CN117268512A - 一种适用于超声水表的一致性优化方法 - Google Patents
一种适用于超声水表的一致性优化方法 Download PDFInfo
- Publication number
- CN117268512A CN117268512A CN202311566496.4A CN202311566496A CN117268512A CN 117268512 A CN117268512 A CN 117268512A CN 202311566496 A CN202311566496 A CN 202311566496A CN 117268512 A CN117268512 A CN 117268512A
- Authority
- CN
- China
- Prior art keywords
- water meter
- ultrasonic water
- signal
- noise ratio
- meter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000005457 optimization Methods 0.000 title claims abstract description 12
- 238000012937 correction Methods 0.000 claims abstract description 19
- 238000005259 measurement Methods 0.000 claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 claims abstract description 4
- 238000001514 detection method Methods 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000009434 installation Methods 0.000 abstract description 2
- 238000003754 machining Methods 0.000 abstract description 2
- 238000013178 mathematical model Methods 0.000 abstract description 2
- 239000002699 waste material Substances 0.000 abstract description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
- G01F25/10—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/667—Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30242—Counting objects in image
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- Electromagnetism (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
本发明涉及流量测量技术领域,公开了一种适用于超声水表的一致性优化方法,步骤如下:在水表生产过程中拍摄表体图像并计算其中气泡含量。得出对应信噪比。根据信噪比阈值后与信噪比的比较结果决定后续流程。组装水表,收集测量数据。根据计算所得增益修正量决定是否进行增益调节。收集测量数据:若满足一致性要求则优化结束,超声水表可基于该测量数据计量流量、温度;否则返回执行上一步。本发明在表体组装成表前调节一致性,简单高效,避免了产能浪费与水表不一致引起的误差。此外,从源头修正信号功率,为每只水表优化独立的数学模型参数,消除加工或安装误差的影响,将精度控制在要求范围内,实现同批次或型号水表的高度一致性。
Description
技术领域
本发明涉及流量测量技术领域,尤其涉及一种适用于超声水表的一致性优化方法。
背景技术
超声水表凭借着始动流量小、压损小、计量精度高等优点,广泛应用于流量测量领域,其通过计算上下游超声波信号的传播时间差计算流速,然后根据计量结果进行数据校正,实现准确的流量计量。由于超声波信号对计量有非常重要的影响,因此超声波信号以及超声水表的一致性非常重要,当前仅是对换能器进行一致性匹配,对流量进行校准,并未考虑到超声水表表体的一致性。
发明内容
本发明针对现有技术存在的不足和缺陷,提供了一种适用于超声水表的一致性优化方法,进行超声水表表体与信号功率的适配,实现了对超声水表的一致性调节,可保证超声水表运行的计量可靠性。
本发明的目的可以通过以下技术方案来实现。
一种适用于超声水表的一致性优化方法,包括以下步骤。
S1,在超声水表生产过程中拍摄表体图像,利用图像处理算法计算表体中气泡含量。
S2,利用气泡含量得出对应的信噪比S。
S3,基于超声水表精度设定信噪比阈值c1、c2。
其中c1 < c2。
比较S、c1、c2。
若S<c1,检测结果为差,超声水表不予使用,终止本流程。
若c1≤S< c2,检测结果为良,计算功率修正量并进行功率修正;计算公式如下。
。
其中,ΔP为功率修正量,PZ为恒定的、不受环境影响的噪声功率,S1为当前信号的信噪比,S2为理想信噪比,PL为根据超声水表的声路长度、水温、流量确定的功率固有损失量。
若S≥c2,检测结果为优,直接进入S4。
S4,组装超声水表,收集超声水表的测量数据。
S5,基于测量数据,计算增益修正量G:若G≤0,不进行增益量调节;若G>0,将增益量调节为增益修正量与原始增益量的和。
。
其中,G为增益修正量,A为目标信号强度,Ak为当前实际信号强度。
S6,收集超声水表的测量数据:若此时测量数据满足一致性要求则优化结束,超声水表可基于该测量数据计量流量、温度;否则返回执行步骤S5。
优选地,所述步骤S1中气泡含量反映了气泡数量与气泡面积。
优选地,所述步骤S2的信噪比S与气泡含量的对应关系从基于大量实践数据建立的气泡含量-信噪比对应关系表中获取。
优选地,所述步骤S4中收集的测量数据包括多组测量温度、上下游接收信号时间差以及信号强度。
优选地,所述步骤S5中,目标信号强度为当前信噪比或当前量程比的计量最优值。
优选地,所述步骤S6中收集的测量数据包括多组测量温度、上下游接收信号时间差以及信号强度。
本发明的有益技术效果:直接在表体组装成表之前进行一致性调节,简单高效,避免了产能的浪费与超声水表不一致引起的误差。此外,从源头修正信号功率,为每只水表优化独立的数学模型参数,消除因加工或安装误差带来的影响,将精度控制在要求范围内,从而实现同批次或型号超声水表的高度一致性。
附图说明
图1为本发明的总体流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不限定本发明。
实施例:如图1所示,一种适用于超声水表的一致性优化方法,包括以下步骤。
S1,在超声水表生产过程中拍摄某型号超声水表表体图像,利用图像处理算法,计算表体中能反映气泡数量与气泡面积的气泡含量Z=0.8。
S2,利用气泡含量,在气泡含量-信噪比对应关系表中查找与其对应的信噪比S=46dB。
S3,基于某型号超声水表精度设定信噪比阈值c1、c2分别为30、50,进行超声水表管段筛选。
若S<c1,检测结果为差,超声水表不进入组装环节,结束流程。
若c1≤S< c2,检测结果为良,计算功率修正量并进行功率修正。
。
其中,ΔP为功率修正量,PZ为恒定的、不受环境影响的噪声功率,S1为当前信号的信噪比,S2为理想信噪比,PL为根据超声水表的声路长度、水温、流量确定的功率固有损失量。
若S≥c2,检测结果为优,直接进入S4。
S4,组装超声水表,收集超声水表的测量温度、上下游接收信号时间差以及信号强度作为数据集。
S5,基于数据集,计算增益修正量。
=0.72。
其中,G为增益修正量,A为目标信号强度,是当前信噪比或当前量程比的计量最优值,Ak为当前实际信号强度。
G>0,将增益修正量与原始增益量相加,获得最终的增益量。
S6,更新最终增益量,调节增益后,收集超声波水表的多组测量温度、上下游接收信号时间差以及信号强度,此时测量数据满足一致性要求,修正结束,进行流量、温度等计算。
上述实施例是对本发明的具体实施方式的说明,而非对本发明的限制,有关技术领域的技术人员在不脱离本发明的精神和范围的情况下,还可做出各种变换和变化以得到相对应的等同的技术方案,因此所有等同的技术方案均应归入本发明的专利保护范围。
Claims (6)
1.一种适用于超声水表的一致性优化方法,其特征在于,包括以下步骤:
S1,在超声水表生产过程中拍摄表体图像,利用图像处理算法计算表体中气泡含量;
S2,利用气泡含量得出对应的信噪比S;
S3,基于超声水表精度设定信噪比阈值c1、c2;
其中c1 < c2;
比较S、c1、c2:
若S<c1,检测结果为差,超声水表不予使用,终止本流程;
若c1≤S< c2,检测结果为良,计算功率修正量并进行功率修正;计算公式为:
;
其中,ΔP为功率修正量,PZ为恒定的、不受环境影响的噪声功率,S1为当前信号的信噪比,S2为理想信噪比,PL为根据超声水表的声路长度、水温、流量确定的功率固有损失量;
若S≥c2,检测结果为优,直接进入S4;
S4,组装超声水表,收集超声水表的测量数据;
S5,基于测量数据,计算增益修正量G:若G≤0,不进行增益量调节;若G>0,将增益量调节为增益修正量与原始增益量的和;
;
其中,G为增益修正量,A为目标信号强度,Ak为当前实际信号强度;
S6,收集超声水表的测量数据:若此时测量数据满足一致性要求则优化结束,超声水表可基于该测量数据计量流量、温度;否则返回执行步骤S5。
2.根据权利要求1所述的一种适用于超声水表的一致性优化方法,其特征在于,所述步骤S1中气泡含量反映了气泡数量与气泡面积。
3.根据权利要求1所述的一种适用于超声水表的一致性优化方法,其特征在于,所述步骤S2的信噪比S与气泡含量的对应关系从基于大量实践数据建立的气泡含量-信噪比对应关系表中获取。
4.根据权利要求1所述的一种适用于超声水表的一致性优化方法,其特征在于,所述步骤S4中收集的测量数据包括多组测量温度、上下游接收信号时间差以及信号强度。
5.根据权利要求1所述的一种适用于超声水表的一致性优化方法,其特征在于,所述步骤S5中,目标信号强度为当前信噪比或当前量程比的计量最优值。
6.根据权利要求1所述的一种适用于超声水表的一致性优化方法,其特征在于,所述步骤S6中收集的测量数据包括多组测量温度、上下游接收信号时间差以及信号强度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311566496.4A CN117268512B (zh) | 2023-11-23 | 2023-11-23 | 一种适用于超声水表的一致性优化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311566496.4A CN117268512B (zh) | 2023-11-23 | 2023-11-23 | 一种适用于超声水表的一致性优化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117268512A true CN117268512A (zh) | 2023-12-22 |
CN117268512B CN117268512B (zh) | 2024-02-09 |
Family
ID=89206745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311566496.4A Active CN117268512B (zh) | 2023-11-23 | 2023-11-23 | 一种适用于超声水表的一致性优化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117268512B (zh) |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1104767A (zh) * | 1993-05-20 | 1995-07-05 | 横河电机株式会社 | 超声流体振动流量计 |
CN1746700A (zh) * | 2005-10-11 | 2006-03-15 | 汪柏年 | 一种基于超声波或声波连续声场鉴相原理的位移/距离测量方法及其装置 |
US7634367B1 (en) * | 2005-07-12 | 2009-12-15 | Ortho-Clinical Diagnostics, Inc. | Estimating fluidic properties and using them to improve the precision/accuracy of metered fluids and to improve the sensitivity/specificity in detecting failure modes |
CN101706299A (zh) * | 2009-11-20 | 2010-05-12 | 合肥工业大学 | 一种基于dsp的科氏质量流量变送器 |
CN103308917A (zh) * | 2013-03-12 | 2013-09-18 | 中国电子科技集团公司第三研究所 | 用于实时测量超低空段风的声探测系统 |
US20170314979A1 (en) * | 2014-12-08 | 2017-11-02 | General Electric Company | Ultrasonic flow meter system and method for measuring flow rate |
CN109856238A (zh) * | 2019-03-20 | 2019-06-07 | 北京航空航天大学 | 一种基于超声检测技术的锂离子电池气泡缺陷检测方法 |
US20200174036A1 (en) * | 2017-03-10 | 2020-06-04 | Sagemcom Energy & Telecom Sas | Method for measuring a speed of a fluid |
CN111982247A (zh) * | 2020-08-13 | 2020-11-24 | 河南省计量科学研究院 | 基于改进型Hough变换算法实现水表检测的装置及方法 |
US20200400471A1 (en) * | 2018-02-12 | 2020-12-24 | Ifm Electronic Gmbh | Method for operating a magnetoinductive flowmeter |
CN114137250A (zh) * | 2021-12-02 | 2022-03-04 | 浙江大学 | 一种黏性流体气泡上升中速度和形变量的测量系统和方法 |
CN114235111A (zh) * | 2022-02-24 | 2022-03-25 | 青岛鼎信通讯股份有限公司 | 一种基于模型优化的超声波水表流量校准方法 |
WO2022076920A1 (en) * | 2020-10-08 | 2022-04-14 | Essenlix Corporation | Assay error reduction |
CN114397475A (zh) * | 2022-03-25 | 2022-04-26 | 青岛鼎信通讯股份有限公司 | 一种适用于超声波水表的水流流速测量方法 |
CN114509136A (zh) * | 2022-04-21 | 2022-05-17 | 青岛鼎信通讯股份有限公司 | 一种超声波水表换能器一致性测试方法及测试系统 |
CN114543949A (zh) * | 2022-02-24 | 2022-05-27 | 安徽汉威电子有限公司 | 一种超声波水表自适应计量方法 |
CN114964429A (zh) * | 2022-05-27 | 2022-08-30 | 安徽领水科技有限公司 | 一种超声波水表检定方法 |
CN115265683A (zh) * | 2022-06-14 | 2022-11-01 | 北京控制工程研究所 | 提高时差超声波流量计气泡适应性的信号处理方法及系统 |
CN115984267A (zh) * | 2023-03-20 | 2023-04-18 | 青岛鼎信通讯科技有限公司 | 一种适用于超声水表的注塑气泡检测方法 |
CN116359344A (zh) * | 2023-04-19 | 2023-06-30 | 青岛鼎信通讯科技有限公司 | 一种用于检测超声水表表体注塑质量的方法及装置 |
US20230215032A1 (en) * | 2022-01-04 | 2023-07-06 | TE Connectivity Services Gmbh | Bubble measurement system and method |
CN116989857A (zh) * | 2023-06-09 | 2023-11-03 | 浙江大学 | 带气泡检测与流量修正的外夹式超声波流量计及测量方法 |
CN117029968A (zh) * | 2023-07-19 | 2023-11-10 | 国家石油天然气管网集团有限公司 | 一种流量数据的诊断方法、系统、存储介质和电子设备 |
-
2023
- 2023-11-23 CN CN202311566496.4A patent/CN117268512B/zh active Active
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1104767A (zh) * | 1993-05-20 | 1995-07-05 | 横河电机株式会社 | 超声流体振动流量计 |
US7634367B1 (en) * | 2005-07-12 | 2009-12-15 | Ortho-Clinical Diagnostics, Inc. | Estimating fluidic properties and using them to improve the precision/accuracy of metered fluids and to improve the sensitivity/specificity in detecting failure modes |
CN1746700A (zh) * | 2005-10-11 | 2006-03-15 | 汪柏年 | 一种基于超声波或声波连续声场鉴相原理的位移/距离测量方法及其装置 |
CN101706299A (zh) * | 2009-11-20 | 2010-05-12 | 合肥工业大学 | 一种基于dsp的科氏质量流量变送器 |
CN103308917A (zh) * | 2013-03-12 | 2013-09-18 | 中国电子科技集团公司第三研究所 | 用于实时测量超低空段风的声探测系统 |
US20170314979A1 (en) * | 2014-12-08 | 2017-11-02 | General Electric Company | Ultrasonic flow meter system and method for measuring flow rate |
US20200174036A1 (en) * | 2017-03-10 | 2020-06-04 | Sagemcom Energy & Telecom Sas | Method for measuring a speed of a fluid |
US20200400471A1 (en) * | 2018-02-12 | 2020-12-24 | Ifm Electronic Gmbh | Method for operating a magnetoinductive flowmeter |
CN109856238A (zh) * | 2019-03-20 | 2019-06-07 | 北京航空航天大学 | 一种基于超声检测技术的锂离子电池气泡缺陷检测方法 |
CN111982247A (zh) * | 2020-08-13 | 2020-11-24 | 河南省计量科学研究院 | 基于改进型Hough变换算法实现水表检测的装置及方法 |
WO2022076920A1 (en) * | 2020-10-08 | 2022-04-14 | Essenlix Corporation | Assay error reduction |
CN114137250A (zh) * | 2021-12-02 | 2022-03-04 | 浙江大学 | 一种黏性流体气泡上升中速度和形变量的测量系统和方法 |
US20230215032A1 (en) * | 2022-01-04 | 2023-07-06 | TE Connectivity Services Gmbh | Bubble measurement system and method |
CN114235111A (zh) * | 2022-02-24 | 2022-03-25 | 青岛鼎信通讯股份有限公司 | 一种基于模型优化的超声波水表流量校准方法 |
CN114543949A (zh) * | 2022-02-24 | 2022-05-27 | 安徽汉威电子有限公司 | 一种超声波水表自适应计量方法 |
CN114397475A (zh) * | 2022-03-25 | 2022-04-26 | 青岛鼎信通讯股份有限公司 | 一种适用于超声波水表的水流流速测量方法 |
CN114509136A (zh) * | 2022-04-21 | 2022-05-17 | 青岛鼎信通讯股份有限公司 | 一种超声波水表换能器一致性测试方法及测试系统 |
CN114964429A (zh) * | 2022-05-27 | 2022-08-30 | 安徽领水科技有限公司 | 一种超声波水表检定方法 |
CN115265683A (zh) * | 2022-06-14 | 2022-11-01 | 北京控制工程研究所 | 提高时差超声波流量计气泡适应性的信号处理方法及系统 |
CN115984267A (zh) * | 2023-03-20 | 2023-04-18 | 青岛鼎信通讯科技有限公司 | 一种适用于超声水表的注塑气泡检测方法 |
CN116359344A (zh) * | 2023-04-19 | 2023-06-30 | 青岛鼎信通讯科技有限公司 | 一种用于检测超声水表表体注塑质量的方法及装置 |
CN116989857A (zh) * | 2023-06-09 | 2023-11-03 | 浙江大学 | 带气泡检测与流量修正的外夹式超声波流量计及测量方法 |
CN117029968A (zh) * | 2023-07-19 | 2023-11-10 | 国家石油天然气管网集团有限公司 | 一种流量数据的诊断方法、系统、存储介质和电子设备 |
Non-Patent Citations (7)
Title |
---|
吕几凡;程佳;李东升;吴焕芬;: "管道天然气超声流量计在线检验系统设计", 传感器与微系统, no. 08 * |
姚灵;: "超声水表零流量特性的检测与控制", 仪表技术, no. 09 * |
段世梅, 寿文德, 何培忠: "平面波超声功率测量的互易法与辐射力法实验比较研究", 声学技术, no. 04 * |
王月;周著黄;吴水才;: "基于超声回波去相关成像的微波消融实时监测", 北京生物医学工程, no. 06 * |
胡天浩;: "井下超声波流量计误差分析", 油气井测试, no. 01 * |
许四祥;高培青;马爱萍;: "复杂背景下镁熔液第一气泡图像检测方法研究", 武汉理工大学学报, no. 11 * |
陈果;何海峰;吴肖锋;涂斌;李顺;王昕;: "基于非局部均值-鲸鱼优化算法的套管引线超声波检测方法研究", 中国测试, no. 04 * |
Also Published As
Publication number | Publication date |
---|---|
CN117268512B (zh) | 2024-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110242589B (zh) | 一种离心泵性能曲线拟合修正方法 | |
CN114235111B (zh) | 一种基于模型优化的超声波水表流量校准方法 | |
CN116878599B (zh) | 一种超声水表的流量计量方法 | |
CN115824331A (zh) | 一种适用于超声水表的低功耗测量方法 | |
CN113483863B (zh) | 一种确定超声波燃气流量计微调系数的方法及系统 | |
CN113607245B (zh) | 一种用于超声波水表的自适应流量补偿方法 | |
CN116242443B (zh) | 一种超声波计量仪表的动态计量方法 | |
CN110346600A (zh) | 一种超声波风速风向测量方法 | |
CN115255074B (zh) | 一种核级合金钢弯头的成型控制方法及系统 | |
CN116147724B (zh) | 一种适用于超声水表的计量方法 | |
CN117268512B (zh) | 一种适用于超声水表的一致性优化方法 | |
CN117268483A (zh) | 一种适用于超声水表的瞬时流量计量方法 | |
CN117309076A (zh) | 一种用于超声波燃气表计量数据的增益智能调整控制方法 | |
CN115031798B (zh) | 一种基于非对称双声道布局消除渡越时间跳波影响的方法 | |
CN107976646B (zh) | 一种基于矢量网络分析仪的信号功率特性补偿方法和装置 | |
CN114136387B (zh) | 基于支持向量机模型svm算法的多声道超声流量计误差补偿方法 | |
CN112967825B (zh) | 一种基于修正信号不确定度分析的反应性测量方法 | |
CN112763023A (zh) | 基于优化数据模型的雷达物位计高精度测量输出处理方法 | |
CN117029975B (zh) | 一种超声波燃气表的多环境自适应方法 | |
CN112833999B (zh) | 一种超声水表的快速校表方法 | |
CN117367527B (zh) | 一种能提高超声水表可靠性的计量方法 | |
CN117057212B (zh) | 一种核动力装置动态温度场的声学重构方法 | |
CN113161029B (zh) | 一种基于采样信号变频分析的反应性测量方法 | |
CN115031797B (zh) | 采用双频双声道消除渡越时间跳波影响的方法 | |
CN114252708B (zh) | 一种精度可控的天线增益自动校准方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |