CN117199995A - A semiconductor laser - Google Patents
A semiconductor laser Download PDFInfo
- Publication number
- CN117199995A CN117199995A CN202311283697.3A CN202311283697A CN117199995A CN 117199995 A CN117199995 A CN 117199995A CN 202311283697 A CN202311283697 A CN 202311283697A CN 117199995 A CN117199995 A CN 117199995A
- Authority
- CN
- China
- Prior art keywords
- layer
- ohmic contact
- semiconductor laser
- contact layer
- cavity surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 51
- 239000000969 carrier Substances 0.000 claims abstract description 11
- 238000003466 welding Methods 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 6
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910002601 GaN Inorganic materials 0.000 claims description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 3
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 claims description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
技术领域Technical field
本发明涉及半导体技术领域,涉及一种半导体激光器。The invention relates to the field of semiconductor technology, and relates to a semiconductor laser.
背景技术Background technique
半导体激光器具备功率高、可靠性强、寿命长、体积小以及成本低等诸多优点,广泛应用于泵浦、医疗、通信等领域。Semiconductor lasers have many advantages such as high power, strong reliability, long life, small size and low cost, and are widely used in pumping, medical, communications and other fields.
目前,半导体激光器前腔和后腔具有不同的腔面反射率,在纵向上光场分布不均匀,因此纵向上载流子消耗速率不同,导致载流子纵向空间烧孔效应,即前腔面处载流子消耗快、增益减少。同时前腔面初发热多,造成纵向温度不均匀,降低了激光器的效率以及最大输出功率。At present, the front cavity and the back cavity of semiconductor lasers have different cavity surface reflectivities, and the light field distribution is uneven in the longitudinal direction. Therefore, the carrier consumption rate is different in the longitudinal direction, resulting in the hole burning effect of carriers in the longitudinal space, that is, at the front cavity surface. The carriers are consumed quickly and the gain is reduced. At the same time, the front cavity surface generates a lot of heat initially, resulting in uneven longitudinal temperature, which reduces the efficiency and maximum output power of the laser.
同时,由于半导体激光器条形波导在水平方向上中间与两侧消耗载流子速率不同,中间载流子消耗快,两侧载流子消耗慢,形成载流子横向空间烧孔效应。同时发热功率也不同,导致半导体激光器中间温度高,导致中间折射率升高,光场更为集中,降低了激光器的亮度和最大输出功率。At the same time, because the semiconductor laser strip waveguide consumes carriers at different rates in the middle and both sides in the horizontal direction, the carriers in the middle are consumed quickly and the carriers on both sides are consumed slowly, forming a lateral spatial hole-burning effect of carriers. At the same time, the heating power is also different, resulting in a high intermediate temperature of the semiconductor laser, causing an increase in the intermediate refractive index, making the light field more concentrated, and reducing the brightness and maximum output power of the laser.
发明内容Contents of the invention
(一)技术方案(1) Technical solutions
鉴于此,为了克服上述问题的至少一个方面,本发明的实施例提供一种半导体激光器,包括:条形波导111,包括:欧姆接触层170,欧姆接触层170在半导体激光器的前腔面沿第一方向上的厚度逐渐递增,并形成为第一形状,用以平衡半导体激光器在第一方向上载流子的消耗,第一方向为半导体激光器的前腔面延伸至后腔面的方向;欧姆接触层170的中心沿水平方向向两侧的厚度逐渐递增,并形成为第二形状,用以平衡半导体激光器在水平方向上载流子的消耗,水平方向垂直于第一方向。In view of this, in order to overcome at least one aspect of the above problems, embodiments of the present invention provide a semiconductor laser, including: a strip waveguide 111, including: an ohmic contact layer 170, the ohmic contact layer 170 is along the front cavity surface of the semiconductor laser. The thickness in one direction gradually increases and is formed into a first shape to balance the carrier consumption of the semiconductor laser in the first direction. The first direction is the direction in which the front cavity surface of the semiconductor laser extends to the rear cavity surface; ohmic contact The thickness of the center of the layer 170 gradually increases along the horizontal direction toward both sides, and is formed into a second shape to balance the carrier consumption of the semiconductor laser in the horizontal direction, which is perpendicular to the first direction.
可选地,第一形状包括:阶梯形、梯形和椭圆形;第二形状包括:阶梯形、梯形和椭圆形。Optionally, the first shape includes: stepped shape, trapezoid, and elliptical shape; the second shape includes: stepped shape, trapezoidal shape, and elliptical shape.
可选地,欧姆接触层170在半导体激光器前腔面与后腔面上的平均厚度比值包括1:2~1:100。Optionally, the average thickness ratio of the ohmic contact layer 170 on the front cavity surface and the back cavity surface of the semiconductor laser includes 1:2 to 1:100.
可选地,欧姆接触层170在水平方向上中心与两侧的平均厚度比值包括1:2~1:100。Optionally, the average thickness ratio between the center and both sides of the ohmic contact layer 170 in the horizontal direction includes 1:2 to 1:100.
可选地,欧姆接触层170在半导体激光器前腔面的平均厚度包括20nm~300nm,在半导体激光器后腔面的平均厚度包括200nm~2000nm。Optionally, the average thickness of the ohmic contact layer 170 on the front cavity surface of the semiconductor laser ranges from 20 nm to 300 nm, and the average thickness on the rear cavity surface of the semiconductor laser ranges from 200 nm to 2000 nm.
可选地,欧姆接触层170在水平方向上中心的平均厚度包括20nm~300nm,在水平方向上两侧的平均厚度包括200nm~2000nm。Optionally, the average thickness of the center of the ohmic contact layer 170 in the horizontal direction includes 20 nm to 300 nm, and the average thickness of both sides in the horizontal direction includes 200 nm to 2000 nm.
可选地,欧姆接触层170的材料包括砷化镓、砷化铝镓、磷化铟、氮化镓、氧化铟锡。Optionally, the material of the ohmic contact layer 170 includes gallium arsenide, aluminum gallium arsenide, indium phosphide, gallium nitride, and indium tin oxide.
可选地,条形波导111还包括:衬底110;下限制层120,位于衬底110的表面;下波导层130,生长下限制层120的表面;有源区140,生长在下波导层130远离下限制层110的一端表面;上波导层150,生长在有源区140远离下波导层130的一端表面;上限制层160,生长在上波导层150远离上波导层150的一端表面,并与欧姆接触层170的表面相接触。Optionally, the strip waveguide 111 also includes: a substrate 110; a lower confinement layer 120, located on the surface of the substrate 110; a lower waveguide layer 130, grown on the surface of the lower confinement layer 120; and an active region 140, grown on the lower waveguide layer 130. The upper waveguide layer 150 is grown on the end surface of the active region 140 away from the lower waveguide layer 130; the upper confinement layer 160 is grown on the end surface of the upper waveguide layer 150 away from the upper waveguide layer 150, and in contact with the surface of the ohmic contact layer 170 .
可选地,该半导体激光器还包括:下电极100,设置在衬底110远离上限制层120的一端表面;上电极180,设置在欧姆接触层170远离上限制层160的一端表面;绝缘层200设置在条形波导111外,所述上电极180靠近下电级100的一端表面。Optionally, the semiconductor laser further includes: a lower electrode 100 , disposed on an end surface of the substrate 110 away from the upper confinement layer 120 ; an upper electrode 180 , disposed on an end surface of the ohmic contact layer 170 away from the upper confinement layer 160 ; an insulating layer 200 The upper electrode 180 is disposed outside the strip waveguide 111 and is close to one end surface of the lower electrode 100 .
可选地,该半导体激光器还包括:焊接层,设置在上电极180的表面,焊接层在半导体激光器的前腔面沿第一方向上的厚度逐渐递增,焊接层的中心沿水平方向向两侧的厚度逐渐递增。Optionally, the semiconductor laser further includes: a welding layer disposed on the surface of the upper electrode 180. The thickness of the welding layer on the front cavity surface of the semiconductor laser gradually increases along the first direction. The center of the welding layer extends toward both sides in the horizontal direction. The thickness gradually increases.
(二)有益效果(2) Beneficial effects
本发明所提供的半导体激光器,采用自前腔面到后腔面,自中心至两侧厚度逐渐递增的欧姆接触层,使得半导体激光器的注入电流密度重新分布,抑制了空间烧孔效应并提高了电流利用率,进而提高了半导体激光器的效率与功率;降低了温度的不均匀性,提高半导体激光器的亮度及最大输出功率。The semiconductor laser provided by the present invention adopts an ohmic contact layer whose thickness gradually increases from the front cavity surface to the rear cavity surface and from the center to both sides, so that the injection current density of the semiconductor laser is redistributed, suppressing the spatial hole burning effect and increasing the current The utilization rate is improved, thereby improving the efficiency and power of the semiconductor laser; reducing temperature non-uniformity, improving the brightness and maximum output power of the semiconductor laser.
附图说明Description of the drawings
图1示意性地示出了本发明实施例所提供的一种半导体激光器的结构示意图。Figure 1 schematically shows a schematic structural diagram of a semiconductor laser provided by an embodiment of the present invention.
图2a-2b示意性地示出了本发明实施例所提供的欧姆接触层的形状示意图。2a-2b schematically illustrate the shape of the ohmic contact layer provided by the embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。In order to make the purpose, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
需要说明的是,实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本发明的保护范围。贯穿附图,相同的元素由相同或相近的附图标记来表示。在可能导致对本发明的理解造成混淆时,将省略常规结构或构造。It should be noted that the directional terms mentioned in the embodiments, such as "up", "down", "front", "back", "left", "right", etc., are only for reference to the direction of the drawings and are not used for reference. to limit the scope of protection of the present invention. Throughout the drawings, the same elements are designated by the same or similar reference numerals. Conventional structures or constructions will be omitted where they may obscure the understanding of the invention.
并且图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本发明实施例的内容。再者,单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。Moreover, the shapes and sizes of the components in the figures do not reflect the actual sizes and proportions, but only illustrate the contents of the embodiments of the present invention. Furthermore, the word "comprising" does not exclude the presence of elements or steps not listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements.
图1示意性地示出了本发明实施例所提供的一种半导体激光器的结构示意图。Figure 1 schematically shows a schematic structural diagram of a semiconductor laser provided by an embodiment of the present invention.
如图一所示,该半导体激光器包括衬底110;下电极100,设置在衬底的下方;条形波导111。As shown in Figure 1, the semiconductor laser includes a substrate 110; a lower electrode 100, which is disposed below the substrate; and a strip waveguide 111.
本实施例中,条形波导111包括衬底110;下限制层120;下波导层130,生长下限制层120的表面;有源区140,生长在下波导层130远离下限制层110的一端表面;上波导层150,生长在有源区140远离下波导层130的一端表面;上限制层160,生长在上波导层150远离上波导层150的一端表面,并与欧姆接触层170的表面相接触。In this embodiment, the strip waveguide 111 includes a substrate 110; a lower confinement layer 120; a lower waveguide layer 130, on which the lower confinement layer 120 is grown; and an active area 140, which is grown on an end surface of the lower waveguide layer 130 away from the lower confinement layer 110. ; The upper waveguide layer 150 is grown on the end surface of the active area 140 away from the lower waveguide layer 130 ; the upper restriction layer 160 is grown on the end surface of the upper waveguide layer 150 away from the upper waveguide layer 150 and is in contact with the surface of the ohmic contact layer 170 touch.
本实施例中,欧姆接触层170在半导体激光器的前腔面沿第一方向上的厚度逐渐递增,并形成为第一形状,用以平衡半导体激光器在第一方向上载流子的消耗,第一方向为半导体激光器的前腔面延伸至后腔面的方向;欧姆接触层170的中心沿水平方向向两侧的厚度逐渐递增,并形成为第二形状,用以平衡半导体激光器在水平方向上载流子的消耗,水平方向垂直于第一方向。In this embodiment, the thickness of the ohmic contact layer 170 on the front cavity surface of the semiconductor laser gradually increases along the first direction and is formed into a first shape to balance the consumption of carriers by the semiconductor laser in the first direction. The first The direction is the direction from the front cavity surface of the semiconductor laser to the rear cavity surface; the thickness of the center of the ohmic contact layer 170 gradually increases along the horizontal direction to both sides, and is formed into a second shape to balance the current carrying capacity of the semiconductor laser in the horizontal direction. The consumption of sub-elements, the horizontal direction is perpendicular to the first direction.
欧姆接触层170自前腔到后腔、从条形波导中心至两侧厚度增加,串联电阻从前腔面到后腔面、从条形波导中心至两侧逐渐增加,使得电流密度分布从前腔至后腔、从脊条中心至两侧逐渐降低,与载流子消耗速率相吻合,从而使载流子密度更为均匀。The thickness of the ohmic contact layer 170 increases from the front cavity to the back cavity and from the center of the strip waveguide to both sides. The series resistance gradually increases from the front cavity surface to the back cavity surface and from the center of the strip waveguide to both sides, causing the current density distribution from the front cavity to the back cavity. The cavity gradually decreases from the center to both sides of the ridge, which is consistent with the carrier consumption rate, thereby making the carrier density more uniform.
本实施例中,欧姆接触层的热阻要小于焊料,因此前腔面至后腔面、从条形波导中心至两侧的热阻逐渐增加,因此有利于前腔面和条形波导的散热,降低了温度的不均匀性,使得光场不会再中间集中,提高半导体激光器的亮度及最大输出功率。In this embodiment, the thermal resistance of the ohmic contact layer is smaller than that of the solder, so the thermal resistance gradually increases from the front cavity surface to the back cavity surface and from the center of the strip waveguide to both sides, which is beneficial to the heat dissipation of the front cavity surface and the strip waveguide. , reducing the temperature non-uniformity, so that the light field is no longer concentrated in the middle, improving the brightness and maximum output power of the semiconductor laser.
本实施例中,第一形状包括:阶梯形、梯形和椭圆形;第二形状包括:阶梯形、梯形和椭圆形。In this embodiment, the first shape includes: ladder shape, trapezoid, and ellipse; the second shape includes: ladder shape, trapezoid, and ellipse.
图2a-图2b示意性地示出了本发明实施例所提供的欧姆接触层的形状示意图。2a-2b schematically illustrate the shape of the ohmic contact layer provided by the embodiment of the present invention.
如图2a所示,欧姆接触层170在半导体激光器的前腔面沿第一方向上的第一形状为阶梯型;As shown in Figure 2a, the first shape of the ohmic contact layer 170 along the first direction on the front cavity surface of the semiconductor laser is a stepped shape;
如图2b所示,欧姆接触层170在水平方向上从中心到两侧的第二形状为阶梯型。As shown in FIG. 2b , the second shape of the ohmic contact layer 170 from the center to both sides in the horizontal direction is a stepped shape.
本实施例中,欧姆接触层170的材料包括砷化镓、砷化铝镓、磷化铟、氮化镓、氧化铟锡。In this embodiment, the materials of the ohmic contact layer 170 include gallium arsenide, aluminum gallium arsenide, indium phosphide, gallium nitride, and indium tin oxide.
本实施例中,欧姆接触层170在半导体激光器前腔面与后腔面上的平均厚度比值包括1:2~1:100。欧姆接触层170在水平方向上中心与两侧的平均厚度比值包括1:2~1:100。In this embodiment, the average thickness ratio of the ohmic contact layer 170 on the front cavity surface and the back cavity surface of the semiconductor laser ranges from 1:2 to 1:100. The average thickness ratio of the center to both sides of the ohmic contact layer 170 in the horizontal direction ranges from 1:2 to 1:100.
本实施例中,欧姆接触层170在半导体激光器前腔面的平均厚度包括20nm~300nm,在半导体激光器后腔面的平均厚度包括200nm~2000nm。欧姆接触层170在水平方向上中心的平均厚度包括20nm~300nm,在水平方向上两侧的平均厚度包括200nm~2000nm。In this embodiment, the average thickness of the ohmic contact layer 170 on the front cavity surface of the semiconductor laser ranges from 20 nm to 300 nm, and the average thickness on the rear cavity surface of the semiconductor laser ranges from 200 nm to 2000 nm. The average thickness of the center of the ohmic contact layer 170 in the horizontal direction includes 20 nm to 300 nm, and the average thickness of both sides in the horizontal direction includes 200 nm to 2000 nm.
本实施例中,该半导体激光器还包括上电极180,设置在欧姆接触层170远离上限制层160的一端表面。In this embodiment, the semiconductor laser further includes an upper electrode 180 , which is disposed on an end surface of the ohmic contact layer 170 away from the upper limiting layer 160 .
本实施例中,该半导体激光器还包括:焊接层,设置在上电极180的表面,焊接层在半导体激光器的前腔面沿第一方向上的厚度逐渐递增,焊接层的中心沿水平方向向两侧的厚度逐渐递增。In this embodiment, the semiconductor laser also includes: a welding layer, which is provided on the surface of the upper electrode 180. The thickness of the welding layer on the front cavity surface of the semiconductor laser gradually increases along the first direction. The center of the welding layer extends to both sides in the horizontal direction. The thickness of the sides gradually increases.
本实施例中,所述焊接层的材料包括金锡、铟;所述焊接层的材料的导热率大于所述欧姆接触层170材料的导热率。In this embodiment, the material of the welding layer includes gold, tin, and indium; the thermal conductivity of the material of the welding layer is greater than the thermal conductivity of the material of the ohmic contact layer 170 .
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above are only specific embodiments of the present invention and are not intended to limit the present invention. Within the spirit and principles of the present invention, any modifications, equivalent substitutions, improvements, etc. shall be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311283697.3A CN117199995A (en) | 2023-09-28 | 2023-09-28 | A semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311283697.3A CN117199995A (en) | 2023-09-28 | 2023-09-28 | A semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117199995A true CN117199995A (en) | 2023-12-08 |
Family
ID=89001670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311283697.3A Pending CN117199995A (en) | 2023-09-28 | 2023-09-28 | A semiconductor laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117199995A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119447991A (en) * | 2025-01-09 | 2025-02-14 | 无锡市华辰芯光半导体科技有限公司 | A semiconductor laser chip structure and manufacturing method thereof |
-
2023
- 2023-09-28 CN CN202311283697.3A patent/CN117199995A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119447991A (en) * | 2025-01-09 | 2025-02-14 | 无锡市华辰芯光半导体科技有限公司 | A semiconductor laser chip structure and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100574027C (en) | The high-power quantum-well laser of non-aluminum active district 808nm of unsymmetric structure | |
WO2022021682A1 (en) | Low-power algainp red light semiconductor laser with double asymmetric waveguide layers and preparation method therefor | |
CN104466678A (en) | Tube core of high-power low-threshold fundamental-transverse-mode 975-nm semiconductor laser unit | |
CN101820136A (en) | Asymmetrical 980nm semiconductor laser structure with high power and wide waveguide | |
CN101093931B (en) | Long-wavelength vertical-cavity surface-emitting laser with integrated pump light source and manufacturing method | |
CN115548880A (en) | Vertical cavity surface emitting laser array with multi-tunnel junction flip-chip surface relief structure | |
CN117199995A (en) | A semiconductor laser | |
CN115133399B (en) | A kind of semiconductor laser and its preparation method | |
WO2021056617A1 (en) | Semiconductor laser and carrier injection method therefor | |
CN108365516A (en) | The semiconductor laser and preparation method thereof of ridge array is coupled based on indium phosphide | |
CN102891435B (en) | High-power semiconductor laser with non-absorbing windows | |
CN108346972A (en) | A kind of AlGaInP semiconductor lasers with superlattices limiting layer | |
CN106025796A (en) | Semiconductor conical laser | |
CN116979364A (en) | Wide-stripe semiconductor laser for improving beam quality and preparation method thereof | |
CN101841124A (en) | High-power fundamental transverse mode flat plate coupling optical waveguide semiconductor laser structure | |
CN118889183A (en) | High-power long-wave infrared quantum cascade laser and its manufacturing method | |
CN113794104B (en) | Photonic crystal laser | |
CN111755949B (en) | Preparation method of ridge GaAs-based laser with asymmetric injection window | |
CN109599743B (en) | Conical Photonic Crystal Laser Based on Mode Control of Photonic Crystal Defect States | |
CN114725775B (en) | High-order coupled-mode lasers | |
CN101714744A (en) | Non-annular cavity type semiconductor laser | |
CN104242058A (en) | Aluminum-free semiconductor laser structure | |
CN117199987A (en) | Semiconductor laser chip and preparation method thereof | |
CN101841123A (en) | Semiconductor laser structure with reverse V-shaped coupling optical waveguide and small divergence angle | |
CN117895329A (en) | Method for improving output power and beam quality of wide-stripe high-power semiconductor laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |