CN117265465A - 一种垃圾焚烧锅炉抗腐蚀合金涂层及其制备方法 - Google Patents

一种垃圾焚烧锅炉抗腐蚀合金涂层及其制备方法 Download PDF

Info

Publication number
CN117265465A
CN117265465A CN202311032629.XA CN202311032629A CN117265465A CN 117265465 A CN117265465 A CN 117265465A CN 202311032629 A CN202311032629 A CN 202311032629A CN 117265465 A CN117265465 A CN 117265465A
Authority
CN
China
Prior art keywords
alloy coating
corrosion
oxide film
incineration boiler
waste incineration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311032629.XA
Other languages
English (en)
Inventor
宋景慧
冯永新
陈刚
李德波
张宏亮
杨青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Southern Power Grid Power Technology Co Ltd
Original Assignee
China Southern Power Grid Power Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Southern Power Grid Power Technology Co Ltd filed Critical China Southern Power Grid Power Technology Co Ltd
Priority to CN202311032629.XA priority Critical patent/CN117265465A/zh
Publication of CN117265465A publication Critical patent/CN117265465A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明涉及防腐涂层技术领域,特别涉及一种垃圾焚烧锅炉抗腐蚀合金涂层及其制备方法。一种垃圾焚烧锅炉抗腐蚀合金涂层,包括:合金涂层和氧化膜;所述合金涂层包括:Ni、Cr、Mo,所述氧化膜包括:NiO、Cr2O3、MoO2和NiCr2O4;本方案中通过Ni、Cr、Mo元素作为合金涂层,并使得合金涂层上形成致密的NiO、Cr2O3、MoO2和NiCr2O4氧化膜,通过合金涂层和氧化膜共同形成垃圾焚烧锅炉抗腐蚀合金涂层,为金属的抗腐蚀效果提供双重防护,提高了金属涂层的抗腐蚀性能。

Description

一种垃圾焚烧锅炉抗腐蚀合金涂层及其制备方法
技术领域
本发明涉及防腐涂层技术领域,特别涉及一种垃圾焚烧锅炉抗腐蚀合金涂层及其制备方法。
背景技术
垃圾焚烧具有减量化效果显著,节省用地,还可消灭各种病原体,将有毒有害物质转化为无害物,是城市垃圾处理的主要方法之一。垃圾焚烧锅炉作为垃圾焚烧系统中的主要设备,其关键受热面易腐蚀的问题是困扰国内大多数垃圾焚烧厂的一大难题。垃圾焚烧系统中的关键受热面包括炉内的水冷壁、过热器、锅炉管束、省煤器、空预器及一些换热设备,这些换热设备中的管束都属于压力部件,因此,一旦发生金属腐蚀造成管壁减薄,就容易出现管子穿孔开裂,导致严重的污染物泄露问题。
通过对受损设备的研究发现,受热面的腐蚀问题一般与氯、硫、碱金属以及重金属等元素的存在有关,因此,目前为了提高垃圾焚烧锅炉的抗腐蚀性能,通常采用喷涂一定厚度的C22合金涂层达到抗腐蚀效果,但是仅通过该合金喷涂涂层抗腐蚀的效果有限,在涂层被破坏后,还会引起结渣、晶间腐蚀等现象,从而加剧垃圾焚烧锅炉的腐蚀,导致现有技术中的垃圾焚烧锅炉抗腐蚀效果较差。
发明内容
本发明提供了一种垃圾焚烧锅炉抗腐蚀合金涂层及其制备方法,用于提高垃圾焚烧锅炉合金涂层的抗腐蚀效果。
本发明一方面提供了一种垃圾焚烧锅炉抗腐蚀合金涂层,包括:合金涂层和氧化膜;
所述合金涂层包括:Ni、Cr、Mo;
所述氧化膜包括:NiO、Cr2O3、MoO2和NiCr2O4中的一种或多种。
优选地,所述氧化膜包括:外层、中间层、内层;
所述外层为NiO;
所述中间层为Cr2O3和NiCr2O4
所述内层为MoO2
优选地,所述合金涂层中,所述Cr的含量是所述Mo的2倍以上,所述Ni含量是所述Cr的2倍以上;
所述Cr的重量百分含量大于20%;
所述Mo重量百分含量为8%-10%。
具体的,本发明的合金涂层中的主要合金元素是Ni(镍)和Cr(铬),这两种金属具有优良的耐蚀性能。其中,Ni可以赋予合金完全的奥氏体组织,改善其耐氯化物应力腐蚀能力,增加热稳定性和加工性能;Cr能赋予合金耐氧化性介质腐蚀的能力,增加耐局部腐蚀的能力。不锈钢的实验研究证明,含Cr量大于13%时才能起到抗蚀作用,Cr含量越高耐蚀性越好,但在本发明中Cr元素的作用主要是生成致密的Cr2O3氧化物保护膜,从而进一步提高合金涂层的抗腐蚀性能。
本发明的合金涂层中添加Mo(钼)元素是为了增强合金表面钝化膜的稳定性,延长了点蚀可能发生的孕育期,并且与介质中的Cl(氯)离子结合形成一层不溶性的氯化物盐膜覆盖在材料表面,从而抑制点蚀的产生和发展,进一步增加合金耐局部腐蚀和耐氯化物应力腐蚀能力,且起到固溶强化的作用。虽在合金涂层中添加Mo可促使合金涂层在还原性介质中的钝化能力增强,但如果Mo含量过高,会造成较多的σ相析出,σ相与奥氏体的界面是点蚀产生的重要位置,会造成合金耐点蚀的能力下降。
本发明采用复合氧化膜提高了氧化膜的稳定性,增加了抗腐蚀效果,避免了单独的氧化膜抗腐蚀性能较差的问题,如单一的Cr2O3氧化膜,其性能不稳定。
优选地,Cr含量为20~30%、Mo的含量为13%。
更优选地,Cr含量为26%,Mo的含量为13%。本发明中的合金涂层选取Cr含量为26%的粉末,细化晶粒晶界多,组织的性质较为稳定。
优选地,所述合金涂层还包括:Fe、W、Co、Mn、V、Si。
具体的,本发明中添加W(钨)、Co(钴)具有固溶强化作用,能提高合金抗局部腐蚀的能力;添加Fe能增加镍基合金耐氧化性腐蚀介质的能力,取代部分镍,降低成本,但是镍基合金中含铁量对其耐蚀性也有重要影响,随着含铁量的增加,腐蚀率上升,因此,Fe含量优选重量百分含量为3%;添加稀土元素或具有耐蚀作用的贵金属元素,能使材料的腐蚀电流减小,使腐蚀电位正移,提高了涂层的耐腐蚀性能。本发明中的稀土元素可选自Si(硅)、Ti(钛)、Zr(锆)、Ta(钽)等。
另外由于铜元素是改善合金在海水等还原性介质中的耐蚀性能,所以本发明方案中没有添加铜元素。
优选地,所述Fe重量百分含量为2.5-3.5%;
所述W重量百分含量为2.5-3.5%;
所述Co重量百分含量为2-3%;
所述Mn重量百分含量为0.1-1%;
所述V重量百分含量为0.1-0.5%;
所述Si重量百分含量为0.01-0.1%。
更优选地,所述Fe重量百分含量为3%;
所述W重量百分含量为3%;
所述Co重量百分含量为2.5%;
所述Mn重量百分含量为0.5%;
所述V重量百分含量为0.35%;
所述Si重量百分含量为0.08%。
本发明另一方面提供了一种垃圾焚烧锅炉抗腐蚀合金涂层的制备方法,包括以下步骤:
在氧化气氛中,将合金涂层的外表面置于熔融盐中,进行加热熔融腐蚀,使得所述合金涂层的外表面形成氧化膜。
具体的,所述氧化气氛为氧气气氛或含有氧气的气氛。
优选地,将合金涂层的外表面置于熔融盐中之前,还包括:将金属Ni、Cr、Mo进行混合,得到Ni-Cr-Mo合金粉末;然后将所述Ni-Cr-Mo合金粉末喷涂于垃圾焚烧锅炉的受热面形成合金涂层。
优选地,所述熔融盐选自KCl、CaCl2、NaCl、MgCl2中的一种。
优选地,所述喷涂的方式为热喷涂或等离子喷涂。
优选地,所述氧化膜的厚度为10-9m~10-10m。
具体的,本发明的氧化膜的厚度为10-9m~10-10m,其厚度在纳米级,无法通过热喷涂技术或等离子喷涂技术获得(热喷涂或等离子喷涂的厚度在毫米级),因此,为了在Ni-Cr-Mo合金涂层上形成抗氧化性能良好的薄膜,本申请采用高温熔盐氧化的方式,形成复合氧化膜,这种方式虽然耗时较长,但对于耐腐蚀要求高的零部件,有必要采用这种工艺进一步提高耐腐蚀性。
优选地,所述合金涂层的厚度大于3mm。
优选地,所述加热的温度为700~900℃,所述加热时长为50~350h。
更为优选地,所述加热的温度为900℃,所述加热时长为50h。
从以上技术方案可以看出,本发明具有以下优点:
本发明提供了一种垃圾焚烧锅炉抗腐蚀合金涂层,包括:合金涂层和氧化膜;所述合金涂层包括:Ni、Cr、Mo;所述氧化膜包括:NiO、Cr2O3、MoO2和NiCr2O4。本方案中通过Ni、Cr、Mo元素作为合金涂层,并使得合金涂层上形成致密的NiO、Cr2O3、MoO2和NiCr2O4氧化膜,通过合金涂层和氧化膜共同形成垃圾焚烧锅炉抗腐蚀合金涂层,为金属的抗腐蚀效果提供双重防护,提高了垃圾焚烧锅炉抗腐蚀合金涂层的抗腐蚀性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例6提供的一种垃圾焚烧锅炉抗腐蚀合金涂层的层状结构图;
图2为本发明实施例1~5中制备的合金涂层的腐蚀速率变化曲线;
图3为本发明实施例6~9提供的合金涂层试样在融盐中腐蚀速率曲线图;
图4为本发明实施例6~9提供的合金涂层试样的氧化膜检测结果图。
具体实施方式
损坏的垃圾焚烧设备表面通常覆盖着厚厚的沉积层,通过对受损设备研究发现,在金属/氧化膜界面上观察到一层浓缩氯化物FeCl2,检测到了Cl富集的现象,而且在氯化物析出物的上方,氧化膜变得疏松多孔,已经无法作为抵御腐蚀的保护层,说明无论是HCl或Cl2高温气体下的腐蚀还是氯化物盐类涂抹在金属表面的腐蚀,最终都会观察到氧化膜疏松、多孔、与金属基体分离的失效形态。这也表明现有技术中采用喷涂一定厚度的合金涂层以达到抗腐蚀效果其抗腐蚀的效果有限,且在涂层被破坏后,还会引起更严重的垃圾焚烧锅炉的腐蚀问题。
有鉴于此,本发明提供了一种垃圾焚烧锅炉抗腐蚀合金涂层及其制备方法,通过双重保护提高垃圾焚烧锅炉抗腐蚀合金涂层的抗腐蚀性能,解决现有技术中抗腐蚀合金涂层抗腐蚀效果差的问题。
下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
其中,以下实施例所用原料或试剂均为市售或自制。
实施例1
本实施提供了第一种合金涂层,该涂层制备方法如下:
采用Ni-Cr-Mo合金粉末通过热喷涂或等离子喷涂方式形成合金涂层,其中,涂层厚度在3mm以上,Ni-Cr-Mo粉末的粒度在140目-300目。Ni-Cr-Mo合金粉末中各组分质量百分含量如表1所示。
本实施例制备的合金涂层具有良好的耐腐蚀性能,且能通过对合金涂层的表面进一步处理,形成多种氧化膜,从而进一步提高抗腐蚀性能。
实施例2
本实施提供了第二种合金涂层,该涂层制备方法与实施例1相同,区别在于合金中Cr元素用量为24%。具体组分成分如表1所示。
实施例3
本实施提供了第三种合金涂层,该涂层制备方法与实施例1相同,区别在于合金中Cr元素用量为26%,具体组分成分如表1所示。
实施例4
本实施提供了第四种合金涂层,该涂层制备方法与实施例1相同,区别在于合金中Cr元素用量为28%,具体组分成分如表1所示。
实施例5
本实施提供了第五种合金涂层,该涂层制备方法与实施例1相同,区别在于合金中Cr元素用量为30%,具体组分成分如表1所示。
表1.实施例1~5中Ni-Cr-Mo合金粉末组成成分表
测试例1
本实施例对实施例1~5制备的合金涂层进行耐腐蚀检测,检测结果如图2所示。
随着Cr含量的增加,Ni-Cr-Mo合金涂层耐腐蚀熔覆层的腐蚀速率和极化电位均成类抛物线分布,并且在Cr含量为26%时达到最优值,说明采用Cr含量为26%时耐腐蚀性能最佳。
实施例6
本实施例提供了第一种垃圾焚烧锅炉抗腐蚀合金涂层,通过对实施例1制备的Ni-Cr-Mo合金涂层的表层进行熔融腐蚀处理,使得Ni-Cr-Mo合金涂层的表层进一步形成第二重抗腐蚀防护——氧化膜。
本实施例选用KCl高温熔盐制备氧化膜,具体制备步骤如下:
(1)选取15mm×15mm×1.5mm的试片,试片上涂覆有5mm的Ni-Cr-Mo合金涂层,该Ni-Cr-Mo合金涂层的制备方法与实施例1相同。
(2)用镍丝将试片固定悬挂在石墨坩埚中,然后加入160g共晶盐,之后,将密封的反应坩埚置于马弗炉内,在900℃下保温腐蚀50小时,形成抗腐蚀合金涂层氧化膜,得到垃圾焚烧锅炉抗腐蚀合金涂层。
需要说明的是,在700℃下保温腐蚀350小时也能形成同样的氧化膜,但是耗时长,能耗大,不利于工业生产。
经检测发现,本实施例制备的垃圾焚烧锅炉抗腐蚀合金涂层的层状结构图如图1所示,垃圾焚烧锅炉抗腐蚀合金涂层的氧化膜1的最外层11形成了NiO氧化膜,中间层12形成了NiCr2O4和Cr2O3氧化膜,最内层13形成了MoO2氧化膜,并与合金涂层2紧密连接。本实施制备的垃圾焚烧锅炉抗腐蚀合金涂层通过三层氧化膜有效地减慢在腐蚀环境中垃圾焚烧锅炉被进一步氧化的速度,且这种多层分布的氧化膜进一步保证了氧化膜整体的完整性,能够起到良好的抗氧化效果。
本实施例制备的NiO、Cr2O3、MoO2、NiCr2O4复合氧化膜具有良好的保护性,氧化膜完整、较为致密,与合金涂层间无明显界面,覆盖在合金涂层表面而保护基体金属避免进一步的氧化。
本实施中氧化膜形成的原理如下:
熔融腐蚀时外层会先形成了NiO,然后在NiO生长过程中,Cr2O3和MoO2也迅速形成,这是因为Ni向外迅速扩散引起它附近Cr和Mo含量的升高,也促进了Cr2O3和MoO2的生成,故在KCl熔融盐中腐蚀的初期,氧化膜的成分是以NiO为主,Cr2O3和MoO2并存的混合氧化膜,其中Cr2O3的抗氧化性能最佳,而NiO不具有抗氧化特性,保护性较差。因此,随着氧化的继续进行,氧逐渐穿过NiO层向化合物内部扩散,使得上述氧化物不断增多,氧化层逐渐覆盖整个合金涂层表面,并且在本实施例的熔融腐蚀过程中,氧化膜表面会存在一定的瘤化氧化物,这些氧化物颗粒主要由尖晶石组成,氧化颗粒大小不均匀,但分布较为规则。这些尖晶石是随着氧化时间延长,NiO与Cr2O3颗粒间发生固相反应:NiO+Cr2O3→NiCr2O4,在中间层生成的NiCr2O4复合氧化物,这种具有尖晶石结构的复合氧化物和外氧化层可以阻止多种金属元素向外扩散的速率以及O向内的扩散速率,使氧化速度减慢,在氧化动力学曲线表现为氧化增重缓慢增长直至趋于稳定,由此得到最外层为NiO,中间层为NiCr2O4和Cr2O3,最内层为MoO2的氧化膜。
实施例7
本实施例提供了第二种垃圾焚烧锅炉抗腐蚀合金涂层,本实施的制备步骤与实施例6相同,区别在于本实施例采用CaCl2熔盐腐蚀合金涂层形成氧化膜。
经检测发现,本实施例制备的垃圾焚烧锅炉抗腐蚀合金涂层的氧化膜主要为Cr2O3和NiCr2O4,合金涂层在腐蚀试剂完全熔化时腐蚀失重量很小,与氧气在高温液体中的溶解度大大降低,从而抑制了活性氧化,所以二者的腐蚀产物还相应地生成Ni1.12Cr2.88
实施例8
本实施例提供了第三种垃圾焚烧锅炉抗腐蚀合金涂层,本实施的制备步骤与实施例2相同,区别在于本实施例采用NaCl熔盐腐蚀合金涂层形成氧化膜。
NaCl熔盐腐蚀合金涂层形成的合金层氧化膜与CaCl2熔盐类似,从衍射峰发现在CaCl2熔盐中腐蚀的产物除了大部分Cr2O3,还有NiCr2O4
实施例9
本实施例提供了第四种垃圾焚烧锅炉抗腐蚀合金涂层,本实施的制备步骤与实施例2相同,区别在于本实施例采用MgCl2熔盐腐蚀合金涂层形成氧化膜。
采用MgCl2熔盐腐蚀合金涂层时,试样在MgCl2熔盐中腐蚀产物中没有检测到Cr2O3存在,这可能是由于Cr2O3在被测样本上没有出现,或者是因为本实施例制备的氧化膜较为稀疏,且有气孔,与盐层在水浴过程中易被冲洗掉。
测试例2
对上述实施例条件下制备的氧化膜成分及性能进行检测如下:
(1)腐蚀速率检测:
上述实施例6~9采用熔融盐腐蚀合金涂层制备氧化膜时,所采用的熔融盐分别为KCl、CaCl2、NaCl、MgCl2,通过试验检测发现实施例6~9的反应腐蚀速率不同,具体如图3所示。从图3可知,试样在熔融盐KCl、CaCl2、NaCl、MgCl2中的腐蚀速率不同,其中CaCl2和MgCl2的腐蚀速度最快KCl和NaCl熔盐的腐蚀速率更慢,更适合制备。
(2)氧化膜成分检测
由于15mm×15mm×1.5mm的试片上形成的膜无法检测,本发明通过在400~900℃梯度升温测试,对Ni-Cr-Mo合金涂层分别KCl、CaCl2、NaCl、MgCl2熔融盐腐蚀合金涂层所制备氧化膜的成分进行所述温度下的XRD检测,得到各实施例的氧化膜成分检测结果如表2所示。
表2.实施例6~9熔融盐腐蚀合金涂层所制备氧化膜的成分
实施例 所采用的熔盐 氧化膜成分
6 KCl NiO、Cr2O3、MoO2、NiCr2O4
7 CaCl2 NiCr2O4、Cr2O3、Ni1.12Cr2.88
8 NaCl Cr2O3、NiCr2O4
9 MgCl2 MgCr2O4、NiCr2O4
从表2可知,试样在熔融盐KCl、CaCl2、NaCl、MgCl2中产生的氧化膜成分不同,其中,在KCl熔盐中产生的氧化膜种类最多,也更密集,抗腐蚀性能最好。
通过在900℃条件下测试,对Ni-Cr-Mo合金涂层分别KCl、CaCl2、NaCl、MgCl2熔融盐腐蚀合金涂层所制备氧化膜的成分进行XRD检测,得到各实施例的氧化膜成分检测结果如图4所示。从图4可知,对于不同熔融盐生产的氧化膜,KCl氧化膜较为致密,而NaCl、MgCl2氧化膜较为稀疏,且有气孔现象,其中,实施例6使用KCl熔融盐制备的氧化膜较为致密,抗腐蚀性能最好。
需要说明的是,图4中使用KCl熔融盐测试的结果没有MoO2,是因为MoO2在900℃条件溶解了,故900℃下,没有检测到MoO2。但在实际制备氧化膜时,整个熔融腐蚀会先从较低的温度(常温)升温到900℃,因此,在升温过程中内部会先生成MoO2,而后表面慢慢生成NiO、Cr2O3、NiCr2O4氧化膜后,表面的MoO2虽然溶解了,但内部的MoO2氧化膜会受到外部NiO、Cr2O3、NiCr2O4氧化膜保护,所以不会影响内部的MoO2氧化膜。
以上对本发明所提供的一种垃圾焚烧锅炉抗腐蚀合金涂层及其制备方法进行了详细介绍,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种垃圾焚烧锅炉抗腐蚀合金涂层,其特征在于,包括:合金涂层和氧化膜;
所述合金涂层包括:Ni、Cr、Mo;
所述氧化膜包括:NiO、Cr2O3、MoO2和NiCr2O4中的一种或多种。
2.根据权利要求1所述的垃圾焚烧锅炉抗腐蚀合金涂层,其特征在于,所述氧化膜分为:外层、中间层、内层;
所述外层为NiO;
所述中间层为Cr2O3和NiCr2O4
所述内层为MoO2
3.根据权利要求1所述的垃圾焚烧锅炉抗腐蚀合金涂层,其特征在于,所述合金涂层中,所述Cr的重量百分含量大于20%;
所述Mo重量百分含量为8%-10%,
所述Cr的含量是所述Mo的2倍以上;
所述Ni含量是所述Cr的2倍以上。
4.根据权利要求1所述的垃圾焚烧锅炉抗腐蚀合金涂层,其特征在于,所述合金涂层还包括:Fe、W、Co、Mn、V、Si。
5.根据权利要求4所述的垃圾焚烧锅炉抗腐蚀合金涂层,其特征在于,所述Fe重量百分含量为2.5-3.5%;
所述W重量百分含量为2.5-3.5%;
所述Co重量百分含量为2-3%;
所述Mn重量百分含量为0.1-1%;
所述V重量百分含量为0.1-0.5%;
所述Si重量百分含量为0.01-0.1%。
6.一种权利要求1至5任意一项所述的垃圾焚烧锅炉抗腐蚀合金涂层的制备方法,其特征在于,包括以下步骤:
在氧化气氛中,将合金涂层的外表面置于熔融盐中,进行加热熔融腐蚀,使得所述合金涂层的外表面形成氧化膜。
7.根据权利要求6所述的制备方法,其特征在于,所述熔融盐选自KCl、CaCl2、NaCl、MgCl2中的一种。
8.根据权利要求6所述的制备方法,其特征在于,所述氧化膜的厚度为10-9m~10-10m。
9.根据权利要求6所述的制备方法,其特征在于,所述合金涂层的厚度大于3mm。
10.根据权利要求6所述的制备方法,其特征在于,所述加热的温度为700~900℃,所述加热时长为50~350h。
CN202311032629.XA 2023-08-15 2023-08-15 一种垃圾焚烧锅炉抗腐蚀合金涂层及其制备方法 Pending CN117265465A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311032629.XA CN117265465A (zh) 2023-08-15 2023-08-15 一种垃圾焚烧锅炉抗腐蚀合金涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311032629.XA CN117265465A (zh) 2023-08-15 2023-08-15 一种垃圾焚烧锅炉抗腐蚀合金涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN117265465A true CN117265465A (zh) 2023-12-22

Family

ID=89199821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311032629.XA Pending CN117265465A (zh) 2023-08-15 2023-08-15 一种垃圾焚烧锅炉抗腐蚀合金涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN117265465A (zh)

Similar Documents

Publication Publication Date Title
Ramkumar et al. Investigations on the microstructure, tensile strength and high temperature corrosion behaviour of Inconel 625 and Inconel 718 dissimilar joints
Zhao et al. Research and improvement on structure stability and corrosion resistance of nickel-base superalloy INCONEL alloy 740
Gurrappa Hot corrosion behavior of CM 247 LC alloy in Na2SO4 and NaCl environments
Zhao et al. The corrosion of INCONEL alloy 740 in simulated environments for pulverized coal-fired boiler
CA1090168A (en) Oxidation resistant cobalt base alloy
US8197748B2 (en) Corrosion resistant structural alloy for electrolytic reduction equipment for spent nuclear fuel
Sequeira et al. On the performance of commercially available corrosion-resistant nickel alloys: a review
Yang et al. Oxidation behavior of a nanocrystalline coating with low Ta content at high temperature
Zhang et al. Hot corrosion of an electrodeposited Ni-11 wt% Cr nanocomposite under molten Na2SO4–K2SO4–NaCl
LI et al. Hot corrosion behavior of Ni–16Cr–xAl based alloys in mixture of Na2SO4–NaCl at 600° C
Solecka et al. The microstructure of weld overlay Ni-base alloy deposited on carbon steel by CMT method
GB1567524A (en) High-endurance alloys
Zhang et al. Hot corrosion characteristics of Ni–20Cr–18W superalloy in molten salt
Targhi et al. Microstructure and hot corrosion behavior of hot dip siliconized coating on Ni-base superalloy IN738LC
Liu et al. Influence of pre-oxidation on the hot corrosion of M38G superalloy in the mixture of Na2SO4–NaCl melts
Wang et al. Corrosion characteristics of Inconel 625 cladding layer and NiCrMoAl cladding layer in molten NaCl-KCl and NaCl-KCl-Na2SO4
KR100334253B1 (ko) 고온 용융염에서 내부식성이 우수한 합금강
US7951466B2 (en) Titanium alloys excellent in hydrogen absorption-resistance
CN117265465A (zh) 一种垃圾焚烧锅炉抗腐蚀合金涂层及其制备方法
Mudali Materials for hostile corrosive environments
Zhao et al. Thermal stability study on a new Ni-Cr-Co-Mo-Nb-Ti-Al superalloy
Lu et al. Simulated fireside corrosion behavior of a wrought Ni-Fe-based superalloy for 700° C-class ultra-supercritical power plant applications
EP4092309A1 (en) Pipe and manufacturing method therefor
JP2643709B2 (ja) ボイラ伝熱管用高耐食合金
Hashimoto et al. Extremely corrosion-resistant bulk amorphous alloys

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination