CN117224468A - 抗氧化多功能水凝胶及其制备方法与应用 - Google Patents

抗氧化多功能水凝胶及其制备方法与应用 Download PDF

Info

Publication number
CN117224468A
CN117224468A CN202311062216.6A CN202311062216A CN117224468A CN 117224468 A CN117224468 A CN 117224468A CN 202311062216 A CN202311062216 A CN 202311062216A CN 117224468 A CN117224468 A CN 117224468A
Authority
CN
China
Prior art keywords
hydrogel
solution
prussian blue
parts
resveratrol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311062216.6A
Other languages
English (en)
Inventor
杜丽娜
金义光
焦文成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy of Military Medical Sciences AMMS of PLA
Original Assignee
Academy of Military Medical Sciences AMMS of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academy of Military Medical Sciences AMMS of PLA filed Critical Academy of Military Medical Sciences AMMS of PLA
Priority to CN202311062216.6A priority Critical patent/CN117224468A/zh
Publication of CN117224468A publication Critical patent/CN117224468A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种能治疗放射性皮炎的抗氧化多功能水凝胶。该水凝胶采用新型聚合物‑甲基丙烯酸化透明质酸共聚物(HA/MA/DA)和丙烯酰化聚乙二醇‑聚丙二醇‑聚乙二醇三嵌段共聚物(F127/DA)为基质,载入普鲁士蓝和白藜芦醇,实现可喷涂给药。该水凝胶可通过清除活性氧来调节创面微环境稳态,具有抗氧化、抗组织黏连、抗炎、促创面愈合多种作用,较现有剂型成胶速度快,疗效确切,使用方便。可用于放射性皮炎等难愈合创面的治疗。

Description

抗氧化多功能水凝胶及其制备方法与应用
技术领域
本发明属于药物制剂领域,具体涉及一种能治疗放射性皮炎的抗氧化多功能水凝胶。
背景技术
核事故或放疗期间接受的辐射暴露可能导致皮肤损伤。皮肤作为人体最外层的屏障,更新周期短(约26天)、对辐射最敏感,易受到电离辐射的危害,导致急性或慢性放射性皮肤损伤(Radiation-induced skin injury,RSI)。约95%接受放疗的肿瘤患者患有急性RSI,临床表现为皮炎、红斑、脱毛、皮肤坏死、溃疡等,这取决于放射剂量。如果未得到有效和及时的干预,急性RSI会转变为慢性RSI,可能导致迁延不愈甚至恶性皮肤肿瘤。因此,放射性皮肤损伤的有效治疗意义重大。
伤口愈合是一个高度有序的生物过程,包括止血、抗炎、增殖和重塑几个阶段。电离辐射暴露后,由于修复机制受损,RSI愈合过程更加难治和复杂。在急性RSI早期,辐射诱导的活性氧(Reactive Oxygen Species,ROS)扩增可能对DNA、膜脂和蛋白质造成不可逆的损伤,导致各种细胞凋亡和坏死。此外,伤口中过量的ROS积累不仅会通过快速刺激信号转导产生炎症细胞因子而引发严重的炎性反应,还会影响募集免疫细胞,从而阻碍伤口的再生与愈合。因此,在急性早期清除ROS以抑制氧化应激损伤是RSI治疗的关键。
目前,有关RSI治疗的研究很少,尚缺乏有效的临床治疗方案。水凝胶是亲水性三维网络,可以吸收创面渗出物,并提供透气湿润的微环境来加速伤口愈合,因此被认为是最有前景的新型敷料。利用水凝胶作为载体,加入能清除ROS、抗氧化的成分,可结合各自优势,充分发挥药效,用于治疗RSI。
发明内容
本发明提供一种可喷涂抗氧化多功能水凝胶,用于治疗RSI。其中可加入普鲁士蓝和白藜芦醇,通过清除ROS来调节伤口微环境的稳态。该凝胶具备抗氧化、抗组织黏连、抗炎、促创面愈合多重作用,较现有剂型成胶速度快,疗效确切,使用方便。
本发明提供一种可喷涂多功能水凝胶组合物,其包含药物溶液、凝胶基质。上述药物溶液,原料按重量份数含有0.0001~0.001份普鲁士蓝纳米粒、0.0005~0.005份白藜芦醇。
所述凝胶基质,原料按重量份数含有0.01~0.1份甲基丙烯酸化透明质酸共聚物(HA/MA/DA),0.01~0.2份丙烯酰化聚乙二醇-聚丙二醇-聚乙二醇三嵌段共聚物(F127/DA),99.7~99.98份水。
下面是对上述发明的进一步优化,在上述多功能凝胶中,优选HA/MA/DA和F127/DA的重量比例为1∶1-1∶10。
本发明提供的多功能水凝胶基质的制备方法,包括以下步骤:首先采用甲基丙烯酸酐(MA)与透明质酸(HA)中的羟基反应,得到甲基丙烯酸化透明质酸共聚物(HA/MA)。进一步采用酰胺化反应将多巴胺(DA)与HA中羧基键合,得到甲基丙烯酸化透明质酸多巴胺(HA/MA/DA)。其中MA作为光交联基团形成凝胶网络,DA作为黏附基团增加创面黏附性。F127/DA与HA/MA/DA联合使用以增强凝胶的机械性能。
本发明提供了一种高效能普鲁士蓝多功能水凝胶组合物,原料按重量份数含有0.0001~0.001份普鲁士蓝纳米粒、99.999-99.9999份水凝胶。
本发明提供了一种高效能白藜芦醇多功能水凝胶组合物,原料按重量份数含有0.0005~0.005份白藜芦醇、99.995-99.9995份水凝胶。
本发明提供的多功能水凝胶的制备方法,包括以下步骤:
配制得到F127/DA溶液,再向上述溶液中加入普鲁士蓝纳米粒和白藜芦醇,另配制得到HA/MA/DA溶液。将载普鲁士蓝纳米粒和白藜芦醇的F127/DA溶液与HA/MA/DA溶液按1∶1(v/v)充分混合,得到抗氧化多功能水凝胶。
普鲁士蓝清除过氧化氢、发挥模拟酶的功能具有潜在的辐射防护与治疗效果。白藜芦醇具有抗氧化、抗炎、抗肿瘤等多重药理作用。水凝胶易于包载药物,生物黏附性强,能延长药物在创面局部停留时间,可提高药效且使用方便,毒副作用小,对RSI有很好的疗效。
附图说明
图1 HA/MA/DA的合成路线
图2多功能水凝胶基质HA/MA/DA的结构验证.(A)FT-IR图谱;(B)1H NMR图谱
图3 F127/DA的合成路线
图4多功能水凝胶基质F127/DA的结构验证.(A)FT-IR图谱;(B)1H NMR图谱
图5 PPBs的性质表征.(A)透射电镜图;(B)紫外光谱图;(C)XPS图谱;(D)XRD图谱
图6普鲁士蓝纳米粒模拟酶的抗氧化活性评价
图7多功能水凝胶性质表征.(A)代表性SEM照片;(B)EDS元素图谱分析
图8多功能水凝胶流变学性质表征.(A)机械强度变化;(B)模量随时间变化规律;(C)模量随应力变化规律;(D)模量随角频率变化规律
图9多功能水凝胶的抗氧化活性评价.(A)DPPH自由基的清除活性;(B)ABTS自由基的清除活性
图10多功能水凝胶的药效学评价.(A)小鼠肢体辐射损伤和治疗流程示意图;(B)治疗21天期间小鼠肢体辐射损伤的代表性照片;(C)伤口愈合过程中动态等级示意图;(D)第7、14、21天各组小鼠的代表性激光多普勒血流灌注图像;(E,F,G,H)TNF-α、IL-6、VEGF、IL-1β的水平变化(*P<0.05,**P<0.01,***P<0.001)
图11不同组小鼠创面的H.E.染色和Masson’s结果
具体实施方式
以下将结合具体实施例来说明本发明的技术方案,但本发明的保护不限于此。
本发明提供一种可喷涂抗氧化多功能水凝胶组合物,原料按重量份数含有0.0001~0.001份普鲁士蓝纳米粒、0.0005~0.005份白藜芦醇,0.01~0.1份HA/MA/DA,0.01~0.2份F127/DA,99.7~99.98份水。
在一项优选的实施方案中,原料按重量份数含有0.0001~0.0005份普鲁士蓝纳米粒、0.0005~0.001份白藜芦醇。
所述多功能水凝胶包含以重量份计的下列组合,0.01~0.05份HA/MA/DA,0.01~0.1份F127/DA,99.85~99.98份水。
实施例一:水凝胶基质HA/MA/DA的合成
精密称取5g透明质酸(15wDa)溶于250mL去离子水中;待完全溶解后加入150mL N,N-二甲基甲酰胺(水∶DMF=3∶2,v/v),冷却至4℃。称取6g甲基丙烯酸酐加入上述混合溶液中,用2.5M的NaOH溶液将pH值调至8~9,反应24h。随后采用截留分子量为3500、7000的透析膜于室温下透析2d,冻干得到HA/MA。
HA/MA/DA的合成采用1-(3-二甲基氨基丙基)-3-乙基碳二亚胺(EDC)/N-羟基丁二酰亚胺(NHS)羧基活化法。称取HA/MA约2.50g(6.25mmol)加入到250mL脱气的去离子水中,室温搅拌溶解,制备得到1%(w/v)HA/MA水溶液。称取EDC 1.44g(7.5mmol)和NHS 0.86g(7.5mmol)缓慢地加入到上述溶液中,搅拌20min。称取多巴胺盐酸盐1.42g(7.5mmol),加入到1%(w/v)HA/MA水溶液中,0.1mol/L NaOH调节溶液pH至5-6,室温下反应过夜。将所得溶液于pH5.5弱酸性水溶液中透析3天(透析袋截留分子量为10,000),每天换3次水以充分去除未反应的杂质,冻干得到浅棕色泡沫状产物,-20℃保存(图1)。
实验例一:HA/MA/DA结构鉴定
采用傅里叶变换红外光谱(FTIR)以及核磁氢谱(1H-NMR)进行鉴定。将充分干燥的样品置于样品台,探头压紧后进行扫描,分辨率2cm-1,扫描次数8次,得到FTIR图谱。称取约20mg的样品用重水溶解后,上机检测,得到NMR图谱。
在FT-IR光谱中,HA/MA/DA的特征吸收带分别出现在1709cm-1(C=O伸缩酰胺I)、1563cm-1(N-H弯曲酰胺II)处(图2A)。此外,6.7ppm处的共振峰证明了DA在HA/MA/DA中的存在(图2B)。
实施例二:水凝胶基质F127/DA的合成
称量10g F127于250mL烧瓶中,加入磁力搅拌子,置于80℃真空干燥箱内干燥4h。将该烧瓶在干燥器内继续冷却约6小时到室温,置于冰浴中,安装上恒压滴定管,并在接口处涂抹凡士林密封。在烧瓶内加入80mL二氯甲烷使F127全部溶解,加入过量三乙胺(0.8g,1.07mL),采用磁力搅拌使上述溶液混合均匀。将相对于F127羟基5倍过量的甲基丙烯酰氯(0.8g)加入含20mL二氯甲烷的恒压滴定管中,使其缓慢滴加到反应体系中。于室温持续反应48小时后,过滤除去反应产生的三乙胺盐酸盐,滤液采用旋蒸除去部分溶剂,将浓缩后滤液加入其10倍体积的乙醚中沉淀,抽滤得到白色蜡状固体;将其重新在少量二氯甲烷中溶解,再于过量乙醚中沉淀,抽滤,将所得白色蜡状固体放入真空干燥箱内于室温下干燥(图3)。
实验例一:F127/DA的表征
图4A是F127及F127/DA的红外谱图。2928cm-1处为C-H伸缩振动,属于2700cm-1-3300cm-1范围内。1034cm-1为1050cm-1附近的峰,为C-O伸缩振动,这两处峰是F127与F127/DA共有的。2928cm-1右侧的2700cm-1处的峰为三乙胺盐酸盐中的N-H伸缩振动峰,而F127/DA在1700cm-1附近出现的峰为C=O伸缩振动吸收峰(图4A)。这说明F127通过缩合反应成功地连接上乙烯基基团,合成得到了F127/DA。此外,5.8ppm、6.1ppm、6.4ppm处的共振峰验证了已成功合成F127/DA(图4B)。
实施例三:普鲁士蓝纳米粒的合成
将22.5g聚乙烯吡咯烷酮(PVP)作为稳定剂溶于300mL盐酸(0.01M)中,快速搅拌10min直至溶液变为黄色,加入10g铁氰化钾三水合物后继续搅拌30min,置于不锈钢反应釜中,放入马弗炉内,于80℃反应20h。反应结束后,静置老化过夜。使用去离子水离心3次(14000rpm,30min)清洗纳米粒;至清洗液澄清后,采用真空冷冻干燥机冻干,即得普鲁士蓝纳米粒。
实验例一:普鲁士蓝纳米粒的表征
1.形貌:将适量普鲁士蓝纳米粒溶液滴于超薄碳膜上,并在烘箱内使其干燥,采用透射电子显微镜(TEM)观察其形貌结构。PPBs呈现单分散的立方体形貌,电镜尺寸在100nm左右(图5A)
2.紫外:紫外可见吸收光谱中存在727nm左右PBNPs特征吸收峰,表明PPBs成功制备(图5B)
3.XPS:将适量普鲁士蓝纳米粒溶液滴于单晶硅片上,置于烘箱内使其干燥,采用XPS分析其表面Fe等离子价态组成。其中Fe 2p的峰值在708.08eV处,N 1s的峰值在397.08eV处,C 1s的峰值在285.08eV处(图5C)
4.XRD:将适量普鲁士蓝纳米粒溶液滴于单晶硅片上,置于烘箱内使其干燥,采用XRD分析其晶形结构。PPBs分别在17.6°、24.8°位置出现了普鲁士蓝特征峰(图5D)。
实验例二:普鲁士蓝纳米粒模拟过氧化氢酶(CAT)活性的测定
向去离子水中加入不同量的8mM普鲁士蓝纳米粒(0.1mL,0.2mL,0.4mL和0.8mL)和0.8mL 1M H2O2,所得反应体系的最终体积为8mL,利用JPB-607A型便携式溶解氧测定仪测定氧气产量(图6)。结果表明普鲁士蓝纳米粒具有明显的H2O2清除能力,且呈剂量依赖性。
实施例四:可喷涂多功能水凝胶的制备
分别用0.25%的光引发剂-苯基(2,4,6-三甲基苯甲酰基)磷酸锂盐配制5%、10%、15%的的F127/DA溶液,并向上述溶液中加入普鲁士蓝纳米酶和白藜芦醇(按1%F127/DA质量比加入);另配制得到4%HA/MA/DA溶液。然后,将上述三种质量分数负载普鲁士蓝和白藜芦醇的F127/DA溶液与4%HA/MA/DA溶液按体积比1∶1充分混合,即得三种不同比例的水凝胶。
实验例一:可喷涂多功能水凝胶性质评价
1.形貌
制备好的水凝胶在液氮中冷冻脆断,将脆断的水凝胶用小刀切成薄片状,冷冻干燥机干燥得到水凝胶薄片。被干燥的薄片状水凝胶样品粘贴在导电胶上,表面用喷金仪喷金,扫描电镜观察水凝胶内部的微观结构,扫描电镜电压设置为5kV。水凝胶内部结构为疏松、均匀的多孔状空腔结构(图7A),有利于吸收创面渗出物。2.机械强度测定
将直径10mm×高2mm圆柱形状的可喷涂多功能水凝胶放置在通用机械强度测定仪器上,十字头压碎水凝胶,速度设置为0.3mm/min,并绘制水凝胶应力-应变曲线。水凝胶的机械应力决定了作为伤口敷料的外力抵抗力。PPBs/HAMADA/2.5%F127DA@Res在小于50%的变形应变下被压碎,而PPBs/HAMADA/5%F127DA@Res和PPBs/HAMADA/7.5%F127DA@Res仍保持完整结构,且PPBs/HAMADA/5%F127DA@Res具有更大的应力。因此,PPBs/HAMADA/5%F127DA@Res在促进伤口愈合方面具有较好的实用性。
3.能谱仪检测
能谱仪能检测到水凝胶样品中C、O、Fe的均匀分布,证明成功制备得到PPBs(图7B)。
4.流变学性质
水凝胶的流变性质通过时间扫描模式下储能模量(G′)和损耗模量(G″)的变化进行考察。将圆柱形状的可喷涂多功能水凝胶(直径20mm×高2mm),放置于流变仪样品平板上,固定振幅1%,频率10rad/s,扫描时间为5min,十字头速度为5mm/min,考察水凝胶流变性能。
储能模量(G′)代表水凝胶的固体性质,而损耗模量(G″)代表流体性质。三种水凝胶的储能模量(G′)均高于损耗模量(G″),表明其具有典型的黏弹性行为。此外,在测试过程中,模量保持不变,表明结构稳定。在整个频率范围内,G′值高于相应G″值,表明所有水凝胶都具有相对稳定的交联结构(图8)。
5.自由基清除能力评价
5.1 DPPH自由基清除能力
依次取50μL样品溶液,200μL DPPH甲醇溶液(0.4mM)加入96孔板中,避光静置30min使二者充分共混。采用全波长酶标仪测定其在517nm处的吸光值。
DPPH自由基清除能力的计算公式如下:
SD(%)=(ODcontrol-ODhydrogel)/ODcontrol×100%
其中SD表示DPPH清除率,ODhydrogel和ODcontrol分别表示水凝胶和对照组在517nm处的吸光度。
5.2ABTS自由基清除能力
ABTS自由基是通过7mM ABTS溶液和2.45mM过硫酸钾在黑暗中反应16小时产生的。首先采用无水乙醇稀释法获得工作溶液。然后将200μL水凝胶样品与2.8mL工作溶液在避光处共孵育30min。ODcontrol和ODgel分别为与水凝胶孵育前后工作溶液的吸光度。用以下公式计算ABTS清除自由基的效果:
SA(%)=(ODcontrol-ODhydrogel)/ODcontrol×100%
其中SA表示ABTS自由基的清除率。ODhydrogel和ODcontrol分别表示水凝胶和对照组在734nm处的吸光度。
DPPH和ABTS的清除能力是评估抗氧化效率的代表性指标。本专利中,三种水凝胶都显示出优异的DPPH\ABTS清除能力(图9)。
实验例二:可喷涂凝胶对放射性皮炎的治疗效果
1.放射性皮炎动物模型建立
本实验中照射源为钴源(60Coγ射线,军事医学研究院辐射医学研究所)。小鼠距离照射源1.5m,照射剂量为40Gy,剂量率为2Gy/min。将进行环境适应性饲养后的C57小鼠用1%戊巴比妥钠按照50mg/kg剂量进行麻醉。将照射部位鼠毛用剃毛器剃去,并对照射部位进行标记。将处理后的C57小鼠固定在照射板上,按照照射剂量和剂量率摆放在相应照射位置,用铅砖对其余部位进行屏蔽,防止其他部位损伤(图10A)。
2.放射性皮炎评分
照射后每天观察照射区域皮肤变化,记录C57小鼠照射何时出现脱屑、红肿、破损、渗出,采用《不良事件分级通用术语标准的一般特征》评分标准对放射性皮炎程度进行评分(表1)(图10B-D)。
表1不良事件分级通用术语标准的一般特征评分标准
在治疗后第3、7、10、14和21天记录和评估创面愈合情况。整个试验期间,模型组后肢伤口表现出明显的局部红肿和红斑,并发展为严重的溃疡、脓液和广泛性坏死,表明RSI创面在没有治疗的情况下,自身愈合缓慢甚至难以愈合。而阳性对照组早期皮肤损伤的恶化被明显抑制,但缺乏促进坏死皮肤组织再生的功能(图10B)。值得注意的是,PPBs/HAMADA/F127DA@Res水凝胶治疗组的小鼠不仅皮肤损伤的恶化明显缓解,且在第14、21天小鼠后肢皮肤几乎和正常皮肤相当。根据Douglas and Fowler scores评分标准对放射性皮肤损伤程度进行评分(图10C),发现与模型组和康复新液阳性对照组相比,PPBs/HAMADA/F127DA@Res水凝胶治疗显著抑制了γ射线照射引起的急性皮肤损伤,症状没有恶化,且治疗后能快速修复。
3.激光多普勒血流仪检测皮肤血流
激光多普勒血流仪可用于监测治疗过程中创面炎症的发生和发展。皮肤病变的炎症、红斑和肿胀可导致皮下毛细血管扩张和血流加速。因此,可通过皮下微循环的血流来监测伤口表面的炎症。本发明采用激光多普勒血流仪监测皮肤中毛细血管、微静脉、微动脉和吻合支血液灌注量,反映皮肤中血流变化,以判断皮肤损伤程度。将不同组照射后第7、14、21天的C57小鼠用戊巴比妥钠麻醉,将其照射部位的臀背部鼠毛清理干净,按照标定部位进行扫描。与模型组、阳性对照组和空白凝胶组相比,PPBs/HAMADA/F127DA@Res水凝胶处理的创面血流灌注量显著降低,说明它可有效缓解电离辐射引起的表皮损伤(图10D)。
4.ELISA法检测照后皮肤组织中炎性因子的变化
在照射后第7、14、21天取小鼠皮肤组织,加入无菌生理盐水后匀浆,获得10%(w/v)的组织匀浆;该匀浆以5000×g、4℃离心15分钟,收集上清液,用ELISA试剂盒测定细胞因子IL-1β、IL-6、VEGF、TNF-α水平。用酶标仪测定450nm处的OD值,计算上述细胞因子浓度。
TNF-α、IL-6、IL-1β等促炎细胞因子可诱导巨噬细胞分化为M1型,并导致持续的局部炎症反应。模型组IL-6、IL-1β、TNF-α表达水平显著升高,PPBs/HAMADA/F127DA@Res可有效降低炎性细胞因子表达,与模型组存在显著性差异。VEGF的分泌有利于内皮细胞的血管生成,因为VEGF在伤口愈合过程中能增加血管通透性,促进内皮细胞迁移并加速细胞增殖。结果显示PPBs/HAMADA/F127DA@Res水凝胶治疗组的VEGF表达显著高于模型组。四种细胞因子表达结果均显示PPBs/HAMADA/F127DA@Res水凝胶对放射性皮炎具有良好的治疗效果(图10E、F、G、H)。
5.组织病理学检测
在照射后第7、14、21天使用戊巴比妥钠腹腔麻醉,将切除的伤口组织固定在4%(w/v)多聚甲醛缓冲液中,用乙醇脱水,置于二甲苯中。将样品包埋在石蜡中,切成超薄切片,分别采用苏木精-伊红(H.E.)和Masson’s染色,以评估皮肤结构的完整性和再生能力。
表皮坏死和胶原增生是RSI的典型病理特征。模型组照射后的表皮表现出严重坏死和病理性结构缺陷,治疗后21d伤口表皮层增厚,出现更不规则、更致密的胶原纤维,皮肤附属物再生更少。而PPBs/HAMADA/F127DA@Res组治疗21d后表皮完整,且出现大量皮肤附属物,促愈合效果明显(图11)。

Claims (8)

1.一种用于治疗放射性皮炎的可喷涂抗氧化多功能水凝胶,其中包含药物溶液、水凝胶;所述药物溶液中的有效成分为普鲁士蓝和白藜芦醇;
所述的治疗放射性皮炎的抗氧化多功能水凝胶组合物的制备方法包括下列步骤:1)配制得到F127/DA溶液;2)向上述溶液中加入普鲁士蓝纳米粒和白藜芦醇;3)另配制得到HA/MA/DA溶液;4)将载普鲁士蓝纳米粒和白藜芦醇的F127/DA溶液与HA/MA/DA溶液按1∶1(v/v)充分混合,得到抗氧化多功能水凝胶。
2.根据权利要求1所述的抗氧化多功能水凝胶基质甲基丙烯酸化透明质酸多巴胺(HA/MA/DA)的制备方法,包括以下步骤:1)首先采用甲基丙烯酸酐(MA)与透明质酸(HA)中的羟基反应,得到甲基丙烯酸化透明质酸共聚物(HA/MA);2)进一步采用酰胺化反应将多巴胺(DA)与HA中羧基键合,得到HA/MA/DA。
3.根据权利要求1所述的抗氧化多功能水凝胶基质丙烯酰化聚乙二醇-聚丙二醇-聚乙二醇三嵌段共聚物(F127/DA)的制备方法,包括以下步骤:1)首先加入二氯甲烷使F127完全溶解后,加入过量三乙胺,充分反应;2)上述体系与过量甲基丙烯酰氯充分反应;3)反复抽滤、洗涤、干燥即得产物。
4.根据权利要求1所述的普鲁士蓝纳米粒制备方法包括下列步骤:1)首先将聚乙烯吡咯烷酮溶于盐酸中;2)加入铁氰化钾三水合物后,继续于马弗炉内充分反应;3)静置老化过夜;4)水洗,冻干,即得普鲁士蓝纳米粒。
5.根据权利要求1所述的治疗放射性皮炎的可喷涂抗氧化多功能水凝胶组合物,其特征在于,所述药物按重量份数含有0.0001~0.001份普鲁士蓝、0.0005~0.005份白藜芦醇。所述水凝胶的原料按重量份数含有0.01~0.1份HA/MA/DA,0.01~0.2份F127/DA,99.7~99.98份水。
6.在优选的实施方案中,药物按重量份数含有0.0001~0.0005份普鲁士蓝、0.0005~0.001份白藜芦醇。
7.在优选的实施方案中,所述多功能水凝胶原料包含以重量份计的下列组合,0.01~0.05份HA/MA/DA,0.01~0.1份F127/DA,99.85~99.98份水。
8.根据权利要求1至2中任一项所述的水凝胶组合物在制备用于治疗放射性皮炎中的用途。
CN202311062216.6A 2023-08-23 2023-08-23 抗氧化多功能水凝胶及其制备方法与应用 Pending CN117224468A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311062216.6A CN117224468A (zh) 2023-08-23 2023-08-23 抗氧化多功能水凝胶及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311062216.6A CN117224468A (zh) 2023-08-23 2023-08-23 抗氧化多功能水凝胶及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN117224468A true CN117224468A (zh) 2023-12-15

Family

ID=89088759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311062216.6A Pending CN117224468A (zh) 2023-08-23 2023-08-23 抗氧化多功能水凝胶及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN117224468A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117736566A (zh) * 2024-02-19 2024-03-22 上海珀利医用材料有限公司 一种碳纤维增强的聚芳醚酮医用复合材料及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117736566A (zh) * 2024-02-19 2024-03-22 上海珀利医用材料有限公司 一种碳纤维增强的聚芳醚酮医用复合材料及其制备方法和应用
CN117736566B (zh) * 2024-02-19 2024-05-10 上海珀利医用材料有限公司 一种碳纤维增强的聚芳醚酮医用复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN114585396B (zh) 具有抗炎及促修复功能的可注射水凝胶及其制备方法和在心脏修复中的应用
Zakerikhoob et al. Curcumin-incorporated crosslinked sodium alginate-g-poly (N-isopropyl acrylamide) thermo-responsive hydrogel as an in-situ forming injectable dressing for wound healing: In vitro characterization and in vivo evaluation
Ding et al. Bioinspired multifunctional black phosphorus hydrogel with antibacterial and antioxidant properties: a stepwise countermeasure for diabetic skin wound healing
Xu et al. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing
JP4340067B2 (ja) 二機能性改変ハイドロゲル
Zhao et al. Electroactive injectable hydrogel based on oxidized sodium alginate and carboxymethyl chitosan for wound healing
Yang et al. ROS-eliminating carboxymethyl chitosan hydrogel to enhance burn wound-healing efficacy
CN117224468A (zh) 抗氧化多功能水凝胶及其制备方法与应用
Kamoun et al. Photopolymerized PVA-g-GMA hydrogels for biomedical applications: factors affecting hydrogel formation and bioevaluation tests
Wei et al. Injectable chitosan/xyloglucan composite hydrogel with mechanical adaptivity and endogenous bioactivity for skin repair
Yang et al. Natural self-healing injectable hydrogels loaded with exosomes and berberine for infected wound healing
Cai et al. An injectable elastic hydrogel crosslinked with curcumin–gelatin nanoparticles as a multifunctional dressing for the rapid repair of bacterially infected wounds
Wan et al. Chitosan-based double network hydrogel loading herbal small molecule for accelerating wound healing
Gokaltun et al. Supramolecular hybrid hydrogels as rapidly on-demand dissoluble, self-healing, and biocompatible burn dressings
Cai et al. Immunomodulatory melanin@ Pt nanoparticle-reinforced adhesive hydrogels for healing diabetic oral ulcers
Li et al. Ganoderma lucidum polysaccharide hydrogel accelerates diabetic wound healing by regulating macrophage polarization
Zhou et al. A wet-adhesive carboxymethylated yeast β-glucan sponge with radical scavenging, bacteriostasis and anti-inflammatory functions for rapid hemostasis
Guo et al. Hybrid Hydrogels for Immunoregulation and Proangiogenesis through Mild Heat Stimulation to Accelerate Whole‐Process Diabetic Wound Healing
Ji et al. A hybrid system of hydrogel/frog egg‐like microspheres accelerates wound healing via sustained delivery of RCSPs
CN111097070A (zh) 一种用于抑制肿瘤和促进修复的可注射生物活性水凝胶
Chen et al. Inflammation-modulating antibacterial hydrogel sustained release asiaticoside for infection wound healing
He et al. Mild NIR controlled NO-Releasing adenine-based composite hydrogel with excellent Antimicrobial, wound adaptiveness and angiogenic capabilities for rapid bacterial-infected wounds healing
Bi et al. Enhanced carboxymethylcellulose sponge for hemostasis and wound repair
CN116870243B (zh) 一种具有止血抗炎作用的水凝胶及其制备方法和应用
Sun et al. Near-infrared light-actuated on-demand botanicals release and hyperthermia by an antibiotic-free polysaccharide-based hydrogel dressing for the synergistic treatment of wound infections

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication