CN117205364A - A 3D printing bioink, functional scaffold and preparation method for bone defect repair - Google Patents
A 3D printing bioink, functional scaffold and preparation method for bone defect repair Download PDFInfo
- Publication number
- CN117205364A CN117205364A CN202311081625.0A CN202311081625A CN117205364A CN 117205364 A CN117205364 A CN 117205364A CN 202311081625 A CN202311081625 A CN 202311081625A CN 117205364 A CN117205364 A CN 117205364A
- Authority
- CN
- China
- Prior art keywords
- printing
- iprf
- solution
- bone defect
- bioink
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000000988 bone and bone Anatomy 0.000 title claims abstract description 49
- 230000007547 defect Effects 0.000 title claims abstract description 38
- 238000010146 3D printing Methods 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 230000008439 repair process Effects 0.000 title claims description 35
- 210000000130 stem cell Anatomy 0.000 claims abstract description 24
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims abstract description 17
- 235000010413 sodium alginate Nutrition 0.000 claims abstract description 17
- 239000000661 sodium alginate Substances 0.000 claims abstract description 17
- 229940005550 sodium alginate Drugs 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 16
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims abstract description 15
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims abstract description 15
- 229920001610 polycaprolactone Polymers 0.000 claims abstract description 14
- 239000004632 polycaprolactone Substances 0.000 claims abstract description 14
- 108010010803 Gelatin Proteins 0.000 claims abstract description 13
- 239000008273 gelatin Substances 0.000 claims abstract description 13
- 229920000159 gelatin Polymers 0.000 claims abstract description 13
- 235000019322 gelatine Nutrition 0.000 claims abstract description 13
- 235000011852 gelatine desserts Nutrition 0.000 claims abstract description 13
- 239000000243 solution Substances 0.000 claims description 34
- 210000004369 blood Anatomy 0.000 claims description 11
- 239000008280 blood Substances 0.000 claims description 11
- 239000003431 cross linking reagent Substances 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 8
- 239000001509 sodium citrate Substances 0.000 claims description 8
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 210000000577 adipose tissue Anatomy 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 6
- 238000004132 cross linking Methods 0.000 claims description 5
- 108090000190 Thrombin Proteins 0.000 claims description 4
- 239000003918 blood extract Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229960004072 thrombin Drugs 0.000 claims description 4
- 210000000579 abdominal fat Anatomy 0.000 claims description 3
- 230000000735 allogeneic effect Effects 0.000 claims description 3
- 238000002591 computed tomography Methods 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 2
- 239000003102 growth factor Substances 0.000 abstract description 11
- 102000009123 Fibrin Human genes 0.000 abstract description 6
- 108010073385 Fibrin Proteins 0.000 abstract description 6
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 abstract description 6
- 229950003499 fibrin Drugs 0.000 abstract description 6
- 230000033115 angiogenesis Effects 0.000 abstract description 4
- 230000009818 osteogenic differentiation Effects 0.000 abstract description 4
- 230000001939 inductive effect Effects 0.000 abstract description 3
- 230000004071 biological effect Effects 0.000 abstract description 2
- 238000007639 printing Methods 0.000 abstract description 2
- 230000002349 favourable effect Effects 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 8
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 7
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 7
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 7
- 239000000499 gel Substances 0.000 description 6
- 238000013268 sustained release Methods 0.000 description 6
- 239000012730 sustained-release form Substances 0.000 description 6
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 5
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 5
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 5
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 5
- 210000001185 bone marrow Anatomy 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000017 hydrogel Substances 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 210000004623 platelet-rich plasma Anatomy 0.000 description 3
- 208000010392 Bone Fractures Diseases 0.000 description 2
- 102000008143 Bone Morphogenetic Protein 2 Human genes 0.000 description 2
- 108010049931 Bone Morphogenetic Protein 2 Proteins 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 206010017076 Fracture Diseases 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 230000010478 bone regeneration Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002188 osteogenic effect Effects 0.000 description 2
- 230000002138 osteoinductive effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000017423 tissue regeneration Effects 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 108010081589 Becaplermin Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 206010049811 Extraskeletal ossification Diseases 0.000 description 1
- 208000034970 Heterotopic Ossification Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- YRQNKMKHABXEJZ-UVQQGXFZSA-N chembl176323 Chemical compound C1C[C@]2(C)[C@@]3(C)CC(N=C4C[C@]5(C)CCC6[C@]7(C)CC[C@@H]([C@]7(CC[C@]6(C)[C@@]5(C)CC4=N4)C)CCCCCCCC)=C4C[C@]3(C)CCC2[C@]2(C)CC[C@H](CCCCCCCC)[C@]21C YRQNKMKHABXEJZ-UVQQGXFZSA-N 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 238000010883 osseointegration Methods 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 210000002363 skeletal muscle cell Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000003634 thrombocyte concentrate Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 231100000588 tumorigenic Toxicity 0.000 description 1
- 230000000381 tumorigenic effect Effects 0.000 description 1
Landscapes
- Materials For Medical Uses (AREA)
Abstract
Description
技术领域Technical field
本发明涉及生物医学工程技术领域,具体涉及一种用于骨缺损修复的3D打印生物墨水、功能支架及其制备方法。The invention relates to the technical field of biomedical engineering, and specifically to a 3D printing bioink for bone defect repair, a functional scaffold and a preparation method thereof.
背景技术Background technique
外伤、肿瘤、炎症和感染引起的骨缺损发生率高,危害大,其修复和重建仍是骨科领域亟待解决的问题和研究热点。自体骨移植是治疗骨缺损的“金标准”,但其临床应用受到供体来源的限制,并且存在额外手术取骨导致的感染和骨折等并发症的风险;而异体骨有诱发免疫反应的风险;人工骨填充材料普遍缺乏成骨诱导特性。3D生物打印功能支架可以克服这些限制,并提供个性化的好处,以满足骨缺损的解剖重塑和功能修复的需要。Bone defects caused by trauma, tumors, inflammation and infection have a high incidence and great harm, and their repair and reconstruction are still urgent problems and research hotspots in the field of orthopedics. Autologous bone transplantation is the "gold standard" for the treatment of bone defects, but its clinical application is limited by the source of donors, and there is a risk of complications such as infection and fracture caused by additional surgical bone removal; allogeneic bone has the risk of inducing immune reactions. ;Artificial bone filling materials generally lack osteogenic induction properties. 3D bioprinted functional scaffolds can overcome these limitations and provide personalized benefits to meet the needs of anatomical remodeling and functional repair of bone defects.
然而,开发具有持久成骨诱导活性和快速血管化能力的生物墨水是3D生物打印支架进入临床转化的主要挑战。使用单一的重组生长因子显然不能满足骨缺损修复和重建的需要,而且这些重组生长因子价格昂贵,理化性质不稳定,容易诱发异位骨化和肿瘤等并发症,进一步限制了其临床应用。可注射型富血小板纤维蛋白(iPRF)是继富血小板的血浆(PRP)之后的第二代血小板浓缩产物。iPRF由患者全血离心制备,经激活后可释放多种生长因子,如转化生长因子-β(TGF-β)、血管内皮生长因子(VEGF)和血小板衍生生长因子(PDGF),在促进血管生成、干细胞成骨分化和调节免疫微环境方面发挥重要作用。此外,它们的比例与体内的生理比例相似,可以更好地协同促进个性化的组织修复。以往的临床试验报告显示,PRF可以明显促进软组织修复,但PRF对骨缺损修复的作用尚不清楚。However, the development of bioinks with durable osteogenic induction activity and rapid vascularization ability is a major challenge for the clinical translation of 3D bioprinted scaffolds. The use of a single recombinant growth factor obviously cannot meet the needs of bone defect repair and reconstruction. Moreover, these recombinant growth factors are expensive, have unstable physical and chemical properties, and can easily induce complications such as ectopic ossification and tumors, further limiting their clinical application. Injectable platelet-rich fibrin (iPRF) is a second-generation platelet concentrate product after platelet-rich plasma (PRP). iPRF is prepared by centrifugation of patients' whole blood. After activation, it can release a variety of growth factors, such as transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), and promote angiogenesis. , stem cells play an important role in osteogenic differentiation and regulating the immune microenvironment. In addition, their proportions are similar to the physiological proportions in the body and can better synergistically promote personalized tissue repair. Previous clinical trial reports have shown that PRF can significantly promote soft tissue repair, but the effect of PRF on bone defect repair is still unclear.
在正常的骨折愈合过程中,促进血管生成的VEGF在损伤开始时直接释放,并在第10天左右达到峰值,而促进成骨的骨形态发生蛋白-2(BMP-2)的表达持续增加,直到第21天左右。这表明需要一个能够持续缓慢释放活性因子的加载系统。iPRF比PRP有更丰富的纤维蛋白网络,可以起到缓慢释放生长因子的作用,但这种有限的缓慢释放效果不能满足骨再生的需求。另一方面,除了生长因子的持续诱导外,干细胞的机械微环境也被认为是骨再生过程中的关键调节因素。简单地说,干细胞的成骨分化需要一个刚性的基质,而纯PRF凝胶的机械刚性显然太低。基于此,构建具有增强机械强度和缓释能力的iPRF基水凝胶生物墨水是一个很有前景的策略。医用明胶(Gel)和医用海藻酸钠(SA)的混合搭配,因具备良好的生物相容性和可打印性而被广泛用于再生医学。Gel/SA(GS)水凝胶墨水交联固化后可形成互通的、均匀的孔状结构,含有一定浓度iPRF的iPRF-GS复合水凝胶在含钙离子的凝血酶交联剂作用下可进一步形成稳定的多网络结构。iPRF-GS水凝胶的机械强度及持续缓释生长因子的能力得到了大幅增强。During normal fracture healing, VEGF, which promotes angiogenesis, is released directly at the beginning of injury and reaches a peak around day 10, while the expression of bone morphogenetic protein-2 (BMP-2), which promotes osteogenesis, continues to increase. Until around day 21. This suggests the need for a loading system capable of sustained and slow release of active factors. iPRF has a richer fibrin network than PRP and can slowly release growth factors, but this limited slow release effect cannot meet the needs of bone regeneration. On the other hand, in addition to the sustained induction of growth factors, the mechanical microenvironment of stem cells is also considered to be a key regulatory factor in the bone regeneration process. Simply put, osteogenic differentiation of stem cells requires a rigid matrix, and the mechanical rigidity of pure PRF gel is obviously too low. Based on this, constructing iPRF-based hydrogel bioinks with enhanced mechanical strength and sustained release capability is a promising strategy. The mixture of medical gelatin (Gel) and medical sodium alginate (SA) is widely used in regenerative medicine due to its good biocompatibility and printability. Gel/SA(GS) hydrogel ink can form an interconnected and uniform pore structure after cross-linking and solidification. The iPRF-GS composite hydrogel containing a certain concentration of iPRF can be formed under the action of thrombin cross-linking agent containing calcium ions. Further form a stable multi-network structure. The mechanical strength and sustained release of growth factors of iPRF-GS hydrogel have been greatly enhanced.
种子细胞的选择是骨组织工程及3D生物打印研究中最基础的同时也是最为关键的环节。骨髓来源的骨髓间充质干细胞(BMSC)及脂肪来源的脂肪源性干细胞(ADSC)是使用最为广泛的两种种子细胞,这两类干细胞均具备多项分化潜能,在不同的诱导条件下可分化为成骨细胞、软骨细胞、骨骼肌细胞等。然而其中BMSC来源有限,需要经骨髓穿刺从患者自体获取,易造成患者痛苦,此外我们在之前的骨髓穿刺及干细胞富集试验中发现BMSC在骨髓中的含量极少,为满足临床应用所需的浓度则需经体外扩增,然而反复的扩增过程则无法确保其干细胞特性能否一直保持。相比之下,选取ADSC作为种子细胞则临床转化潜力巨大。脂肪组织多位于皮下,可通过微创穿刺获取,原代培养所需脂肪组织量较少。ADSC可控性高、潜在致瘤风险低、来源广泛,提取制备方式简单且创伤小、伦理争议小,用于构建骨修复生物墨水潜力巨大。The selection of seed cells is the most basic and critical link in bone tissue engineering and 3D bioprinting research. Bone marrow mesenchymal stem cells (BMSC) derived from bone marrow and adipose-derived stem cells (ADSC) derived from fat are the two most widely used seed cells. Both types of stem cells have multiple differentiation potentials and can be differentiated under different induction conditions. Differentiate into osteoblasts, chondrocytes, skeletal muscle cells, etc. However, the source of BMSC is limited and needs to be obtained from the patient's own body through bone marrow puncture, which can easily cause pain to the patient. In addition, we found in previous bone marrow puncture and stem cell enrichment experiments that the content of BMSC in the bone marrow is very small. In order to meet the requirements for clinical application The concentration needs to be expanded in vitro, but repeated expansion processes cannot ensure that its stem cell characteristics can always be maintained. In contrast, selecting ADSC as seed cells has great potential for clinical transformation. Adipose tissue is mostly located under the skin and can be obtained through minimally invasive puncture. The amount of adipose tissue required for primary culture is small. ADSC is highly controllable, has low potential tumorigenic risk, is widely sourced, has a simple extraction and preparation method, is less invasive, and has less ethical controversy. It has great potential to be used to construct bone repair bioinks.
聚己内酯(PCL)及羟基磷灰石(HA)作为生物打印骨修复支架常用的主体支架材料,具有良好的生物相容性及骨整合作用,并且均可降解吸收,而二者的复合材料则具有更强的机械性能及优良的骨诱导性能。Polycaprolactone (PCL) and hydroxyapatite (HA) are commonly used main scaffold materials for bioprinted bone repair scaffolds. They have good biocompatibility and osseointegration, and both can be degraded and absorbed. The composite of the two The material has stronger mechanical properties and excellent osteoinductive properties.
基于以上分析,本发明将iPRF、明胶、海藻酸纳及ADSC按合适比例组配构建一种新型的骨修复生物墨水,并与PCL/HA材料通过双通道喷头逐层打印构建骨缺损修复功能支架。Based on the above analysis, the present invention combines iPRF, gelatin, sodium alginate and ADSC in appropriate proportions to construct a new type of bone repair bioink, and prints it with PCL/HA material layer by layer through dual-channel nozzles to construct a functional scaffold for bone defect repair. .
发明内容Contents of the invention
为了克服现有技术中的缺陷,本发明提供了一种用于骨缺损修复的3D打印生物墨水、功能支架及其制备方法。In order to overcome the deficiencies in the prior art, the present invention provides a 3D printing bioink for bone defect repair, a functional scaffold and a preparation method thereof.
为实现上述目的,本发明采用如下技术方案:In order to achieve the above objects, the present invention adopts the following technical solutions:
本发明的第一方面是提供一种用于骨缺损修复的3D打印生物墨水,其包括可注射型富血小板纤维蛋白(iPRF)、脂肪源性干细胞(ADSC)、明胶和海藻酸钠。The first aspect of the present invention is to provide a 3D printing bioink for bone defect repair, which includes injectable platelet-rich fibrin (iPRF), adipose-derived stem cells (ADSC), gelatin and sodium alginate.
进一步地,上述3D打印生物墨水包括如下浓度的组分:2~8%(w/v)医用明胶、0.05~2%(w/v)医用海藻酸钠、2~15%(v/v)iPRF溶液和0.5~2.0×107/ml脂肪源性干细胞,优选包括如下浓度的组分:5%(w/v)医用明胶、1%(w/v)医用海藻酸钠、10%(v/v)iPRF溶液和1.5×107/ml脂肪源性干细胞。Further, the above-mentioned 3D printing bio-ink includes components at the following concentrations: 2-8% (w/v) medical gelatin, 0.05-2% (w/v) medical sodium alginate, 2-15% (v/v) The iPRF solution and 0.5-2.0×10 7 /ml adipose-derived stem cells preferably include components at the following concentrations: 5% (w/v) medical gelatin, 1% (w/v) medical sodium alginate, 10% (v /v)iPRF solution and 1.5×10 7 /ml adipose-derived stem cells.
进一步地,上述iPRF溶液为来自自体、同种异体或异种异体的血液提取物;优选来自自体的血液提取物。Further, the above-mentioned iPRF solution is an autologous, allogeneic or xenogeneic blood extract; preferably, an autologous blood extract is obtained.
进一步地,上述iPRF溶液的制备方法为:取新鲜静脉血10~30ml,离心,吸取上层浅黄色液体即为iPRF溶液;优选地,取新鲜静脉血10~30ml,加入枸橼酸钠溶液,离心,吸取上层浅黄色液体即为iPRF溶液;更优选地,取新鲜静脉血10~30ml,加入浓度为2.5%的枸橼酸钠溶液0.5~2.5ml,离心,吸取上层浅黄色液体即为iPRF溶液;更优选地,2.5%的枸橼酸钠溶液的体积是新鲜静脉血体积的1/15,可维持生物墨水不凝状态约2小时,并不影响最终支架中凝胶成分的稳定性。Further, the preparation method of the above-mentioned iPRF solution is: take 10-30ml of fresh venous blood, centrifuge, and absorb the upper light yellow liquid to obtain the iPRF solution; preferably, take 10-30ml of fresh venous blood, add sodium citrate solution, and centrifuge. , absorb the light yellow liquid in the upper layer to become the iPRF solution; more preferably, take 10-30ml of fresh venous blood, add 0.5-2.5ml of sodium citrate solution with a concentration of 2.5%, centrifuge, and absorb the light yellow liquid in the upper layer to become the iPRF solution ;More preferably, the volume of 2.5% sodium citrate solution is 1/15 of the volume of fresh venous blood, which can maintain the non-coagulation state of the bio-ink for about 2 hours without affecting the stability of the gel component in the final stent.
进一步地,上述脂肪源性干细胞来源于自体脐腹部脂肪,是将脂肪组织消化培养至第三代获得。Furthermore, the above-mentioned adipose-derived stem cells are derived from autologous umbilical abdominal fat and are obtained by digesting and culturing adipose tissue to the third generation.
本发明的第二方面是提供上述3D打印生物墨水的制备方法,首先制备医用明胶和医用海藻酸钠的混合溶液,再加入iPRF溶液,最后将脂肪源性干细胞以一定浓度重悬于上述混合溶液中,得到该3D打印生物墨水。The second aspect of the present invention is to provide a method for preparing the above-mentioned 3D printing bioink. First, prepare a mixed solution of medical gelatin and medical sodium alginate, then add the iPRF solution, and finally resuspend the adipose-derived stem cells in the above mixed solution at a certain concentration. , the 3D printing bioink was obtained.
本发明的第三方面是提供一种骨缺损修复功能支架的制备方法,其包括如下步骤:The third aspect of the present invention provides a method for preparing a functional scaffold for bone defect repair, which includes the following steps:
步骤一,获取上述3D打印生物墨水;Step 1: Obtain the above-mentioned 3D printing bio-ink;
步骤二,将羟基磷灰石和聚己内酯按照一定的质量比熔融混合,得到支架承重结构材料;Step 2: Melt and mix hydroxyapatite and polycaprolactone according to a certain mass ratio to obtain a stent load-bearing structural material;
步骤三,对患者骨缺损部位进行CT扫描,然后通过三维重建软件进行三维建模,获得骨缺损部位的立体三维模型;Step three: perform a CT scan of the patient's bone defect site, and then perform 3D modeling through 3D reconstruction software to obtain a three-dimensional three-dimensional model of the bone defect site;
步骤四,将支架承重结构材料和3D打印生物墨水装入3D生物打印机的不同料筒中,然后逐层打印构建骨缺损修复功能支架。Step 4: Load the load-bearing structural materials of the scaffold and 3D printing bio-ink into different barrels of the 3D bioprinter, and then print them layer by layer to build a functional scaffold for bone defect repair.
进一步地,上述制备方法还包括:将骨缺损修复功能支架浸入交联剂中进行交联;优选地,交联剂为2%(w/v)浓度CaCl2的凝血酶交联剂,交联时间为10~50分钟,更优选为30分钟。Further, the above preparation method also includes: immersing the bone defect repair functional scaffold in a cross-linking agent for cross-linking; preferably, the cross-linking agent is a thrombin cross-linking agent with a concentration of 2% (w/v) CaCl2 , and the cross-linking agent The time is 10 to 50 minutes, and more preferably 30 minutes.
进一步地,羟基磷灰石和聚己内酯的质量比为1:9至3:7,优选为1:4。Further, the mass ratio of hydroxyapatite and polycaprolactone is 1:9 to 3:7, preferably 1:4.
进一步地,在上述骨缺损修复功能支架中,支架承重结构材料层的厚度为500~700μm,生物墨水层的厚度为400~500μm,二者交替层叠打印。Further, in the above-mentioned functional scaffold for bone defect repair, the thickness of the load-bearing structural material layer of the scaffold is 500-700 μm, and the thickness of the bio-ink layer is 400-500 μm, and the two are alternately stacked and printed.
本发明的第四方面是提供上述制备方法制备的骨缺损修复功能支架。The fourth aspect of the present invention is to provide a functional scaffold for bone defect repair prepared by the above preparation method.
本发明采用以上技术方案,与现有技术相比,具有如下技术效果:The present invention adopts the above technical solution and has the following technical effects compared with the existing technology:
本发明以聚己内酯及羟基磷灰石为支架承重结构材料,采用自体来源的iPRF溶液和ADSC作为生物墨水的主要活性成分,具备良好生物活性的同时,避免了免疫排斥反应,且制备的3D生物打印骨缺损修复功能支架机械强度高,缓释生长因子能力强,有利于诱导血管生成及干细胞的成骨分化,可适合大规模推广使用。The present invention uses polycaprolactone and hydroxyapatite as the load-bearing structural materials of the scaffold, and uses autologous iPRF solution and ADSC as the main active ingredients of the bio-ink. It has good biological activity while avoiding immune rejection, and is prepared The 3D bioprinted functional scaffold for bone defect repair has high mechanical strength and strong ability to slowly release growth factors, which is beneficial to inducing angiogenesis and osteogenic differentiation of stem cells, and can be suitable for large-scale promotion and use.
附图说明Description of drawings
图1是本发明一实施例中3D生物打印骨缺损修复功能支架的主视图;Figure 1 is a front view of a 3D bioprinted bone defect repair functional scaffold in one embodiment of the present invention;
图2是本发明一实施例中3D生物打印骨缺损修复功能支架的俯视图;Figure 2 is a top view of a 3D bioprinted bone defect repair functional scaffold in one embodiment of the present invention;
图3是本发明一实施例中的3D生物打印骨缺损修复功能支架的压缩应力应变曲线;Figure 3 is a compressive stress strain curve of a 3D bioprinted functional scaffold for bone defect repair in an embodiment of the present invention;
图4显示了本发明一实施例中的3D生物打印骨缺损修复功能支架中关键生长因子的释放动力学检测结果;图A:TGF-β,图B:VEGF,图C:PDGF。Figure 4 shows the release kinetics detection results of key growth factors in the 3D bioprinted functional scaffold for bone defect repair in one embodiment of the present invention; Figure A: TGF-β, Figure B: VEGF, Figure C: PDGF.
具体实施方式Detailed ways
下面通过具体实施例和附图对本发明进行详细和具体的介绍,以使更好的理解本发明,但是下述实施例并不限制本发明范围。The present invention will be described in detail and concretely below through specific embodiments and drawings, so as to better understand the present invention. However, the following embodiments do not limit the scope of the present invention.
实施例中方法如无特殊说明的采用常规方法,使用的试剂如无特殊说明的使用常规市售试剂或按常规方法配制的试剂。Unless otherwise specified, the methods in the examples are conventional methods, and the reagents used are conventional commercially available reagents or reagents prepared according to conventional methods, unless otherwise specified.
实施例1Example 1
本实施例提供了一种骨缺损修复功能支架,具体的制备过程如下:This embodiment provides a functional scaffold for bone defect repair. The specific preparation process is as follows:
1、制备患者自体脂肪源性干细胞:取提取的脂肪组织,采用胶原酶I消化联合组织块培养法提取人脂肪源性干细胞,具体步骤如下:1. Preparation of patient's autologous adipose-derived stem cells: Take the extracted adipose tissue and use collagenase I digestion combined with tissue block culture to extract human adipose-derived stem cells. The specific steps are as follows:
1)在无菌条件下通过微创穿刺抽取患者的脐腹部脂肪约1.5g,并用无菌的生理盐水冲洗至无血色;1) Extract about 1.5g of the patient’s umbilical and abdominal fat through minimally invasive puncture under sterile conditions, and rinse with sterile saline until there is no blood color;
2)加入与脂肪组织等体积的0.1%I型胶原酶,在细胞培养箱内消化20min,用10%胎牛血清的DMEM培养基终止消化,然后以1000r/min离心10min,弃上清。用DMEM完全培养基将未消化完全的组织块及下层的细胞团重悬,接种于培养皿内进行培养。待细胞融合达到90%左右时进行传代,收集第三代脂肪源性干细胞用于构建生物活性墨水。2) Add 0.1% type I collagenase in the same volume as the adipose tissue, digest in a cell culture incubator for 20 minutes, terminate the digestion with 10% fetal bovine serum DMEM medium, and then centrifuge at 1000 r/min for 10 minutes, and discard the supernatant. Resuspend the incompletely digested tissue pieces and underlying cell clusters in DMEM complete medium, then inoculate them into a culture dish for culture. When the cell fusion reaches about 90%, the cells are passaged, and the third generation adipose-derived stem cells are collected to construct bioactive ink.
2、制备患者自体可注射型富血小板纤维蛋白:2. Prepare the patient’s autologous injectable platelet-rich fibrin:
全程无菌操作下抽取患者静脉血约28ml,然后加入2.5%的枸橼酸钠溶液2ml并轻轻混匀(枸橼酸钠溶液的体积占比为1/15),以700r/min离心3min。离心后管内液体分为上下两层,吸取上层浅黄色液体即得到可注射型富血小板纤维蛋白溶液。Extract about 28 ml of the patient's venous blood under aseptic operation, then add 2 ml of 2.5% sodium citrate solution and mix gently (the volume ratio of the sodium citrate solution is 1/15), and centrifuge at 700 r/min for 3 minutes. . After centrifugation, the liquid in the tube is divided into upper and lower layers. The upper layer of light yellow liquid is sucked to obtain an injectable platelet-rich fibrin solution.
3、复合生物墨水的制备:首先制备医用明胶和医用海藻酸钠的混合溶液,再加入的iPRF溶液,最后将脂肪源性干细胞重悬于上述混合溶液中构建为生物墨水,在该生物墨水中,医用明胶的浓度为5%(w/v),医用海藻酸钠的浓度为1%(w/v),iPRF溶液的浓度为10%(v/v),脂肪源性干细胞的浓度为1.5×107/ml。3. Preparation of composite bioink: First prepare a mixed solution of medical gelatin and medical sodium alginate, then add the iPRF solution, and finally resuspend the adipose-derived stem cells in the above mixed solution to construct a bioink. In the bioink , the concentration of medical gelatin is 5% (w/v), the concentration of medical sodium alginate is 1% (w/v), the concentration of iPRF solution is 10% (v/v), and the concentration of adipose-derived stem cells is 1.5 ×10 7 /ml.
4、支架承重结构材料的制备:4. Preparation of load-bearing structural materials for the bracket:
将羟基磷灰石和聚己内酯按照1:4的质量比熔融混合,得到支架承重结构材料。Hydroxyapatite and polycaprolactone are melted and mixed at a mass ratio of 1:4 to obtain a stent load-bearing structural material.
现有骨修复材料中,羟基磷灰石和聚己内酯通常采用1:9至3:7之间的质量比混匀,然而我们在实际操作中发现,按照3:7的质量比进行熔融会有部分羟基磷灰石粉末析出。因而通过实际熔融混合及打印测试对材料比例进行优化,按照1:4的质量比进行制备,此时既可保证不会有部分羟基磷灰石粉末析出,且最大程度地利用了羟基磷灰石的骨诱导能力。Among existing bone repair materials, hydroxyapatite and polycaprolactone are usually mixed at a mass ratio between 1:9 and 3:7. However, we found in actual operations that they are melted at a mass ratio of 3:7. Some hydroxyapatite powder will precipitate. Therefore, the material ratio is optimized through actual melt mixing and printing tests, and is prepared according to a mass ratio of 1:4. At this time, it can be ensured that no part of the hydroxyapatite powder will precipitate, and the hydroxyapatite can be utilized to the maximum extent. osteoinductive ability.
5、设计3D生物打印的骨修复功能支架的参数:对患者骨缺损部位进行CT扫描,然后通过三维重建软件进行三维建模,获得骨缺损部位的立体三维模型,由此根据临床实际情况确定需要的3D生物打印功能支架的形状、大小、以及支架主体承重层和生物墨水层厚度等参数(本实施例中,PCL/HA支架主体层层厚600μm,iPRF/Gel/SA/ADSC生物墨水层层厚450μm)。5. Design the parameters of the 3D bioprinted bone repair functional scaffold: conduct a CT scan of the patient's bone defect site, and then perform 3D modeling through 3D reconstruction software to obtain a three-dimensional three-dimensional model of the bone defect site, thereby determining the needs based on the actual clinical situation The shape, size, and thickness of the stent body load-bearing layer and bio-ink layer of the 3D bioprinted functional scaffold (in this example, the PCL/HA stent body layer thickness is 600 μm, and the iPRF/Gel/SA/ADSC bio-ink layer layer thickness Thick 450μm).
6、分别将PCL/HA材料装入3D生物打印机的料筒一,将iPRF/Gel/SA/ADSC生物墨水装入生物打印机的料筒二,然后逐层打印构建骨缺损修复功能支架,最后浸入含2%(w/v)浓度CaCl2的凝血酶交联剂中进行交联约30分钟,得到的3D生物打印骨缺损修复功能支架如图1-2所示。6. Load the PCL/HA material into the barrel one of the 3D bioprinter, and load the iPRF/Gel/SA/ADSC bio-ink into the barrel two of the bioprinter. Then print it layer by layer to build a functional scaffold for bone defect repair, and finally immerse it. Cross-linking is carried out in a thrombin cross-linking agent containing 2% (w/v) CaCl 2 for about 30 minutes, and the resulting 3D bioprinted bone defect repair functional scaffold is shown in Figure 1-2.
实施例2Example 2
本实施例对实施例1提供的骨缺损修复功能支架进行性能检测,具体的实验步骤和结果如下:This example performs performance testing on the functional scaffold for bone defect repair provided in Example 1. The specific experimental steps and results are as follows:
1.抗压强度检测试验1. Compressive strength testing test
使用万能机械试验机检测3D生物打印骨修复功能支架的应力-应变曲线,再根据应力-应变曲线数据得到支架的抗压强度及压缩模量值。如图3所示,生物功能支架的抗压强度为8.56±0.38MPa,压缩模量为135.26±3.89MPa。A universal mechanical testing machine was used to detect the stress-strain curve of the 3D bioprinted bone repair functional scaffold, and then the compressive strength and compressive modulus values of the scaffold were obtained based on the stress-strain curve data. As shown in Figure 3, the compressive strength of the biofunctional scaffold is 8.56±0.38MPa, and the compressive modulus is 135.26±3.89MPa.
2.释放动力学检测试验2. Release kinetics detection test
将3D生物打印骨缺损修复功能支架浸入含有10ml PBS的50ml离心管中,放入37℃培养箱内的摇床上轻轻摇晃。在预定时间点(1d、3d、7d、14d、21d)吸取离心管内的全部PBS溶液,然后以3000r/min离心约10min,提取上清液后,储存于-80℃冰箱内备用。同时,重新向离心管内添加新鲜PBS溶液10ml,待下一个时间点进行收集操作。对各时间段收集的缓释液进行生长因子浓度检测前,先将缓释液从-80℃冰箱转移至4℃冰箱平衡约2小时后备用待检。将各时间点收集的缓释液样本,按照血小板转化因子(TGF-β)、血管内皮生长因子(VEGF)及血小板衍生生长因子(PDGF-BB)酶联免疫检测试剂盒的说明进行实验操作。如图4所示,实施例构建的生物功能支架能持续缓释生长因子(TGF-β、VEGF和PDGF)达3周以上。Dip the 3D bioprinted bone defect repair functional scaffold into a 50ml centrifuge tube containing 10ml PBS, and place it on a shaker in a 37°C incubator to shake gently. At predetermined time points (1d, 3d, 7d, 14d, 21d), absorb all the PBS solution in the centrifuge tube, then centrifuge at 3000r/min for about 10min, extract the supernatant, and store it in a -80°C refrigerator for later use. At the same time, add 10 ml of fresh PBS solution to the centrifuge tube again, and wait for the collection operation at the next time point. Before testing the growth factor concentration of the sustained-release solution collected at each time period, first transfer the sustained-release solution from the -80°C refrigerator to the 4°C refrigerator to equilibrate for about 2 hours and then set aside for testing. The sustained-release fluid samples collected at each time point were subjected to experimental operations according to the instructions of the platelet transforming factor (TGF-β), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF-BB) enzyme-linked immunoassay kits. As shown in Figure 4, the biofunctional scaffold constructed in the embodiment can sustain the sustained release of growth factors (TGF-β, VEGF and PDGF) for more than 3 weeks.
以上对本发明的具体实施例进行了详细描述,但其只作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。The specific embodiments of the present invention have been described in detail above, but they are only used as examples, and the present invention is not limited to the specific embodiments described above. For those skilled in the art, any equivalent modifications and substitutions to the present invention are also within the scope of the present invention. Therefore, all equivalent changes and modifications made without departing from the spirit and scope of the present invention should be included in the scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311081625.0A CN117205364A (en) | 2023-08-25 | 2023-08-25 | A 3D printing bioink, functional scaffold and preparation method for bone defect repair |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311081625.0A CN117205364A (en) | 2023-08-25 | 2023-08-25 | A 3D printing bioink, functional scaffold and preparation method for bone defect repair |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117205364A true CN117205364A (en) | 2023-12-12 |
Family
ID=89048750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311081625.0A Pending CN117205364A (en) | 2023-08-25 | 2023-08-25 | A 3D printing bioink, functional scaffold and preparation method for bone defect repair |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117205364A (en) |
-
2023
- 2023-08-25 CN CN202311081625.0A patent/CN117205364A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tang et al. | Structure and ingredient-based biomimetic scaffolds combining with autologous bone marrow-derived mesenchymal stem cell sheets for bone-tendon healing | |
Ren et al. | Effects of purified exosome product on rotator cuff tendon-bone healing in vitro and in vivo | |
Yoshimi et al. | Self-assembling peptide nanofiber scaffolds, platelet-rich plasma, and mesenchymal stem cells for injectable bone regeneration with tissue engineering | |
Zhang et al. | Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits | |
CN108310470B (en) | Sustained and controlled release oxygen microsphere, preparation method and application thereof | |
EP2491961A1 (en) | Composition for inducing tissue regeneration by activating platelet-rich plasma (prp), and method for manufacturing same | |
Zheng et al. | A rabbit model of osteochondral regeneration using three-dimensional printed polycaprolactone-hydroxyapatite scaffolds coated with umbilical cord blood mesenchymal stem cells and chondrocytes | |
CN112972760B (en) | Endothelial extracellular matrix loaded 3D printing bone defect repair support and preparation method thereof | |
US9889233B2 (en) | Method of producing native components, such as growth factors or extracellular matrix proteins, through cell culturing of tissue samples for tissue repair | |
Leng et al. | Platelet-rich plasma-enhanced osseointegration of decellularized bone matrix in critical-size radial defects in rabbits | |
CN110478528B (en) | Preparation method and application of novel tissue repair promoting material | |
CN108030958A (en) | The formula and preparation method of 3D printing artificial bone composite fibre albumen stent | |
CN112915264A (en) | Preparation method for gelatin-sodium alginate-PRP composite material | |
Liu et al. | 3D printed platelet-rich plasma-loaded scaffold with sustained cytokine release for bone defect repair | |
Liu et al. | Cell-free scaffolds functionalized with bionic cartilage acellular matrix microspheres to enhance the microfracture treatment of articular cartilage defects | |
Zhang et al. | Repair of osteochondral defects in a rabbit model using bilayer poly (lactide-co-glycolide) scaffolds loaded with autologous platelet-rich plasma | |
Lee et al. | Use of mesenchymal stem cells to facilitate bone regeneration in normal and chemotherapy-treated rats | |
Dong et al. | Platelet-rich plasma promotes angiogenesis of prefabricated vascularized bone graft | |
CN115970054B (en) | 3D printed porous bone scaffold loaded with silicon nitride and preparation method and application thereof | |
Zhao et al. | Irregular bone defect repair using tissue-engineered periosteum in a rabbit model | |
Wei et al. | Biodegradable silk fibroin scaffold doped with mineralized collagen induces bone regeneration in rat cranial defects | |
Nair et al. | Tissue-engineered maxillofacial skeletal defect reconstruction by 3D printed beta-tricalcium phosphate scaffold tethered with growth factors and fibrin glue implanted autologous bone marrow-derived mesenchymal stem cells | |
CN114767342A (en) | Preparation method of bone defect repair stent | |
CN115463263B (en) | Injectable double-network hydrogel system and preparation method and application thereof | |
Zou et al. | Phenotypic, trophic, and regenerative properties of mesenchymal stem cells from different osseous tissues |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |