CN117194319A - 一种基于asic方法的高可靠芯片参数配置方法及系统 - Google Patents

一种基于asic方法的高可靠芯片参数配置方法及系统 Download PDF

Info

Publication number
CN117194319A
CN117194319A CN202311455248.2A CN202311455248A CN117194319A CN 117194319 A CN117194319 A CN 117194319A CN 202311455248 A CN202311455248 A CN 202311455248A CN 117194319 A CN117194319 A CN 117194319A
Authority
CN
China
Prior art keywords
chip
parameter configuration
chip parameter
asic
representing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311455248.2A
Other languages
English (en)
Other versions
CN117194319B (zh
Inventor
刘赛赛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Qinglang Intelligent Technology Co ltd
Original Assignee
Nantong Qinglang Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Qinglang Intelligent Technology Co ltd filed Critical Nantong Qinglang Intelligent Technology Co ltd
Priority to CN202311455248.2A priority Critical patent/CN117194319B/zh
Publication of CN117194319A publication Critical patent/CN117194319A/zh
Application granted granted Critical
Publication of CN117194319B publication Critical patent/CN117194319B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于ASIC方法的高可靠芯片参数配置方法及系统,涉及芯片参数配置领域,该基于ASIC方法的高可靠芯片参数配置方法包括以下步骤:基于ASIC方法配置芯片的器件、电路结构及设计规范;对芯片进行测试,并使芯片性能满足设计要求及设计规范,且对测试数据进行收集;对芯片参数进行配置,并构建芯片参数集合;对芯片的配置参数进行实时检测及重配置;该系统包括配置模块、测试模块、芯片参数配置模块及实时检测模块。本发明提供的一种基于ASIC方法的高可靠芯片参数配置方法及系统,通过优化算法和经验规则,寻找最优或最合适的芯片参数配置方案,并对其进行实时检测和重配置,以提高芯片的性能和可靠性。

Description

一种基于ASIC方法的高可靠芯片参数配置方法及系统
技术领域
本发明涉及芯片参数配置领域,具体来说,涉及一种基于ASIC方法的高可靠芯片参数配置方法及系统。
背景技术
芯片参数配置是指根据芯片的设计规范和应用需求,对芯片的器件、电路结构、工作模式等进行设置和调整,以达到最优或最佳的性能和可靠性。芯片参数配置是芯片设计开发过程中的一个重要环节,直接影响着芯片的功能、效率、功耗、温度、频率、延迟等指标,以及芯片在不同工作环境和工作模式下的稳定性和适应性。
基于ASIC方法的高可靠芯片参数配置方法是指利用ASIC芯片的特性和优势,根据不同的应用场景和需求,采用不同的设计流程和技术手段,实现高效、高可靠、高灵活的芯片设计开发。
例如中国专利201510622028.3公开了一种基于ASIC的高可靠参数配置方法,其采用ASIC+PROM的系统配置方式,能够确保ASIC配置参数的可靠存储以及灵活读取,配置参数的加固设计,确保参数读取和使用过程中的可靠性。但是对于上述方法来说,其还存在以下不足:芯片参数配置时,对于一个ASIC芯片没有寻找最优或最合适的芯片参数配置方案,导致芯片参数配置不符合设计要求和应用需求,或者存在冗余或不合理的情况,从而影响芯片的性能和可靠性,若人工配置则效率低,无法大规模运用。
针对相关技术中的问题,目前尚未提出有效的解决方案。
发明内容
针对相关技术中的问题,本发明提出一种基于ASIC方法的高可靠芯片参数配置方法及系统,以克服现有相关技术所存在的上述技术问题。
为此,本发明采用的具体技术方案如下:
根据本发明的一个方面,提供了一种基于ASIC方法的高可靠芯片参数配置方法,该基于ASIC方法的高可靠芯片参数配置方法包括以下步骤:
S1、基于ASIC方法配置芯片的器件、电路结构及设计规范。
S2、对芯片进行测试,并使芯片性能满足设计要求及设计规范,且对测试数据进行收集。
S3、对芯片参数进行配置,并构建芯片参数集合。
S4、对芯片的配置参数进行实时检测及重配置。
进一步的,为了通过优化算法和经验规则,寻找最优或最合适的芯片参数配置方案:
对芯片参数进行配置,并构建芯片参数集合包括以下步骤:
S31、根据芯片参数配置的目标、约束及规则,对芯片进行参数优化;
S32、根据测试数据和设计要求,得到芯片参数配置的候选解;
S33、根据候选解构建芯片参数集合。
进一步的,根据芯片参数配置的目标、约束及规则,对芯片进行参数优化包括以下步骤:
S311、将芯片参数配置问题转化为二次规划子问题,并通过求解二次规划子问题来确定前进方向;
S312、采用线搜索寻找步长,使目标函数值和梯度满足条件,且利用经验规则来调整搜索方向和步长;
S313、根据步长和前进方向更新变量值,直到满足终止准则,并使Hessian矩阵保持正定性。
进一步的,将芯片参数配置问题转化为二次规划子问题,并通过求解二次规划子问题来确定前进方向包括以下步骤:
S3111、通过泰勒展开将芯片参数配置问题线性化,得到二次规划子问题的目标函数和约束函数;
S3112、使用二次规划表示公式表示二次规划子问题的标准形式;
其中,二次规划表示公式为:
式中,B k 表示拉格朗日函数的Hessian矩阵,fX)表示目标函数,∇fX)表示目标函数的梯度函数,T表示转置符号,X表示变量,s.t.表示约束条件;
d k 表示二次规划子问题中的最优解,k表示迭代次数,min表示最小值;
g u X)表示不等式约束函数的雅各比矩阵,∇h v X)表示等式约束函数的雅各比矩阵;
g u X)表示不等式约束函数,h v X)表示等式约束函数;
u为不等式个数,v为等式个数,p表示非零自然数,m表示非零自然数。
S3113、求解二次规划子问题,得到最优解d k ,并确定前进方向。
进一步的,采用线搜索寻找步长,使目标函数值和梯度满足条件,且利用经验规则来调整搜索方向和步长包括以下步骤:
S3121、确定步长满足条件,并更新变量值;
S3122、检查是否满足终止准则,若不满足,则返回第一步继续搜索;
S3123、利用经验规则来调整搜索方向和步长。
进一步的,利用经验规则来调整搜索方向和步长包括以下步骤:
S31231、构建经验规则,且若搜索方向与某条经验规则相反,则修改搜索方向或忽略该方向;
S31232、若搜索步长过大或过小,则根据经验规则来增加或减少步长;
S31233、若搜索结果不满足某条经验规则,则根据经验规则来修正结果或重新搜索。
进一步的,经验规则在使用之前,对经验规则进行检测;
其中,所述对经验规则进行检测包括以下步骤:
收集经验规则,并将收集到的经验规则以及任意两条经验规则之间是否存在冲突作为数据集;
将数据集中的规则和标签转化为神经网络处理的向量表示;
设计神经网络结构,且训练神经网络结构,并获得最终神经网络结构;
通过最终神经网络结构检测经验规则。
进一步的,且训练神经网络结构,并获得最终神经网络结构包括以下步骤:
将数据集划分为训练样本集及测试样本集,并根据将训练样本集分成若干个组,且每个组包含若干数量的样本,并且相邻两个组有若干的交集;
从训练样本集的分组中,选择第一个样本组作为初始训练集;
使用梯度下降算法,对第一个样本组进行前向传播和反向传播,计算出误差函数、权值及偏置的更新;
将训练好的权值和偏置保存,作为下一个样本组的初始值;
从训练样本集的分组中,选择与上一个样本组有交集的下一个样本组作为新的训练集;
使用梯度下降算法,对新的样本组进行前向传播和反向传播,计算出误差函数、权值及偏置的更新,同时利用上一组的权值及偏置作为初始值;
重复保存权值和偏置,并选择下一个样本组,直到所有的样本组都被训练过;
根据样本总数、分组数量及分组大小,将样本随机分配到不同的分组中,且每个分组包含一定数量的样本;
对每个分组,使用一部分样本作为训练集,另一部分作为验证集,建立神经网络模型,并计算神经网络模型在验证集上的性能指标;
根据每个分组的神经网络模型在验证集上的性能指标,选择表现最好的若干网络作为最终的测试网络;
使用独立的测试集,对选出的测试网络进行评估,筛选出最终神经网络结构。
进一步的,根据步长和前进方向更新变量值,直到满足终止准则,并使Hessian矩阵保持正定性包括以下步骤:
S3131、定义拉格朗日函数;
S3132、使用计算拉格朗日函数的Hessian矩阵,并对Hessian矩阵进行修正,使Hessian矩阵保持正定性;
S3133、使用更新学习因子和权重因子,提高收敛性能;
S3134、检查是否满足终止准则,若不满足,则返回S3131继续迭代。
根据本发明的另一方面,提供了一种基于ASIC方法的高可靠芯片参数配置系统,该基于ASIC方法的高可靠芯片参数配置系统包括配置模块、测试模块、芯片参数配置模块及实时检测模块;其中,配置模块与测试模块连接,配置模块及测试模块均与芯片参数配置模块连接,芯片参数配置模块与实时检测模块连接。
配置模块,用于基于ASIC方法配置芯片的器件、电路结构及设计规范。
测试模块,用于对芯片进行测试,并使芯片性能满足设计要求及设计规范,且对测试数据进行收集。
芯片参数配置模块,用于对芯片参数进行配置,并构建芯片参数集合。
实时检测模块,用于对芯片的配置参数进行实时检测及重配置。
本发明的有益效果为:
(1)本发明提供的一种基于ASIC方法的高可靠芯片参数配置方法及系统,通过优化算法和经验规则,寻找最优或最合适的芯片参数配置方案,并对其进行实时检测和重配置,以提高芯片的性能和可靠性。利用二次规划子问题来简化原始问题,并通过求解二次规划子问题来确定前进方向;利用线搜索寻找步长,并利用经验规则来调整搜索方向和步长。
(2)本发明利用神经网络来检测经验规则的有效性和一致性,提高经验规则的质量和有效性,即可以筛选出正确、一致、有用的规则,排除错误、冲突、无用的规则,同时可以根据不同的芯片类型、性能指标、可靠性要求等因素,动态地调整或更新经验规则,使规则能够适应不同的情况和需求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的一种基于ASIC方法的高可靠芯片参数配置方法的流程图;
图2是根据本发明实施例的一种基于ASIC方法的高可靠芯片参数配置系统的原理框图。
图中:
1、配置模块;2、测试模块;3、芯片参数配置模块;4、实时检测模块。
具体实施方式
为进一步说明各实施例,本发明提供有附图,这些附图为本发明揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理,配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本发明的优点,图中的组件并未按比例绘制,而类似的组件符号通常用来表示类似的组件。
根据本发明的实施例,提供了一种基于ASIC方法的高可靠芯片参数配置方法及系统。
现结合附图和具体实施方式对本发明进一步说明,如图1所示,根据本发明的一个实施例,提供了一种基于ASIC方法的高可靠芯片参数配置方法,该基于ASIC方法的高可靠芯片参数配置方法包括以下步骤:
S1、基于ASIC方法配置芯片的器件、电路结构及设计规范。同时基于ASIC方法配置芯片的器件、电路结构及设计规范,使用专业的工具和软件,如HDL语言、EDA软件、仿真软件、测试软件等。
S2、对芯片进行测试,并使芯片性能满足设计要求及设计规范,且对测试数据进行收集。将芯片的输入数据、输出数据、中间数据、错误数据等,以及芯片的工作环境和工作模式等信息,进行记录和存储,以便于对芯片进行分析和改进。
S3、对芯片参数进行配置,并构建芯片参数集合。
在进一步的实施例中,对芯片参数进行配置,并构建芯片参数集合包括以下步骤:
S31、根据芯片参数配置的目标、约束及规则,对芯片进行参数优化;
S32、根据测试数据和设计要求,得到芯片参数配置的候选解;
S33、根据候选解构建芯片参数集合。
在进一步的实施例中,根据芯片参数配置的目标、约束及规则,对芯片进行参数优化包括以下步骤:
S311、将芯片参数配置问题转化为二次规划子问题,并通过求解二次规划子问题来确定前进方向;
S312、采用线搜索寻找步长,使目标函数值和梯度满足条件,且利用经验规则来调整搜索方向和步长;
S313、根据步长和前进方向更新变量值,直到满足终止准则,并使Hessian矩阵(又名黑塞矩阵,是一个方块矩阵,其由多变量实值函数的二阶偏导数组成)保持正定性。
需要说明的是,通过二次规划子问题来简化原始的芯片参数配置问题,并通过求解二次规划子问题来确定前进方向,从而提高芯片参数配置的效率和质量,避免陷入局部最优或多个最优解。通过线搜索寻找步长,并利用经验规则来调整搜索方向和步长,从而可以提高芯片参数配置的收敛性和稳定性,避免出现震荡、停滞或发散的现象。通过更新变量值,直到满足终止准则,并使Hessian矩阵保持正定性,从而可以保证芯片参数配置的正确性和可靠性,避免出现错误或异常的情况。
在进一步的实施例中,将芯片参数配置问题转化为二次规划子问题,并通过求解二次规划子问题来确定前进方向包括以下步骤:
S3111、通过泰勒展开将芯片参数配置问题线性化,得到二次规划子问题的目标函数和约束函数;
S3112、使用二次规划表示公式表示二次规划子问题的标准形式;
其中,所述二次规划表示公式为:
式中,B k 表示拉格朗日函数的Hessian矩阵,fX)表示目标函数,∇fX)表示目标函数的梯度函数,T表示转置符号,X表示变量,s.t.表示约束条件;
d k 表示二次规划子问题中的最优解,k表示迭代次数,min表示最小值;
g u X)表示不等式约束函数的雅各比矩阵,∇h v X)表示等式约束函数的雅各比矩阵;
g u X)表示不等式约束函数,h v X)表示等式约束函数;
u为不等式个数,v为等式个数,p表示非零自然数,m表示非零自然数。
S3113、求解二次规划子问题,得到最优解d k ,并确定前进方向。
在进一步的实施例中,采用线搜索寻找步长,使目标函数值和梯度满足条件,且利用经验规则来调整搜索方向和步长包括以下步骤:
S3121、确定步长满足条件,并更新变量值;
S3122、检查是否满足终止准则,若不满足,则返回第一步继续搜索;
S3123、利用经验规则来调整搜索方向和步长。
在进一步的实施例中,利用经验规则来调整搜索方向和步长包括以下步骤:
S31231、构建经验规则,且若搜索方向与某条经验规则相反,则修改搜索方向或忽略该方向;
S31232、若搜索步长过大或过小,则可以根据经验规则来增加或减少步长;
S31233、若搜索结果不满足某条经验规则,则可以根据经验规则来修正结果或重新搜索。
在进一步的实施例中,经验规则在使用之前,对经验规则进行检测;
其中,所述对经验规则进行检测包括以下步骤:
收集经验规则,并将收集到的经验规则以及任意两条经验规则之间是否存在冲突作为数据集;
将数据集中的规则和标签转化为神经网络可以处理的向量表示,例如使用[one-hot encoding]或[word embedding]等方法;
设计神经网络结构,选择合适的神经网络类型、层数、节点数、激活函数、损失函数、优化器等参数,以构建一个能够有效地学习和识别经验规则的神经网络模型,且训练神经网络结构,并获得最终神经网络结构;
通过最终神经网络结构检测经验规则。
在进一步的实施例中,且训练神经网络结构,并获得最终神经网络结构包括以下步骤:
将数据集划分为训练样本集及测试样本集,并根据将训练样本集分成若干个组,且每个组包含若干数量的样本,并且相邻两个组有若干的交集,以提高收敛速度和泛化能力;
从训练样本集的分组中,选择第一个样本组作为初始训练集;
使用梯度下降算法,对第一个样本组进行前向传播和反向传播,计算出误差函数、权值及偏置的更新;
将训练好的权值和偏置保存,作为下一个样本组的初始值。
从训练样本集的分组中,选择与上一个样本组有交集的下一个样本组作为新的训练集;
使用梯度下降算法,对新的样本组进行前向传播和反向传播,计算出误差函数、权值及偏置的更新,同时利用上一组的权值及偏置作为初始值;
重复保存权值和偏置,并选择下一个样本组,直到所有的样本组都被训练过;
根据样本总数、分组数量及分组大小,将样本随机分配到不同的分组中,且每个分组包含一定数量的样本;
对每个分组,使用一部分样本作为训练集,另一部分作为验证集,建立神经网络模型,并计算神经网络模型在验证集上的性能指标,如准确率、损失函数等;
根据每个分组的神经网络模型在验证集上的性能指标,选择表现最好的若干网络作为最终的测试网络;
使用独立的测试集,对选出的测试网络进行评估,性能指标如准确率、损失函数等,筛选出最终神经网络结构。
在进一步的实施例中,根据步长和前进方向更新变量值,直到满足终止准则,并使Hessian矩阵保持正定性包括以下步骤:
S3131、定义拉格朗日函数。
S3132、使用计算拉格朗日函数的Hessian矩阵,并对Hessian矩阵进行修正,使Hessian矩阵保持正定性;格朗日函数是一种用于处理带有约束条件的优化问题的方法,它可以将原始的优化问题转化为一个无约束的优化问题。拉格朗日函数的Hessian矩阵是拉格朗日函数的二阶导数矩阵,它可以反映拉格朗日函数在某一点处的曲率和凹凸性。修正是一种对Hessian矩阵进行变换的操作,目的是使其保持正定性。如果Hessian矩阵不是正定的,那么可能会导致搜索方向错误或收敛速度慢等问题。修正的方法包括添加正则项、进行特征值分解、使用信赖域等。
S3133、使用更新学习因子和权重因子,提高收敛性能;
S3134、检查是否满足终止准则,若不满足,则返回S3131继续迭代。
S4、对芯片的配置参数进行实时检测及重配置,以保证芯片在运行期间使用参数的正确性和稳定性。通过不断地监测芯片的输入输出数据、中间数据、错误数据等,以及芯片的工作环境和工作模式等信息,以判断芯片的配置参数是否正确、合理、稳定。
根据本发明的另一个实施例,提供了一种基于ASIC方法的高可靠芯片参数配置系统,该基于ASIC方法的高可靠芯片参数配置系统包括配置模块1、测试模块2、芯片参数配置模块3及实时检测模块4。其中,配置模块1与测试模块2连接,配置模块1及测试模块2均与芯片参数配置模块3连接,芯片参数配置模块3与实时检测模块4连接。
配置模块1,用于基于ASIC方法配置芯片的器件、电路结构及设计规范。
测试模块2,用于对芯片进行测试,并使芯片性能满足设计要求及设计规范,且对测试数据进行收集。
芯片参数配置模块3,用于对芯片参数进行配置,并构建芯片参数集合。
实时检测模块4,用于对芯片的配置参数进行实时检测及重配置。
综上所述,本发明提供的一种基于ASIC方法的高可靠芯片参数配置方法及系统,通过优化算法和经验规则,寻找最优或最合适的芯片参数配置方案,并对其进行实时检测和重配置,以提高芯片的性能和可靠性。利用二次规划子问题来简化原始问题,并通过求解二次规划子问题来确定前进方向;利用线搜索寻找步长,并利用经验规则来调整搜索方向和步长。本发明利用神经网络来检测经验规则的有效性和一致性,提高经验规则的质量和有效性,即可以筛选出正确、一致、有用的规则,排除错误、冲突、无用的规则,同时可以根据不同的芯片类型、性能指标、可靠性要求等因素,动态地调整或更新经验规则,使规则能够适应不同的情况和需求。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于ASIC方法的高可靠芯片参数配置方法,其特征在于,该基于ASIC方法的高可靠芯片参数配置方法包括以下步骤:
S1、基于ASIC方法配置芯片的器件、电路结构及设计规范;
S2、对芯片进行测试,并使芯片性能满足设计要求及设计规范,且对测试数据进行收集;
S3、对芯片参数进行配置,并构建芯片参数集合;
S4、对芯片的配置参数进行实时检测及重配置。
2.根据权利要求1所述的一种基于ASIC方法的高可靠芯片参数配置方法,其特征在于,所述对芯片参数进行配置,并构建芯片参数集合包括以下步骤:
S31、根据芯片参数配置的目标、约束及规则,对芯片进行参数优化;
S32、根据测试数据和设计要求,得到芯片参数配置的候选解;
S33、根据候选解构建芯片参数集合。
3.根据权利要求2所述的一种基于ASIC方法的高可靠芯片参数配置方法,其特征在于,所述根据芯片参数配置的目标、约束及规则,对芯片进行参数优化包括以下步骤:
S311、将芯片参数配置问题转化为二次规划子问题,并通过求解二次规划子问题来确定前进方向;
S312、采用线搜索寻找步长,使目标函数值和梯度满足条件,且利用经验规则来调整搜索方向和步长;
S313、根据步长和前进方向更新变量值,直到满足终止准则,并使Hessian矩阵保持正定性。
4.根据权利要求3所述的一种基于ASIC方法的高可靠芯片参数配置方法,其特征在于,所述将芯片参数配置问题转化为二次规划子问题,并通过求解二次规划子问题来确定前进方向包括以下步骤:
S3111、通过泰勒展开将芯片参数配置问题线性化,得到二次规划子问题的目标函数和约束函数;
S3112、使用二次规划表示公式表示二次规划子问题的标准形式;
其中,所述二次规划表示公式为:
式中,B k 表示拉格朗日函数的Hessian矩阵,fX)表示目标函数,∇fX)表示目标函数的梯度函数,T表示转置符号,X表示变量,s.t.表示约束条件;
d k 表示二次规划子问题中的最优解,k表示迭代次数,min表示最小值;
g u X)表示不等式约束函数的雅各比矩阵,∇h v X)表示等式约束函数的雅各比矩阵;
g u X)表示不等式约束函数,h v X)表示等式约束函数;
u为不等式个数,v为等式个数,p表示非零自然数,m表示非零自然数;
S3113、求解二次规划子问题,得到最优解d k ,并确定前进方向。
5.根据权利要求4所述的一种基于ASIC方法的高可靠芯片参数配置方法,其特征在于,所述采用线搜索寻找步长,使目标函数值和梯度满足条件,且利用经验规则来调整搜索方向和步长包括以下步骤:
S3121、确定步长满足条件,并更新变量值;
S3122、检查是否满足终止准则,若不满足,则返回第一步继续搜索;
S3123、利用经验规则来调整搜索方向和步长。
6.根据权利要求5所述的一种基于ASIC方法的高可靠芯片参数配置方法,其特征在于,所述利用经验规则来调整搜索方向和步长包括以下步骤:
S31231、构建经验规则,且若搜索方向与某条经验规则相反,则修改搜索方向或忽略该方向;
S31232、若搜索步长过大或过小,则根据经验规则来增加或减少步长;
S31233、若搜索结果不满足某条经验规则,则根据经验规则来修正结果或重新搜索。
7.根据权利要求6所述的一种基于ASIC方法的高可靠芯片参数配置方法,其特征在于,所述经验规则在使用之前,对经验规则进行检测;
其中,所述对经验规则进行检测包括以下步骤:
收集经验规则,并将收集到的经验规则以及任意两条经验规则之间是否存在冲突作为数据集;
将数据集中的规则和标签转化为神经网络处理的向量表示;
设计神经网络结构,且训练神经网络结构,并获得最终神经网络结构;
通过最终神经网络结构检测经验规则。
8.根据权利要求7所述的一种基于ASIC方法的高可靠芯片参数配置方法,其特征在于,所述且训练神经网络结构,并获得最终神经网络结构包括以下步骤:
将数据集划分为训练样本集及测试样本集,并根据将训练样本集分成若干个组,且每个组包含若干数量的样本,并且相邻两个组有若干的交集;
从训练样本集的分组中,选择第一个样本组作为初始训练集;
使用梯度下降算法,对第一个样本组进行前向传播和反向传播,计算出误差函数、权值及偏置的更新;
将训练好的权值和偏置保存,作为下一个样本组的初始值;
从训练样本集的分组中,选择与上一个样本组有交集的下一个样本组作为新的训练集;
使用梯度下降算法,对新的样本组进行前向传播和反向传播,计算出误差函数、权值及偏置的更新,同时利用上一组的权值及偏置作为初始值;
重复保存权值和偏置,并选择下一个样本组,直到所有的样本组都被训练过;
根据样本总数、分组数量及分组大小,将样本随机分配到不同的分组中,且每个分组包含一定数量的样本;
对每个分组,使用一部分样本作为训练集,另一部分作为验证集,建立神经网络模型,并计算神经网络模型在验证集上的性能指标;
根据每个分组的神经网络模型在验证集上的性能指标,选择表现最好的若干网络作为最终的测试网络;
使用独立的测试集,对选出的测试网络进行评估,筛选出最终神经网络结构。
9.根据权利要求8所述的一种基于ASIC方法的高可靠芯片参数配置方法,其特征在于,所述根据步长和前进方向更新变量值,直到满足终止准则,并使Hessian矩阵保持正定性包括以下步骤:
S3131、定义拉格朗日函数;
S3132、使用计算拉格朗日函数的Hessian矩阵,并对Hessian矩阵进行修正,使Hessian矩阵保持正定性;
S3133、使用更新学习因子和权重因子,提高收敛性能;
S3134、检查是否满足终止准则,若不满足,则返回S3131继续迭代。
10.一种基于ASIC方法的高可靠芯片参数配置系统,用于实现权利要求1-9任一项所述的基于ASIC方法的高可靠芯片参数配置系统,其特征在于,该基于ASIC方法的高可靠芯片参数配置系统包括配置模块、测试模块、芯片参数配置模块及实时检测模块;
其中,所述配置模块与所述测试模块连接,所述配置模块及所述测试模块均与所述芯片参数配置模块连接,所述芯片参数配置模块与所述实时检测模块连接;
所述配置模块,用于基于ASIC方法配置芯片的器件、电路结构及设计规范;
所述测试模块,用于对芯片进行测试,并使芯片性能满足设计要求及设计规范,且对测试数据进行收集;
所述芯片参数配置模块,用于对芯片参数进行配置,并构建芯片参数集合;
所述实时检测模块,用于对芯片的配置参数进行实时检测及重配置。
CN202311455248.2A 2023-11-03 2023-11-03 一种基于asic方法的高可靠芯片参数配置方法及系统 Active CN117194319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311455248.2A CN117194319B (zh) 2023-11-03 2023-11-03 一种基于asic方法的高可靠芯片参数配置方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311455248.2A CN117194319B (zh) 2023-11-03 2023-11-03 一种基于asic方法的高可靠芯片参数配置方法及系统

Publications (2)

Publication Number Publication Date
CN117194319A true CN117194319A (zh) 2023-12-08
CN117194319B CN117194319B (zh) 2024-01-26

Family

ID=89000183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311455248.2A Active CN117194319B (zh) 2023-11-03 2023-11-03 一种基于asic方法的高可靠芯片参数配置方法及系统

Country Status (1)

Country Link
CN (1) CN117194319B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105205034A (zh) * 2015-09-25 2015-12-30 中国人民解放军国防科学技术大学 一种基于asic的高可靠参数配置方法
CN109408111A (zh) * 2018-11-06 2019-03-01 上海航天测控通信研究所 一种针对空间应用的高可靠asic芯片参数配置方法
CN110618373A (zh) * 2019-09-10 2019-12-27 中国科学院上海技术物理研究所 一种可重构集成电路板级自动测试系统及其设计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105205034A (zh) * 2015-09-25 2015-12-30 中国人民解放军国防科学技术大学 一种基于asic的高可靠参数配置方法
CN109408111A (zh) * 2018-11-06 2019-03-01 上海航天测控通信研究所 一种针对空间应用的高可靠asic芯片参数配置方法
CN110618373A (zh) * 2019-09-10 2019-12-27 中国科学院上海技术物理研究所 一种可重构集成电路板级自动测试系统及其设计方法

Also Published As

Publication number Publication date
CN117194319B (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
CN110442666B (zh) 一种基于神经网络模型的矿产资源预测方法及系统
CN112528035B (zh) 基于关系注意力的知识图谱推理方法、装置和计算机设备
CN109857457B (zh) 一种在双曲空间中学习源代码中的函数层次嵌入表示方法
CN112199532B (zh) 一种基于哈希编码和图注意力机制的零样本图像检索方法及装置
CN111047563B (zh) 一种应用于医学超声图像的神经网络构建方法
CN110633467B (zh) 一种基于改进特征融合的语义关系抽取方法
CN112232526B (zh) 一种基于集成策略的地质灾害易发性评价方法及系统
CN112036249B (zh) 端对端行人检测及属性识别的方法、系统、介质及终端
CN117151338B (zh) 一种基于大语言模型的多无人机任务规划方法
CN110210625A (zh) 基于迁移学习的建模方法、装置、计算机设备和存储介质
CN110427471A (zh) 一种基于知识图谱的自然语言问答方法及系统
CN117194319B (zh) 一种基于asic方法的高可靠芯片参数配置方法及系统
CN116663662B (zh) 基于多源语义网络的地理实体多层次关系构建方法及装置
CN117408336A (zh) 一种结构与属性注意力机制的实体对齐方法
CN117472789A (zh) 基于集成学习的软件缺陷预测模型构建方法和装置
CN111694966A (zh) 面向化工领域的多层次知识图谱构建方法及系统
Li et al. Using graph based method to improve bootstrapping relation extraction
CN115664976A (zh) 一种基于网络广义能量和信息熵的关键节点识别方法
CN112966501B (zh) 一种新词发现方法、系统、终端及介质
CN117421386B (zh) 基于gis的空间数据处理方法及系统
Argyrou Clustering hierarchical data using self-organizing map: a graph-theoretical approach
CN116612421B (zh) 一种融合多源空间数据的建成环境识别方法及设备
CN117151247B (zh) 机器学习任务建模的方法、装置、计算机设备和存储介质
CN117971357B (zh) 有限状态自动机验证方法、装置、电子设备及存储介质
CN116991877B (zh) 一种结构化查询语句的生成方法、装置及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant