CN117237546B - 一种基于光场成像的增材构件三维轮廓重建方法及系统 - Google Patents

一种基于光场成像的增材构件三维轮廓重建方法及系统 Download PDF

Info

Publication number
CN117237546B
CN117237546B CN202311510142.8A CN202311510142A CN117237546B CN 117237546 B CN117237546 B CN 117237546B CN 202311510142 A CN202311510142 A CN 202311510142A CN 117237546 B CN117237546 B CN 117237546B
Authority
CN
China
Prior art keywords
light field
dimensional
epi
training
parallax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311510142.8A
Other languages
English (en)
Other versions
CN117237546A (zh
Inventor
李辉
李秀花
申胜男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202311510142.8A priority Critical patent/CN117237546B/zh
Publication of CN117237546A publication Critical patent/CN117237546A/zh
Application granted granted Critical
Publication of CN117237546B publication Critical patent/CN117237546B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明提供一种基于光场成像的增材构件三维轮廓重建方法及系统,属于图像重构技术领域,包括:构建EPI‑UNet网络框架,利用预设光场数据集构建训练集,从预设光场数据集对应的视差图获取学习标签,采用训练集和学习标签训练EPI‑UNet网络框架,得到预测视差向量模型;利用光场相机采集待测目标的增材表面光场信息,由增材表面光场信息得到场景二维视差图;基于光场相机等效标定参数集合,确定视差与深度的几何光路关系,获得待测目标三维坐标信息;对待测目标三维坐标信息进行视差映射,得到待测目标三维轮廓信息。本发明通过将光场多目视觉应用于增材制造过程,结合光场丰富空间域视角信息,为增材制造监测提供有利的质量保证。

Description

一种基于光场成像的增材构件三维轮廓重建方法及系统
技术领域
本发明涉及图像重构技术领域,尤其涉及一种基于光场成像的增材构件三维轮廓重建方法及系统。
背景技术
在金属增材制造过程中,如铺粉厚度、加工工件表面轮廓一些关键的过程变量可以表示零件的质量。对于关键变量的快速监测是解决冶金缺陷和形性调控的主流方法,目前主流方法通过高速相机、双目相机等监测设备在线监测制造过程的关键变量,然后将获取的在线监测信息经过图像和信号处理、人工智能等方式进行快速实时处理,从而监测增材过程中特征信息。高速相机虽然可快速获取增材制造过程中视觉信息,然而缺乏角度信息,无法通过单次曝光重构铺粉粉层、加工表面轮廓;双目相机可得到增材制造过程中两个视角信息,通过三维重构算法可得到铺粉粉层、加工表面形貌,然而该方法需要预先复杂标定流程,一旦相机位置改变,需要重新标定,限制增材制造监测实时性要求。当前通过人工智能方法为增材制造过程中铺粉粉层、加工表面形貌重构提供新的思路,然而该算法需要大量训练数据集与复杂人工标记过程,进一步制约人工智能在增材制造三维轮廓重构、监测的应用。因此,开发多目视觉与人工智能结合的增材制造过程铺粉粉层面轮廓、加工工件表面快速三维轮廓重构方法具有重要意义。
而目前多目视觉的监测仅限于双目视觉传统立体匹配算法,基于多目视觉人工智能方法对于增材制造过程的监测尚未得到开发,因此进一步研究基于光场多目视觉人工智能算法对于金属增材制造过程中铺粉粉层面、加工工件三维轮廓重构具有重要的价值。
发明内容
本发明提供一种基于光场成像的增材构件三维轮廓重建方法及系统,用以解决现有技术中针对金属增材外形轮廓重构局限于传统的双目视觉立体匹配方法,受限于标定流程和位置信息的缺陷。
第一方面,本发明提供一种基于光场成像的增材构件三维轮廓重建方法,包括:
对光场相机进行标定,确定光场相机等效标定参数集合;
构建极平面图像EPI-UNet网络框架,利用预设光场数据集构建训练集,从所述预设光场数据集对应的视差图获取学习标签,采用所述训练集和所述学习标签训练所述EPI-UNet网络框架,得到预测视差向量模型;
利用所述光场相机采集待测目标的增材表面光场信息,由所述增材表面光场信息输入所述预测视差向量模型得到场景二维视差图;
基于所述光场相机等效标定参数集合,确定视差与深度的几何光路关系,获得待测目标三维坐标信息;
对所述待测目标三维坐标信息进行视差映射,得到待测目标三维轮廓信息。
根据本发明提供的一种基于光场成像的增材构件三维轮廓重建方法,对光场相机进行标定,确定光场相机等效标定参数集合,包括:
所述光场相机拍摄不同视角标准圆形标定板,提取每个视角的光场中心子孔径图像;
由所述光场中心子孔径图像获取等效相机阵列的有效焦距和像素值。
根据本发明提供的一种基于光场成像的增材构件三维轮廓重建方法,构建极平面图像EPI-UNet网络框架,包括:
确定所述EPI-UNet网络框架包括依次连接的轮廓特征提取子网络、局部特征提取子网络和细节特征提取子网络;
所述轮廓特征提取子网络由5×5×32卷积核、残差模块、5×5×64卷积核、残差模块和5×5×64卷积核构成;
所述局部特征提取子网络由3×3×32卷积核、残差模块、3×3×64卷积核、残差模块和3×3×64卷积核构成;
所述细节特征提取子网络由2×2×32卷积核、2×2×16卷积核和2×2×1卷积核构成。
根据本发明提供的一种基于光场成像的增材构件三维轮廓重建方法,利用预设光场数据集构建训练集,从所述预设光场数据集对应的视差图获取学习标签,包括:
从所述预设光场数据集中提取多个子视角图像,对所述多个子视角图像进行堆叠,形成四维光场体;
分别从横向和纵向剪切所述四维光场体,并通过灰度化以及限制对比度直方图均衡化剪切后的四维光场体得到LF-EPI;
根据预设比例划分所述预设光场数据集中的多个LF-EPI为训练集和测试集;
从所述预设光场数据集对应的真实视差图中提取向量作为所述学习标签。
根据本发明提供的一种基于光场成像的增材构件三维轮廓重建方法,采用所述训练集和所述学习标签训练所述EPI-UNet网络框架,得到预测视差向量模型,包括:
将所述训练集输入所述EPI-UNet网络框架,得到预测视差向量;
由预设损失函数计算所述预测视差向量和所述学习标签的差异值;
对所述差异值进行反向传播,待完成一个训练周期之后,将所述测试集输入训练好的EPI-UNet网络框架进行精度测试;
重复调节所述EPI-UNet网络框架的超参数进行迭代训练,直至所述预设损失函数小于损失阈值,或训练迭代次数达到训练次数阈值,停止训练,输出所述预测视差向量模型。
根据本发明提供的一种基于光场成像的增材构件三维轮廓重建方法,利用所述光场相机采集待测目标的增材表面光场信息,由所述增材表面光场信息得到场景二维视差图,包括:
对所述增材表面光场信息进行剪切得到LF-EPI,将LF-EPI输入所述预测视差向量模型获得多个一维视差向量;
根据横向视角数量、纵向视角数量、每个视角图像的高度方向像素数和每个视角图像的宽度方向像素数,在LF-EPI上建立横向-宽度以及纵向-高度坐标系,由所述横向-宽度以及纵向-高度坐标系计算得到LF-EPI的纹理斜率倒数;
将所述多个一维视差向量依次进行拼接,结合所述纹理斜率倒数,得到所述场景二维视差图。
根据本发明提供的一种基于光场成像的增材构件三维轮廓重建方法,基于所述光场相机等效标定参数集合,确定视差与深度的几何光路关系,获得待测目标三维坐标信息,包括:
以所述待测目标上任一点P,经过任意两个相邻视角相机的主透镜平面成像至传感器平面,成像点分别为p ip i+1
连接Pp i以及Pp i+1,与所述传感器平面关于主透镜平面的对称面相交于p i'和p i+1',得到;
(1)
其中,表示所述待测目标的物面与主透镜平面的距离,即深度,/>表示任意两个相邻视角相机的中心距离,/>和/>分别表示任意两个相邻视角相机的中心线与相交线的距离;
设视差Δx'=|x 1-x 2|,则:
(2)
设相机焦距为F,根据高斯成像公式1/b+1/z'=1/F,代入式(2)得到:
(3)
z'-»∞,Δx'-»0,对于传感器平面共轭的聚焦物面1/b 0+1/z 0=1/F
(4)
其中,b 0为主透镜平面至传感器平面的距离;
设主透镜通光孔径为D,光场视角数为N×N,则每个视角间距为D/N,根据几何关系得到:
(5)
根据1/l+1/z 0=1/Fz 0l共轭物面,|p i+1-p i|包含光轴距离导致传感器中心的偏移Δx 0,得到光场视差:
(6)。
根据本发明提供的一种基于光场成像的增材构件三维轮廓重建方法,对所述待测目标三维坐标信息进行视差映射,得到待测目标三维轮廓信息,包括:
基于所述待测目标上任一点P确定像素坐标系(Xp, Yp),图像坐标系(XI, YI),其中图像坐标系的坐标轴与像素坐标系的坐标轴平行;
以相机光轴上的坐标原点确定相机坐标系(Xc, Yc, Z)和世界坐标系(Xw, Yw,Z),相机坐标系和世界坐标系在Z方向投影坐标轴均平行于图像坐标系,由,根据相似原理:
(7)
其中,(x Io,y Io)为图像坐标系原点,任意像素在图像坐标系与像素坐标系中的映射关系为:
(8)
其中,(x po,y po)像素坐标系原点,dx,dy为单个像素在x,y方向物理尺寸,将式(7)和式(8)结合得到待测目标三维轮廓信息:
(9)。
第二方面,本发明还提供一种基于光场成像的增材构件三维轮廓重建系统,包括:
标定模块,用于对光场相机进行标定,确定光场相机等效标定参数集合;
训练模块,用于构建极平面图像EPI-UNet网络框架,利用预设光场数据集构建训练集,从所述预设光场数据集对应的视差图获取学习标签,采用所述训练集和所述学习标签训练所述EPI-UNet网络框架,得到预测视差向量模型;
视差模块,用于利用所述光场相机采集待测目标的增材表面光场信息,由所述增材表面光场信息输入所述预测视差向量模型得到场景二维视差图;
深度模块,用于基于所述光场相机等效标定参数集合,确定视差与深度的几何光路关系,获得待测目标三维坐标信息;
映射模块,用于对所述待测目标三维坐标信息进行视差映射,得到待测目标三维轮廓信息。
第三方面,本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述基于光场成像的增材构件三维轮廓重建方法。
本发明提供的基于光场成像的增材构件三维轮廓重建方法及系统,通过将光场多目视觉应用于增材制造过程,结合光场丰富空间域视角信息,为增材制造监测提供有利的质量保证。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的基于光场成像的增材构件三维轮廓重建方法的流程示意图之一;
图2是本发明提供的基于光场成像的增材构件三维轮廓重建方法的流程示意图之二;
图3是本发明提供的EPI提取流程图;
图4是本发明提供的EPI-UNet网络工作原理图;
图5是本发明提供的相邻两个视角相机成像光路图;
图6是本发明提供的视差与深度映射原理图;
图7是本发明提供的三维轮廓提取原理图;
图8是本发明提供的基于光场成像的增材构件三维轮廓重建系统的结构示意图;
图9是本发明提供的电子设备的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
针对现有技术存在的缺陷,本发明为简化增材制造过程铺粉粉层面、加工表面三维轮廓重构流程,快速得到轮廓表面三维坐标,提出一种基于光场成像的增材构件三维轮廓重建方法。
图1是本发明实施例提供的基于光场成像的增材构件三维轮廓重建方法的流程示意图之一,如图1所示,包括:
步骤100:对光场相机进行标定,确定光场相机等效标定参数集合;
步骤200:构建极平面图像EPI-UNet网络框架,利用预设光场数据集构建训练集,从所述预设光场数据集对应的视差图获取学习标签,采用所述训练集和所述学习标签训练所述EPI-UNet网络框架,得到预测视差向量模型;
步骤300:利用所述光场相机采集待测目标的增材表面光场信息,由所述增材表面光场信息输入所述预测视差向量模型得到场景二维视差图;
步骤400:基于所述光场相机等效标定参数集合,确定视差与深度的几何光路关系,获得待测目标三维坐标信息;
步骤500:对所述待测目标三维坐标信息进行视差映射,得到待测目标三维轮廓信息。
具体地,本发明实施例首先将对相机进行标定获取光场相机等效内参,以HCI光场数据集按照顺序堆叠为立体光场,对立体光场进行剪切获取极平面图像(Epipolar PlaneImage,EPI)作为训练集,从对应的视差图中提取学习标签。对EPI通过限制对比度直方图特征增强算法增强训纹理信息。采用EPI-UNet网络框架,设计其左侧卷积核为5×5,用于提取待测物体整体轮廓信息,右侧为3×3卷积核提取局部细节信息,输出采用2×2卷积核进一步提取纹理信息,同时,在每层卷积核后加入残差模块,该模块通过联合前文信息可更精确提取EPI图像纹理特征。根据标定参数,通过视差与深度几何光路关系,得到待测目标三维坐标信息。最后,将增材制造监测得到的光场图像输入训练好的网络,进行视差映射,最终得到待测目标真实三维轮廓信息。
如图2所示,首先对光场相机进行有效像素的标定,标定的方法为:通过光场相机拍摄不同视角标准圆形标定板,提取每个视角的光场的中心子孔径图像,获取等效相机阵列的有效焦距和像素值。然后,从增材制造构件光场图像提取子视角图像依次进行堆叠,然后进行横向(x-y)剪切与纵向(y-z)剪切得到的光场极平面图像(Light Field- EpipolarPlane Image,LF-EPI)用于训练。在本发明实施例中,一个光场场景在没有任何数据集扩充技巧下可得到训练图像数目为N=u×s+v×t(u、v分别为横、纵向视角数量;s、t分别为每个视角图像的高度和宽度方向的像素数)。将LF-EPI输入EPI-UNet网络得到视差图。根据光场成像光路视差、深度图、三维轮廓几何关系,提取场景表面三维信息。将像素坐标系映射至世界坐标系,最终可得到场景三维形貌信息。
本发明能够快速地重构金属增材制造中铺粉粉层面、加工工件形貌特征,为后续加工工件质量监测提供可视化与定量化的评判,有助于改善工件质量。
基于上述实施例,对光场相机进行标定,确定光场相机等效标定参数集合,包括:
所述光场相机拍摄不同视角标准圆形标定板,提取每个视角的光场中心子孔径图像;
由所述光场中心子孔径图像获取等效相机阵列的有效焦距和像素值。
具体地,由于光场相机具有单次成像便可获取多个视角图像优势,可等效为多个相机阵列获取的多视角图像,通过相机标定可获取等效的焦距与像素值。
如图2所示,本发明实施例中,通过光场相机拍摄不同视角标准圆形标定板,提取每个视角的光场的中心子孔径图像,获取等效相机阵列的有效焦距和像素值。
基于上述实施例,利用预设光场数据集构建训练集,从所述预设光场数据集对应的视差图获取学习标签,包括:
从所述预设光场数据集中提取多个子视角图像,对所述多个子视角图像进行堆叠,形成四维光场体;
分别从横向和纵向剪切所述四维光场体,并通过灰度化以及限制对比度直方图均衡化剪切后的四维光场体得到LF-EPI;
根据预设比例划分所述预设光场数据集中的多个LF-EPI为训练集和测试集;
从所述预设光场数据集对应的真实视差图中提取向量作为所述学习标签。
其中,构建极平面图像EPI-UNet网络框架,包括:
确定所述EPI-UNet网络框架包括依次连接的轮廓特征提取子网络、局部特征提取子网络和细节特征提取子网络;
所述轮廓特征提取子网络由5×5×32卷积核、残差模块、5×5×64卷积核、残差模块和5×5×64卷积核构成;
所述局部特征提取子网络由3×3×32卷积核、残差模块、3×3×64卷积核、残差模块和3×3×64卷积核构成;
所述细节特征提取子网络由2×2×32卷积核、2×2×16卷积核和2×2×1卷积核构成。
其中,采用所述训练集和所述学习标签训练所述EPI-UNet网络框架,得到预测视差向量模型,包括:
将所述训练集输入所述EPI-UNet网络框架,得到预测视差向量;
由预设损失函数计算所述预测视差向量和所述学习标签的差异值;
对所述差异值进行反向传播,待完成一个训练周期之后,将所述测试集输入训练好的EPI-UNet网络框架进行精度测试;
重复调节所述EPI-UNet网络框架的超参数进行迭代训练,直至所述预设损失函数小于损失阈值,或训练迭代次数达到训练次数阈值,停止训练,输出所述预测视差向量模型。
具体地,在本发明实施例中,构建EPI-Unet网络获取视差信息,首先是图像预处理,从HCI数据集得到多个视角子孔径图像,任意选取n个场景用于训练与测试,余下场景用于验证。对每个训练测试场景的多视角子孔径图像依次进行堆叠,形成四维的光场体,对四维光场体中进行横向与纵向剪切得到LF-EPI,将LF-EPI通过限制对比度直方图均衡增强其纹理细节特征;同时,学习标签通过从真实视差图中提取对应向量获取。如图3所示,将光场多个视角图像依次堆叠形成四维的光场体L(u,v,s,t),选取光场正交视角图像进行横向/纵向堆叠形成空间光场体,对空间光场体进行横向/纵向剪切得到光场极平面图像L(v,t)/L(u,s)。
特别地,本发明实施例中的EPI-Unet网络工作原理如图4所示,场景横向与纵向LF-EPI经灰度化及限制对比度自适应直方图均衡化(Contrast Limited AdaptiveHistogram Equalization, CLAHE)后输入至EPI-UNet网络,该网络分别由3个5×5、3个3×3、3个2×2卷积核构成;5×5卷积核提取LF-EPI轮廓信息,3×3卷积核提取LF-EPI局部特征,2×2卷积核用于垂直方向上的降维以及LF-EPI纹理信息进一步提取。每个网络层残差模块用于融合图像前后信息。将轮廓特征与局部特征进行跳跃连接并结合图像前后信息特征,最后通过2×2卷积核获取LF-EPI隐含视差信息。其中,每一幅LF-EPI通过网络输出为一维视差向量,将向量拼接可得到场景视差图。这里采用的多卷积核设置,有效融合了整体与局部特征,增强网络学习能力,同时在每个卷积层后融合残差模块,融合前后图像信息,能加速网络训练速度与精度,提高网络视差估计性能。
然后将得到的图像基于EPI-Unet网络进行图像特征学习,将数据集中多张LF-EPI图像随机按照一定的预设比例,例如10%和90%的比例划分为测试集与训练集。
将训练数据集图像输入EPI-UNet网络,得到预测视差向量,根据预测向量与学习标签差异进行反向传播,其中差异通过损失函数计算得到。而后在一个训练周期后,将测试集输入训练好的网络测试网络精度。将以上步骤不断迭代计算,当损失值低于某一设定的阈值或迭代次数达到某一阈值则终止训练。
需要说明的是,为了简化训练问题,本发明实施例将LF-EPI图像三通道变为单个灰度通道,保留图像信息同时,减少内存;与常规的数据集处理方法,如翻转、旋转等数据集扩充方法不同的是,对于一个场景光场,包含w×q个视角以及每个视角np×mppixels的图像分辨率,通过对立体光场体横向与纵向剪切得到w×np+q×mp个训练集,n个场景可得到n×(w×np+q×mp)个训练集。因此对于HCI数据,每个场景可得到9216张训练图像。
基于上述实施例,利用所述光场相机采集待测目标的增材表面光场信息,由所述增材表面光场信息得到场景二维视差图,包括:
对所述增材表面光场信息进行剪切得到LF-EPI,将LF-EPI输入所述预测视差向量模型获得多个一维视差向量;
根据横向视角数量、纵向视角数量、每个视角图像的高度方向像素数和每个视角图像的宽度方向像素数,在LF-EPI上建立横向-宽度以及纵向-高度坐标系,由所述横向-宽度以及纵向-高度坐标系计算得到LF-EPI的纹理斜率倒数;
将所述多个一维视差向量依次进行拼接,结合所述纹理斜率倒数,得到所述场景二维视差图。
具体地,在上述实施例中的网络训练完成后,利用光场相机采集增材制造过程表面光场信息,通过剪切获得LF-EPI。将LF-EPI按照顺序输入网络得到多个一维视差向量,将多个向量依次拼接可得到场景二维视差图。
此处,通过在光场极平面图像上建立v-t/u-s坐标系,极平面图像纹理斜率的倒数1/k为场景视差,当1/k=0表示视差为0,即对应场景初始聚焦位置。
基于上述实施例,基于所述光场相机等效标定参数集合,确定视差与深度的几何光路关系,获得待测目标三维坐标信息,包括:
由相邻两个视角相机成像光路,如图5所示,P为聚焦位置,经相机分别成像至传感器平面(像面)为p i 、p i+1,根据光路可逆性,分别连接p ip i+1与其相应的相机光心相交于P点,线段pp ipp i+1与像面关于主透镜对称面相交于点p i'、p i+1',根据几何关系可得:
(1)
其中,表示所述待测目标的物面与主透镜平面的距离,即深度,/>表示任意两个相邻视角相机的中心距离,/>和/>分别表示任意两个相邻视角相机的中心线与相交线的距离;
设视差Δx'=|x 1-x 2|,则:
(2)
将主透镜光心视为原点,向上为正,向下为负。设相机焦距为F,根据高斯成像公式1/b+1/z'=1/F,代入式(2)得到:
(3)
(3)式表示视差Δx'与深度z'映射关系,当z'-»∞,Δx'-»0,同理,对于像面共轭的聚焦物面1/b 0+1/z 0=1/F
(4)
其中,b 0为主透镜平面至传感器平面的距离;
类似地,光场成像如图6所示,场景P点经过主透镜成像至微透镜,经过微透镜二次成像至图像传感器p 0p ip i+1..,由主透镜和微透镜组成的双平面模型可同时记录场景的空间信息和角度信息。设主透镜通光孔径为D,光场视角数为N×N,由此可得每个视角间距为D/N,等效于在主透镜平面放置N×N个虚拟透镜,相邻虚拟透镜基线为D/N。根据几何关系可得:
(5)
根据1/l+1/z 0=1/Fz 0l共轭物面,|p i+1-p i|包含光轴距离导致传感器中心的偏移Δx 0,得到光场视差:
(6)。
由此可知,光场视差与深度关系成一次反比,当z=z 0,处于初始聚焦位置,Δx=0。通过图5和图6可知,光场视差通过虚拟相机视差平移聚焦位置对应视差得到。因此得到场景深度信息z,即可得到视差信息。
基于上述实施例,对所述待测目标三维坐标信息进行视差映射,得到待测目标三维轮廓信息,包括:
三维空间点P相机成像光路如图7所示,(Xp, Yp)为像素坐标系。在数字图像中,一幅图像由m×n的数组组成,数组中每个数值为该点亮度,在图像左上角可建立以像素为单位直角坐标系(Xp, Yp)。(XI, YI)为图像坐标系,原点位于光轴。通过该坐标系可建立实际物理单位从而得到物体三维空间具体位置,其坐标轴与像素坐标轴平行。同理,(Xc, Yc,Z)、(Xw, Yw, Z)分别为相机坐标系、世界坐标系,坐标轴原点均位于相机光轴,在Z方向投影坐标轴均平行于图像坐标系。结合,根据相似原理:
(7)
(x Io,y Io)为图像坐标系原点,当得到三维空间点深度信息或者视差信息,根据相机参数便可得到物点三维坐标。图像上任意像素在图像坐标系与像素坐标系映射关系为:
(8)
(x po,y po)像素坐标系原点;dx,dy为单个像素在x,y方向物理尺寸。结合(7)和(8)式得到待测目标三维轮廓信息:
(9)
通过视差-深度-坐标映射可快速得到增材制造过程中铺粉粉层面形貌、加工表面三维轮廓信息,有利于增材制造过程动态行为监测、改善金属加工质量。
本发明首次将光场多目视觉应用于增材制造过程,结合光场丰富空间域视角信息,为增材制造监测提供有利的质量保证。
下面对本发明提供的基于光场成像的增材构件三维轮廓重建系统进行描述,下文描述的基于光场成像的增材构件三维轮廓重建系统与上文描述的基于光场成像的增材构件三维轮廓重建方法可相互对应参照。
图8是本发明实施例提供的基于光场成像的增材构件三维轮廓重建系统的结构示意图,如图8所示,包括:标定模块81、训练模块82、视差模块83、深度模块84和映射模块85,其中:
标定模块81用于对光场相机进行标定,确定光场相机等效标定参数集合;训练模块82用于构建极平面图像EPI-UNet网络框架,利用预设光场数据集构建训练集,从所述预设光场数据集对应的视差图获取学习标签,采用所述训练集和所述学习标签训练所述EPI-UNet网络框架,得到预测视差向量模型;视差模块83用于利用所述光场相机采集待测目标的增材表面光场信息,由所述增材表面光场信息得到场景二维视差图;深度模块84用于基于所述光场相机等效标定参数集合,确定视差与深度的几何光路关系,获得待测目标三维坐标信息;映射模块85用于对所述待测目标三维坐标信息进行视差映射,得到待测目标三维轮廓信息。
图9示例了一种电子设备的实体结构示意图,如图9所示,该电子设备可以包括:处理器(processor)910、通信接口(Communications Interface)920、存储器(memory)930和通信总线940,其中,处理器910,通信接口920,存储器930通过通信总线940完成相互间的通信。处理器910可以调用存储器930中的逻辑指令,以执行基于光场成像的增材构件三维轮廓重建方法,该方法包括:对光场相机进行标定,确定光场相机等效标定参数集合;构建极平面图像EPI-UNet网络框架,利用预设光场数据集构建训练集,从所述预设光场数据集对应的视差图获取学习标签,采用所述训练集和所述学习标签训练所述EPI-UNet网络框架,得到预测视差向量模型;利用所述光场相机采集待测目标的增材表面光场信息,由所述增材表面光场信息输入所述预测视差向量模型得到场景二维视差图;基于所述光场相机等效标定参数集合,确定视差与深度的几何光路关系,获得待测目标三维坐标信息;对所述待测目标三维坐标信息进行视差映射,得到待测目标三维轮廓信息。
此外,上述的存储器930中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的基于光场成像的增材构件三维轮廓重建方法,该方法包括:对光场相机进行标定,确定光场相机等效标定参数集合;构建极平面图像EPI-UNet网络框架,利用预设光场数据集构建训练集,从所述预设光场数据集对应的视差图获取学习标签,采用所述训练集和所述学习标签训练所述EPI-UNet网络框架,得到预测视差向量模型;利用所述光场相机采集待测目标的增材表面光场信息,由所述增材表面光场信息输入所述预测视差向量模型得到场景二维视差图;基于所述光场相机等效标定参数集合,确定视差与深度的几何光路关系,获得待测目标三维坐标信息;对所述待测目标三维坐标信息进行视差映射,得到待测目标三维轮廓信息。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

1.一种基于光场成像的增材构件三维轮廓重建方法,其特征在于,包括:
对光场相机进行标定,确定光场相机等效标定参数集合;
构建极平面图像EPI-UNet网络框架,利用预设光场数据集构建训练集,从所述预设光场数据集对应的视差图获取学习标签,采用所述训练集和所述学习标签训练所述EPI-UNet网络框架,得到预测视差向量模型;
利用所述光场相机采集待测目标的增材表面光场信息,由所述增材表面光场信息输入所述预测视差向量模型得到场景二维视差图;
基于所述光场相机等效标定参数集合,确定视差与深度的几何光路关系,获得待测目标三维坐标信息;
对所述待测目标三维坐标信息进行视差映射,得到待测目标三维轮廓信息;
其中,构建极平面图像EPI-UNet网络框架,包括:
确定所述EPI-UNet网络框架包括依次连接的轮廓特征提取子网络、局部特征提取子网络和细节特征提取子网络;
所述轮廓特征提取子网络由5×5×32卷积核、残差模块、5×5×64卷积核、残差模块和5×5×64卷积核构成;
所述局部特征提取子网络由3×3×32卷积核、残差模块、3×3×64卷积核、残差模块和3×3×64卷积核构成;
所述细节特征提取子网络由2×2×32卷积核、2×2×16卷积核和2×2×1卷积核构成;
利用预设光场数据集构建训练集,从所述预设光场数据集对应的视差图获取学习标签,包括:
从所述预设光场数据集中提取多个子视角图像,对所述多个子视角图像进行堆叠,形成四维光场体;
分别从横向和纵向剪切所述四维光场体,并通过灰度化以及限制对比度直方图均衡化剪切后的四维光场体得到光场极平面图像LF-EPI;
根据预设比例划分所述预设光场数据集中的多个LF-EPI为训练集和测试集;
从所述预设光场数据集对应的真实视差图中提取向量作为所述学习标签;
采用所述训练集和所述学习标签训练所述EPI-UNet网络框架,得到预测视差向量模型,包括:
将所述训练集输入所述EPI-UNet网络框架,得到预测视差向量;
由预设损失函数计算所述预测视差向量和所述学习标签的差异值;
对所述差异值进行反向传播,待完成一个训练周期之后,将所述测试集输入训练好的EPI-UNet网络框架进行精度测试;
重复调节所述EPI-UNet网络框架的超参数进行迭代训练,直至所述预设损失函数小于损失阈值,或训练迭代次数达到训练次数阈值,停止训练,输出所述预测视差向量模型。
2.根据权利要求1所述的基于光场成像的增材构件三维轮廓重建方法,其特征在于,对光场相机进行标定,确定光场相机等效标定参数集合,包括:
所述光场相机拍摄不同视角标准圆形标定板,提取每个视角的光场中心子孔径图像;
由所述光场中心子孔径图像获取等效相机阵列的有效焦距和像素值。
3.根据权利要求1所述的基于光场成像的增材构件三维轮廓重建方法,其特征在于,利用所述光场相机采集待测目标的增材表面光场信息,由所述增材表面光场信息输入所述预测视差向量模型得到场景二维视差图,包括:
对所述增材表面光场信息进行剪切得到LF-EPI,将LF-EPI输入所述预测视差向量模型获得多个一维视差向量;
根据横向视角数量、纵向视角数量、每个视角图像的高度方向像素数和每个视角图像的宽度方向像素数,在LF-EPI上建立横向-宽度以及纵向-高度坐标系,由所述横向-宽度以及纵向-高度坐标系计算得到LF-EPI的纹理斜率倒数;
将所述多个一维视差向量依次进行拼接,结合所述纹理斜率倒数,得到所述场景二维视差图。
4.根据权利要求1所述的基于光场成像的增材构件三维轮廓重建方法,其特征在于,基于所述光场相机等效标定参数集合,确定视差与深度的几何光路关系,获得待测目标三维坐标信息,包括:
以所述待测目标上任一点P,经过任意两个相邻视角相机的主透镜平面成像至传感器平面,成像点分别为p ip i+1
连接Pp i以及Pp i+1,与所述传感器平面关于主透镜平面的对称面相交于p i'和p i+1',得到:
(1)
其中,表示所述待测目标的物面与主透镜平面的距离,即深度,/>表示任意两个相邻视角相机的中心距离,/>和/>分别表示任意两个相邻视角相机的中心线与相交线的距离;
设视差Δx'=|x 1-x 2|,则:
(2)
设相机焦距为F,根据高斯成像公式1/b+1/z'=1/F,代入式(2)得到:
(3)
z'-»∞,Δx'-»0,对于传感器平面共轭的聚焦物面1/b 0+1/z 0=1/F
(4)
其中,b 0为主透镜平面至传感器平面的距离;
设主透镜通光孔径为D,光场视角数为N×N,则每个视角间距为D/N,根据几何关系得到:
(5)
根据1/l+1/z 0=1/Fz 0l共轭物面,|p i+1-p i|包含光轴距离导致传感器中心的偏移Δx 0,得到光场视差:
(6)。
5.根据权利要求1所述的基于光场成像的增材构件三维轮廓重建方法,其特征在于,对所述待测目标三维坐标信息进行视差映射,得到待测目标三维轮廓信息,包括:
基于所述待测目标上任一点P确定像素坐标系(Xp, Yp),图像坐标系(XI, YI),其中图像坐标系的坐标轴与像素坐标系的坐标轴平行;
以相机光轴上的坐标原点确定相机坐标系(Xc, Yc, Z)和世界坐标系(Xw, Yw , Z),相机坐标系和世界坐标系在Z方向投影坐标轴均平行于图像坐标系,由,根据相似原理:
(7)
其中,(x Io, y Io)为图像坐标系原点,任意像素在图像坐标系与像素坐标系中的映射关系为:
(8)
其中,(x po, y po)像素坐标系原点,dx, dy为单个像素在x, y方向物理尺寸,将式(7)和式(8)结合得到待测目标三维轮廓信息:
(9)。
6.一种基于光场成像的增材构件三维轮廓重建系统,其特征在于,包括:
标定模块,用于对光场相机进行标定,确定光场相机等效标定参数集合;
训练模块,用于构建极平面图像EPI-UNet网络框架,利用预设光场数据集构建训练集,从所述预设光场数据集对应的视差图获取学习标签,采用所述训练集和所述学习标签训练所述EPI-UNet网络框架,得到预测视差向量模型;
视差模块,用于利用所述光场相机采集待测目标的增材表面光场信息,由所述增材表面光场信息输入所述预测视差向量模型得到场景二维视差图;
深度模块,用于基于所述光场相机等效标定参数集合,确定视差与深度的几何光路关系,获得待测目标三维坐标信息;
映射模块,用于对所述待测目标三维坐标信息进行视差映射,得到待测目标三维轮廓信息;
其中,所述训练模块中的构建极平面图像EPI-UNet网络框架,包括:
确定所述EPI-UNet网络框架包括依次连接的轮廓特征提取子网络、局部特征提取子网络和细节特征提取子网络;
所述轮廓特征提取子网络由5×5×32卷积核、残差模块、5×5×64卷积核、残差模块和5×5×64卷积核构成;
所述局部特征提取子网络由3×3×32卷积核、残差模块、3×3×64卷积核、残差模块和3×3×64卷积核构成;
所述细节特征提取子网络由2×2×32卷积核、2×2×16卷积核和2×2×1卷积核构成;
所述训练模块中的利用预设光场数据集构建训练集,从所述预设光场数据集对应的视差图获取学习标签,包括:
从所述预设光场数据集中提取多个子视角图像,对所述多个子视角图像进行堆叠,形成四维光场体;
分别从横向和纵向剪切所述四维光场体,并通过灰度化以及限制对比度直方图均衡化剪切后的四维光场体得到光场极平面图像LF-EPI;
根据预设比例划分所述预设光场数据集中的多个LF-EPI为训练集和测试集;
从所述预设光场数据集对应的真实视差图中提取向量作为所述学习标签;
所述训练模块中的采用所述训练集和所述学习标签训练所述EPI-UNet网络框架,得到预测视差向量模型,包括:
将所述训练集输入所述EPI-UNet网络框架,得到预测视差向量;
由预设损失函数计算所述预测视差向量和所述学习标签的差异值;
对所述差异值进行反向传播,待完成一个训练周期之后,将所述测试集输入训练好的EPI-UNet网络框架进行精度测试;
重复调节所述EPI-UNet网络框架的超参数进行迭代训练,直至所述预设损失函数小于损失阈值,或训练迭代次数达到训练次数阈值,停止训练,输出所述预测视差向量模型。
7.一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至5任一项所述基于光场成像的增材构件三维轮廓重建方法。
CN202311510142.8A 2023-11-14 2023-11-14 一种基于光场成像的增材构件三维轮廓重建方法及系统 Active CN117237546B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311510142.8A CN117237546B (zh) 2023-11-14 2023-11-14 一种基于光场成像的增材构件三维轮廓重建方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311510142.8A CN117237546B (zh) 2023-11-14 2023-11-14 一种基于光场成像的增材构件三维轮廓重建方法及系统

Publications (2)

Publication Number Publication Date
CN117237546A CN117237546A (zh) 2023-12-15
CN117237546B true CN117237546B (zh) 2024-01-30

Family

ID=89089714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311510142.8A Active CN117237546B (zh) 2023-11-14 2023-11-14 一种基于光场成像的增材构件三维轮廓重建方法及系统

Country Status (1)

Country Link
CN (1) CN117237546B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107295327A (zh) * 2016-04-05 2017-10-24 富泰华工业(深圳)有限公司 光场相机及其控制方法
CN110443882A (zh) * 2019-07-05 2019-11-12 清华大学 基于深度学习算法的光场显微三维重建方法及装置
CN112906833A (zh) * 2021-05-08 2021-06-04 武汉大学 一种基于全卷积神经网络的等离子能量沉积图像识别方法
US11450017B1 (en) * 2021-11-12 2022-09-20 Tsinghua University Method and apparatus for intelligent light field 3D perception with optoelectronic computing
CN115100352A (zh) * 2022-06-21 2022-09-23 武汉中观自动化科技有限公司 光场三维重建方法、装置、电子设备及计算机存储介质
CN115830406A (zh) * 2021-09-15 2023-03-21 南京大学 一种基于多视差尺度的快速光场深度估计方法
CN116168067A (zh) * 2022-12-21 2023-05-26 东华大学 基于深度学习的有监督多模态光场深度估计方法
CN116630389A (zh) * 2022-02-11 2023-08-22 江南大学 一种基于光场相机的三维定位方法
CN116645476A (zh) * 2023-07-12 2023-08-25 小羽互联智能科技(长沙)有限公司 一种基于多目视觉的棒材三维数据模型重建方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10657425B2 (en) * 2018-03-09 2020-05-19 Ricoh Company, Ltd. Deep learning architectures for the classification of objects captured with a light-field camera
GB2598711B (en) * 2020-08-11 2023-10-18 Toshiba Kk A Computer Vision Method and System
CN114595636A (zh) * 2022-03-11 2022-06-07 清华大学 一种单目快照式深度偏振四维成像方法和系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107295327A (zh) * 2016-04-05 2017-10-24 富泰华工业(深圳)有限公司 光场相机及其控制方法
CN110443882A (zh) * 2019-07-05 2019-11-12 清华大学 基于深度学习算法的光场显微三维重建方法及装置
CN112906833A (zh) * 2021-05-08 2021-06-04 武汉大学 一种基于全卷积神经网络的等离子能量沉积图像识别方法
CN115830406A (zh) * 2021-09-15 2023-03-21 南京大学 一种基于多视差尺度的快速光场深度估计方法
US11450017B1 (en) * 2021-11-12 2022-09-20 Tsinghua University Method and apparatus for intelligent light field 3D perception with optoelectronic computing
CN116630389A (zh) * 2022-02-11 2023-08-22 江南大学 一种基于光场相机的三维定位方法
CN115100352A (zh) * 2022-06-21 2022-09-23 武汉中观自动化科技有限公司 光场三维重建方法、装置、电子设备及计算机存储介质
CN116168067A (zh) * 2022-12-21 2023-05-26 东华大学 基于深度学习的有监督多模态光场深度估计方法
CN116645476A (zh) * 2023-07-12 2023-08-25 小羽互联智能科技(长沙)有限公司 一种基于多目视觉的棒材三维数据模型重建方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
结构光照明荧光显微镜突破衍射极限的原理和在生命科学中的应用;吴美瑞;杨西斌;熊大曦;李辉;武晓东;激光与光电子学进展;第52卷(第01期);23-33 *

Also Published As

Publication number Publication date
CN117237546A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
CN108495110B (zh) 一种基于生成式对抗网络的虚拟视点图像生成方法
JP6236600B1 (ja) 飛行パラメータ測定装置及び飛行パラメータ測定方法
WO2016176840A1 (zh) 深度图/视差图的后处理方法和装置
CN108337434B (zh) 一种针对光场阵列相机的焦外虚化重聚焦方法
CN108230384B (zh) 图像深度计算方法、装置、存储介质和电子设备
CN110223377A (zh) 一种基于立体视觉系统高精度的三维重建方法
CN109974623B (zh) 基于线激光和双目视觉的三维信息获取方法和装置
CN111260707B (zh) 一种基于光场epi图像的深度估计方法
CN108520510B (zh) 一种基于整体和局部分析的无参考立体图像质量评价方法
CN110852979A (zh) 一种基于相位信息匹配的点云配准及融合方法
CN109255809A (zh) 一种光场图像深度估计方法及装置
CN114782636A (zh) 三维重建方法、装置及系统
CN113902781A (zh) 三维人脸重建方法、装置、设备及介质
CN116958419A (zh) 一种基于波前编码的双目立体视觉三维重建系统和方法
CN114332125A (zh) 点云重建方法、装置、电子设备和存储介质
CN115272403A (zh) 一种基于图像处理技术的破片飞散特性测试方法
CN112132771B (zh) 一种基于光场成像的多聚焦图像融合方法
CN117237546B (zh) 一种基于光场成像的增材构件三维轮廓重建方法及系统
CN111062900B (zh) 一种基于置信度融合的双目视差图增强方法
JP2022027464A (ja) 映像の深度推定に関する方法及び装置
Mahmood Shape from focus by total variation
CN107534730B (zh) 图像处理装置及图像处理方法
Yao et al. Research of camera calibration based on genetic algorithm BP neural network
CN109218706B (zh) 一种由单张图像生成立体视觉图像的方法
CN108174179B (zh) 用于对成像设备进行建模的方法和计算机可读存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant