts the above two bandwidth verification methods to select the one with the best effect. The effect varies depending on the actual data.
带宽的选择通常涉及到使用交叉验证方法,其中最小均方误差交叉验证和最小交叉验证估计是常见的选择方法。这些方法的基本原理是通过在训练集上估计核密度函数,然后在验证集上评估估计的质量来选择最佳带宽。The choice of bandwidth usually involves the use of cross-validation methods, with minimum mean square error cross-validation and minimum cross-validation estimation being common selection methods. The basic principle of these methods is to select the optimal bandwidth by estimating the kernel density function on the training set and then evaluating the quality of the estimate on the validation set.
带宽的选择考虑到了平滑度和适应性之间的权衡。较小的带宽会导致概率密度估计曲线更接近原始数据,但可能过于尖锐。较大的带宽会导致概率密度估计曲线更平滑,但可能过于平坦,失去了原始数据的细节。The choice of bandwidth takes into account the trade-off between smoothness and adaptability. A smaller bandwidth will result in a probability density estimate curve that is closer to the original data, but may be too sharp. A larger bandwidth will result in a smoother probability density estimate curve, but may be too flat and lose the detail of the original data.
通过交叉验证,可以找到一个使概率密度估计曲线在验证集上具有较小均方误差或期望均方误差的带宽。这个带宽可以用于估计未知动作功率曲线的概率密度估计曲线,以便后续的相似性评估。Through cross-validation, you can find a bandwidth that makes the probability density estimation curve have a smaller mean square error or expected mean square error on the validation set. This bandwidth can be used to estimate the probability density estimation curve of the unknown action power curve for subsequent similarity evaluation.
总之,带宽选择的目标是找到一个使核密度估计在平滑度和适应性之间达到最佳平衡的值,以确保核密度估计能够准确反映数据的分布特征。交叉验证方法是一种常用的、基于数据的方式来实现这个目标。带宽自适应方法可以根据数据的特性自动选择合适的带宽,而不需要手动调整或预先设定带宽值。这种自适应性使方法更具通用性,可以适应不同数据集的变化。与传统的固定带宽方法相比,带宽自适应可以更好地处理数据中的不均匀性和噪声。In summary, the goal of bandwidth selection is to find a value that enables the kernel density estimate to achieve the best balance between smoothness and adaptability to ensure that the kernel density estimate can accurately reflect the distribution characteristics of the data. Cross-validation methods are a common, data-based way to achieve this goal. The bandwidth adaptation method can automatically select an appropriate bandwidth based on the characteristics of the data without requiring manual adjustment or pre-set bandwidth values. This adaptability makes the method more general and can adapt to changes in different data sets. Bandwidth adaptation can better handle inhomogeneities and noise in data than traditional fixed-bandwidth methods.
步骤四:计算未知动作功率曲线对应的核密度估计曲线与标准分闸功率曲线和标准合闸功率曲线的核密度估计曲线的相似性得分;基于相似性得分,解释未知动作功率曲线是分闸还是合闸的可能性,提供结果的可视化或可解释性信息,以支持最终决策。Step 4: Calculate the similarity score between the kernel density estimation curve corresponding to the unknown action power curve and the kernel density estimation curve of the standard opening power curve and the standard closing power curve; based on the similarity score, explain whether the unknown action power curve is opening or closing. Possibility of closing, providing visualization or interpretability information of results to support final decision-making.
本发明的应用实例如图1-图4所示,图1为标准分闸功率曲线,其中横轴表示数据点,纵轴表示数值,单位为瓦(W)。图2为标准合闸功率曲线,图3为未知动作功率曲线。图4为核密度估计曲线相似性比较图,曲线1为标准分闸功率曲线对应的核密度估计曲线,曲线2为标准合闸功率曲线对应的核密度估计曲线,曲线3为未知动作功率曲线对应的核密度估计曲线,横轴表示数据值,纵轴表示概率密度,无量纲。曲线3与曲线1比较的相似性得分为0.0000000954,曲线3与曲线2比较的相似性得分为0.0000040416,因此判断图3为合闸功率曲线,GIS隔离开关合闸。Application examples of the present invention are shown in Figures 1 to 4. Figure 1 is a standard opening power curve, in which the horizontal axis represents data points and the vertical axis represents numerical values, and the unit is watts (W). Figure 2 is the standard closing power curve, and Figure 3 is the unknown action power curve. Figure 4 is a comparison chart of the similarity of kernel density estimation curves. Curve 1 is the kernel density estimation curve corresponding to the standard opening power curve. Curve 2 is the kernel density estimation curve corresponding to the standard closing power curve. Curve 3 is the kernel density estimation curve corresponding to the unknown action power curve. The kernel density estimation curve of , the horizontal axis represents the data value, and the vertical axis represents the probability density, which is dimensionless. The similarity score between curve 3 and curve 1 is 0.0000000954, and the similarity score between curve 3 and curve 2 is 0.0000040416. Therefore, it is judged that Figure 3 is the closing power curve and the GIS isolating switch is closed.
本发明采用核密度估计方法进行曲线相似性分析,相对于使用动态时间规整(DynamicTimeWarping,DTW)等传统曲线相似度分析方法,具有以下三个主要优点:This invention uses the kernel density estimation method to perform curve similarity analysis. Compared with traditional curve similarity analysis methods such as dynamic time warping (DTW), it has the following three main advantages:
不依赖对齐过程:核密度估计方法不需要进行曲线对齐的过程,而DTW等方法通常需要在进行相似性分析前对曲线进行时间或空间上的对齐,这可能涉及复杂的计算和参数选择。核密度估计方法通过在整个曲线上进行平滑估计,允许曲线之间的自由比较,而无需强制对齐。这样可以更灵活地应对曲线之间的变化和噪声。这使得核密度估计方法更容易实施,尤其对于实际数据中存在噪声或变化的情况。Does not rely on the alignment process: Kernel density estimation methods do not require the process of curve alignment, while methods such as DTW usually require temporal or spatial alignment of curves before performing similarity analysis, which may involve complex calculations and parameter selection. Kernel density estimation methods allow free comparisons between curves without forced alignment by performing smooth estimates across the entire curve. This allows for greater flexibility in dealing with changes between curves and noise. This makes the kernel density estimation method easier to implement, especially for situations where there is noise or variation in the real data.
适用性广泛:核密度估计方法是一种非参数方法,不依赖于曲线的具体形状或模型,因此适用于各种类型的曲线数据,包括连续型、离散型、单峰、多峰等。相比之下,DTW等方法通常依赖于曲线的具体形状和特性,对不同类型的曲线可能需要调整参数或修改算法。DTW等方法通常基于特定的曲线模型或假设,这可能限制了它们的适用性。如果曲线的形状不符合这些假设,性能可能会下降。Wide applicability: The kernel density estimation method is a non-parametric method that does not depend on the specific shape or model of the curve, so it is suitable for various types of curve data, including continuous, discrete, unimodal, multimodal, etc. In contrast, methods such as DTW usually rely on the specific shape and characteristics of the curve, and different types of curves may need to adjust parameters or modify the algorithm. Methods such as DTW are often based on specific curvilinear models or assumptions, which may limit their applicability. If the shape of the curve does not meet these assumptions, performance may degrade.
提供概率密度信息:核密度估计方法不仅可以用于比较曲线的相似性,还提供了曲线上每个点的概率密度信息。这意味着可以更详细地了解曲线的分布特性,识别潜在的模态或峰值,并进一步进行统计分析。这种概率密度信息在许多应用领域,如异常检测、模式识别和统计分析中,具有重要价值。Provide probability density information: The kernel density estimation method can not only be used to compare the similarity of curves, but also provide probability density information for each point on the curve. This means that the distribution properties of the curve can be understood in more detail, potential modes or peaks can be identified, and further statistical analysis can be performed. This probability density information is of great value in many application areas, such as anomaly detection, pattern recognition, and statistical analysis.
尽管已经示出和描述了本发明的实施例,详见上述详尽的描述,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although embodiments of the invention have been shown and described, it will be understood by those of ordinary skill in the art that these embodiments may be modified without departing from the principles and spirit of the invention. Various changes, modifications, substitutions and variations are possible, the scope of the invention being defined by the appended claims and their equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311561381.6A CN117269751B (en) | 2023-11-22 | 2023-11-22 | A method for confirming the opening and closing position of GIS isolation switch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311561381.6A CN117269751B (en) | 2023-11-22 | 2023-11-22 | A method for confirming the opening and closing position of GIS isolation switch |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117269751A true CN117269751A (en) | 2023-12-22 |
CN117269751B CN117269751B (en) | 2024-04-02 |
Family
ID=89220019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311561381.6A Active CN117269751B (en) | 2023-11-22 | 2023-11-22 | A method for confirming the opening and closing position of GIS isolation switch |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117269751B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117972451A (en) * | 2024-03-28 | 2024-05-03 | 国网安徽省电力有限公司电力科学研究院 | GIS isolating switch switching position confirmation method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107885959A (en) * | 2017-12-06 | 2018-04-06 | 华北电力大学 | A kind of wind-powered electricity generation modeling and performance estimating method based on confidence equivalent power curve belt |
CN115034485A (en) * | 2022-06-16 | 2022-09-09 | 华北电力大学 | A data space-based wind power interval prediction method and device |
CN116184182A (en) * | 2022-12-15 | 2023-05-30 | 国网安徽省电力有限公司电力科学研究院 | A GIS Disconnector Mechanical State Recognition Method Based on Curve Similarity |
WO2023118251A2 (en) * | 2021-12-21 | 2023-06-29 | Valeo Equipements Electriques Moteur | Power converter device |
CN116383773A (en) * | 2023-01-31 | 2023-07-04 | 华南理工大学 | Data center energy efficiency anomaly detection method, system and medium based on self-adaptive prediction interval |
US20230267246A1 (en) * | 2022-02-24 | 2023-08-24 | Sichuan University | Method for constructing general probability model of harmonic emission level for industrial load |
CN116990677A (en) * | 2023-07-17 | 2023-11-03 | 西门子(中国)有限公司 | State evaluation method for air circuit breaker, electronic device, medium, and program product |
-
2023
- 2023-11-22 CN CN202311561381.6A patent/CN117269751B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107885959A (en) * | 2017-12-06 | 2018-04-06 | 华北电力大学 | A kind of wind-powered electricity generation modeling and performance estimating method based on confidence equivalent power curve belt |
WO2023118251A2 (en) * | 2021-12-21 | 2023-06-29 | Valeo Equipements Electriques Moteur | Power converter device |
US20230267246A1 (en) * | 2022-02-24 | 2023-08-24 | Sichuan University | Method for constructing general probability model of harmonic emission level for industrial load |
CN115034485A (en) * | 2022-06-16 | 2022-09-09 | 华北电力大学 | A data space-based wind power interval prediction method and device |
CN116184182A (en) * | 2022-12-15 | 2023-05-30 | 国网安徽省电力有限公司电力科学研究院 | A GIS Disconnector Mechanical State Recognition Method Based on Curve Similarity |
CN116383773A (en) * | 2023-01-31 | 2023-07-04 | 华南理工大学 | Data center energy efficiency anomaly detection method, system and medium based on self-adaptive prediction interval |
CN116990677A (en) * | 2023-07-17 | 2023-11-03 | 西门子(中国)有限公司 | State evaluation method for air circuit breaker, electronic device, medium, and program product |
Non-Patent Citations (1)
Title |
---|
杨景刚;吴越;赵科;李洪涛;腾云;张国钢;: "基于最优特征向量分类的高压断路器机械状态识别方法", 高压电器, no. 06, pages 60 - 66 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117972451A (en) * | 2024-03-28 | 2024-05-03 | 国网安徽省电力有限公司电力科学研究院 | GIS isolating switch switching position confirmation method |
CN117972451B (en) * | 2024-03-28 | 2024-06-11 | 国网安徽省电力有限公司电力科学研究院 | A method for confirming the opening and closing positions of GIS disconnecting switches |
Also Published As
Publication number | Publication date |
---|---|
CN117269751B (en) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106597231B (en) | GIS fault detection system and method based on Multi-source Information Fusion and deep learning network | |
CN105868770A (en) | High-voltage circuit breaker fault diagnosis method based on unsupervised learning model | |
CN103346797B (en) | A kind of real-time compression method for gear distress signal | |
CN105158598A (en) | Fault prediction method suitable for power equipment | |
CN110912091A (en) | Single-ended traveling wave ultra-high speed protection system and method for flexible direct current transmission line | |
CN110347717A (en) | A kind of big data storage method based on urban electric power equipment monitoring | |
CN117269751B (en) | A method for confirming the opening and closing position of GIS isolation switch | |
CN105223293B (en) | Transformer state early warning method based on online monitoring of oil chromatography | |
CN119335315B (en) | Adjusting control method for power distribution network fault early warning positioning | |
CN115128441A (en) | A method for predicting the electrical life of circuit breakers and evaluating the state of health | |
CN117110798A (en) | Fault detection method and system for intelligent power distribution network | |
CN117371207A (en) | Extra-high voltage converter valve state evaluation method, medium and system | |
CN108593099B (en) | A method for extracting vibration signal of tap changer for on-load voltage regulating transformer | |
CN114740418A (en) | An online detection method of capacitive voltage transformer error | |
CN118731548A (en) | New energy vehicle charger automatic test system | |
CN106844842B (en) | Power transformer defect rescue example diagnosis method applying oil chromatography monitoring data | |
CN106846742B (en) | Fault trend early warning method and system based on Hausdorff distance | |
CN117330952B (en) | Isolation switch fault diagnosis method based on persistent coherent analysis | |
CN119167848A (en) | An online monitoring method for transformer winding deformation based on impedance feature identification | |
CN118746730A (en) | Method and device for monitoring transmission cable faults in complex system environments | |
CN118761016A (en) | Cable status monitoring method, system and storage medium based on deep reinforcement learning | |
CN118655417A (en) | A method for improving traveling wave ranging in distribution networks based on dilated convolution | |
CN117929922A (en) | Power distribution network fault starting method based on waveform form identification of self-encoder | |
CN114624582A (en) | Method for detecting on-off arcing time of high-voltage circuit breaker | |
CN118962278B (en) | Prediction method of the impact of power cables laid in the same trench on communication signal cables |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |