CN117151338B - 一种基于大语言模型的多无人机任务规划方法 - Google Patents

一种基于大语言模型的多无人机任务规划方法 Download PDF

Info

Publication number
CN117151338B
CN117151338B CN202311160901.2A CN202311160901A CN117151338B CN 117151338 B CN117151338 B CN 117151338B CN 202311160901 A CN202311160901 A CN 202311160901A CN 117151338 B CN117151338 B CN 117151338B
Authority
CN
China
Prior art keywords
unmanned aerial
aerial vehicle
language model
knowledge graph
large language
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311160901.2A
Other languages
English (en)
Other versions
CN117151338A (zh
Inventor
张晓明
姚昌瑀
高世杰
李肇星
彭硕
褚誉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202311160901.2A priority Critical patent/CN117151338B/zh
Publication of CN117151338A publication Critical patent/CN117151338A/zh
Application granted granted Critical
Publication of CN117151338B publication Critical patent/CN117151338B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/34Browsing; Visualisation therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/36Creation of semantic tools, e.g. ontology or thesauri
    • G06F16/367Ontology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/279Recognition of textual entities
    • G06F40/289Phrasal analysis, e.g. finite state techniques or chunking
    • G06F40/295Named entity recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/30Semantic analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Computational Linguistics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Databases & Information Systems (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Data Mining & Analysis (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种基于大语言模型的多无人机任务规划方法,与现有技术相比解决了单独使用大语言模型做任务规划时存在不合理问题的缺陷。本发明包括以下步骤:建立场景信息数据集;建立知识图谱本体模型;使用领域知识进行大语言模型的微调;大语言模型的输入;通过知识萃取不断补全知识图谱;针对多无人机系统任务做可解释性的决策或规划;对所作规划方案进行评价及融合。本发明使用大语言模型通过知识萃取的方式,将大语言模型预训练过程中所使用的庞大的语料库中有用的数据部分补全到知识图谱中,最终形成有益于规划多无人机任务的知识库,并用于更好的监测和解释大模型规划结果的合理性,通过数据融合形成最终规划方案。

Description

一种基于大语言模型的多无人机任务规划方法
技术领域
本发明涉及无人机任务规划技术领域,具体来说是一种基于大语言模型的多无人机任务规划方法。
背景技术
近年来,随着人工智能领域的迅猛发展,如何促使智能体能够依据相关领域知识而对一些复杂任务或问题做出正确又高效的决策及规划是一个热门问题。
随着近期大语言模型强大的自然语言处理能力、多领域适应能力、知识表达和推理等能力不断的崭露头角,目前很多领域学者都在尝试将大语言模型的优势结合到自己的工作中。尤其是在人工智能相关领域中,将大语言模型结合诸如机器人等一些智能体后,让人类能够通过自然语言指令等方式与智能体进行沟通,且智能体能够自行理解人类指派的自然语言指令,并做出决策及规划的研究和实现愈来愈多。
而无人驾驶飞机作为一种可携带多种设备、执行多任务、可控且有动力,并具备重复应用性能良好的无人驾驶航空器(Unmanned Aerial Vehicle,UAV),即无人机,同时还具备操作灵活、生存率高及滞空时间长,受人类生理条件影响较小等优点。
虽然大语言模型强大的上下文感知和语义理解能力、学习和适应等能力运用在智能体上后,使得智能体能够为人类提供智能化的任务规划支持和个性化的交互体验。但是,大语言模型在应用过程中仍然存在着理解和生成不确定性大、缺乏实时性、可解释性等缺点。而知识图谱作为一种表示和组织知识的一种重要方式,随着人工智能领域的发展,相关技术已经成熟稳定,例如将知识图谱运用到一些问答系统、智能推荐系统、搜索引擎助手等领域的研究已经非常普遍。
不同于结合大语言模型去做决策及规划,让智能体通过知识图谱做决策及规划时,往往能够得到实时的、可解释性的、正确的可行的决策方案。但此类研究常常受限于所构建知识图谱的知识储备量、知识图谱的构建成本,以及难以发掘、自更新、完善新数据与已有数据间的关系等限制和缺点。
而通过大语言模型输出任务的规划方案时,往往会缺乏可解释性,因此当前阶段,大语言模型与知识图谱应当保持一种竞合的关系,互为补充。大语言模型能够为知识的获取降本增效,弥补知识图谱相关知识获取难的缺点,知识图谱能够对数据进行结构化的表示,其较高的推理能力和可解释性,能够弥补大语言模型可靠程度低,推理结果不可靠等缺点。
因此,如何结合知识图谱及大语言模型在多无人机任务规划技术领域进行决策及规划,充分利用两者的优点,开发出一种能够对指派的任务指令,做出正确的、高效的、具有可解释性规划方案的多无人机系统,具有重要的研究意义和应用价值。
发明内容
本发明的目的是为了解决现有技术中单独使用大语言模型做任务规划时存在不合理问题的缺陷,提供一种基于大语言模型的多无人机任务规划方法来解决上述问题。
为了实现上述目的,本发明的技术方案如下:
一种基于大语言模型的多无人机任务规划方法,包括以下步骤:
11)建立场景信息数据集:明确多无人机系统运用场景目标领域范围,收集领域范围内的数据和信息,并结合无人机信息对数据进行整理、标注、验证、修订、扩充,建立包含无人机及其功能信息的场景信息数据集;
12)建立知识图谱本体模型:对场景信息数据集进行实体识别,确定概念和实体集合,汇总并总结转换为知识图谱模型中的实体和关系,确定实体之间的关系,构建该多无人机系统的知识图谱本体模型;
13)使用领域知识进行大语言模型的微调:利用所整理收集到的场景信息数据集,通过微调策略对大语言模型进行微调并进行评估和优化;
14)大语言模型的输入:抽取场景信息数据集中的信息,形成结构化数据,结合已构建的知识图谱本体模型,建立该多无人机系统的知识图谱;将外界不断更新以及多无人机系统运行过程中所收集的数据及场景信息,不断地通过大语言模型提取新数据中的实体和关系,扩展和更新到构建的知识图谱中,并将不断更新的知识图谱输入到大语言模型中;
15)通过知识萃取不断补全知识图谱;
16)针对多无人机系统任务做可解释性的决策或规划;
17)对所作规划方案进行评价及融合:定义评价指标作为衡量两者所输出策略质量的标准,使用定义的评价指标对知识图谱输出的策略和大语言模型输出的策略分别进行评估并分配权重;根据评价指标的权重以及评估结果,对知识图谱输出的策略和大语言模型输出的策略进行择优选取并融合以得到一个综合的最优策略;根据融合后的综合策略,进行进一步的优化和调整,其包括对无人机相关参数的调整、策略的细化和改进;将进一步优化后的融合综合策略作为多无人机的任务规划方案。
所述建立场景信息数据集包括以下步骤:
21)获取多无人机系统应用需求,即明确多无人机系统应用的目标领域的范围,其包括涵盖的任务类型、环境特征、无人机种类及其能力;
22)通过在线资源、传感器收集的方式,收集与当前领域相关的知识信息,构建出场景信息数据集;
221)将收集到的知识整理成易于处理的形式,将非结构化数据、半结构化数据及结构化数据,建立成多无人机系统的数据集;
对数据集中的数据进行标注,正确标注出数据集中的实体和关系,并对构建的数据集进行验证,确保数据的准确性和一致性,修订数据中存在的错误并补全缺省信息;
222)通过数据增强技术及自动化抽取方式,从不易处理的非结构化数据中提取有效信息以扩充数据集,以增加数据量及数据的多样性。
所述建立知识图谱本体模型包括以下步骤:
31)通过大语言模型抽取场景信息数据集中多无人机任务规划领域中数据信息,包括无人机种类、传感器信息、无人机机载设备、无人机能源、续航的实体和属性;
32)将所抽取的实体、属性,通过三元组形式进行表示,即[头实体,关系,尾实体]形式,并通过文本分析和关系抽取技术识别和提取实体之间的关系,根据已有三元组实体对,归纳多无人机任务规划系统领域的标签,并通过大语言模型对已有的三元组实体对进行归类;
33)使用知识图谱本体构建工具来建立多无人机系统的知识图谱本体模型;将三元组实体对中的属性、实体和关系转化为知识图谱中的节点和边,根据已构建的知识图谱本体模型,补充三元组实例,建立多无人机系统知识图谱;
34)对建立的知识图谱本体模型进行校验和验证,确保知识图谱本体模型的准确性和一致性,检查实体和关系之间的链接是否正确、属性是否完整和准确。
所述使用领域知识进行大语言模型的微调包括以下步骤:
41)设定大语言模型在已有的多无人机领域数据基础上对于多无人机任务的目标预期,采用参数高效微调方法对大语言模型模型进行微调;
42)根据微调目标及设备资源,从所收集到用于预训练的数据集中提取样本用于微调,并以设定的微调目标为准不断调整模型的参数;
43)选取公开的有效数据集或自行构建的测试集数据对微调后的大模型进行测试,当微调达到设定的模型性能后,将微调后的模型部署到实际应用中。
所述大语言模型的输入包括以下步骤:
51)将大语言模型所识别和抽取的形式化数据,以及多无人机系统在实际场景运行过程中传感器收集到的信息,整理为形如[头实体,关系,尾实体]的三元组形式;
52)将已有三元组对中的实体与知识图谱本体模型中定义的实体进行链接,建立实体与数据之间的对应关系,逐步将形式化数据根据知识图谱本体模型输入到知识图谱的节点中,并存储在图数据库或存储系统中;
53)将知识图谱中的数据转换为输入形式,结合构建的提示输入到大语言模型中,作为大语言模型针对该领域任务决策的知识库及依据;并将构建好的知识图谱数据进行共享、定期维护和更新。
所述通过知识萃取不断补全知识图谱包括以下步骤:
61)根据知识图谱中已有的实体和关系,设计针对多无人机任务规划系统领域知识萃取的提示,通过将多无人机系统知识图谱中的实体或属性以及所设计的提示作为输入,以生成与之相关的实体、关系及属性;
62)对大语言模型所知识萃取得到的实体或关系,重复利用提示的机制,引导大语言模型进一步萃取新的实体、关系或属性,直至无新的知识出现;
63)对于大语言模型所萃取的新实体对,使用三元组(h,r,t)向量化表示,并通过语义匹配模型或评价函数对三元组实体对的合理性进行评价以进行筛选和验证。
所述针对多无人机系统任务做可解释性的决策或规划包括以下步骤:
71)利用大语言模型输出任务规划方案:
711)明确定义多无人系统所指派任务的目标、约束和限制条件,即任务的输入和输出要求所需的资源和约束条件,确保多无人机系统中已有资源能够满足任务规划的需求;
712)根据所明确的任务指令所需资源和约束条件,以及任务的目标,设计提示;通过提示工程完善所设计的提示;
713)调整提示使得下游任务适应微调后的大语言模型,最后将提示输入到大语言模型中,通过大语言模型输出多无人机任务的任务规划方案;
72)利用多无人机系统知识图谱辅助输出任务规划方案:
721)检测、查验多无人机系统知识图谱的结构和内容是否能够覆盖所指派任务所涉及的信息,包括多无人机系统状态信息、位置信息、功能信息、资源信息、分解方法信息;
722)将大语言模型输出的任务规划路径映射到多无人机系统知识图谱中,通过使用图搜索的方式,将大语言模型输出的任务规划方案与知识图谱中节点或边进行对应,在知识图谱中检验大语言模型输出的规划方法的可行性;
723)针对所指派的多无人机任务,通过知识图谱的推理和图搜索机制,使知识图谱根据任务要求获取当前多无人机系统中已有无人机的相关信息、以辅助推导逻辑关系,生成任务规划方案;
724)对所作任务规划方案做解释或可视化,输出多无人机任务的解决策略的同时,提供解释或可视化的方式来展示知识图谱决策搜索路径。
所述对所作决策进行评价及融合包括以下步骤:
81)评估所作决策的可行性和正确性:
为验证所作决策的可行性,对于大语言模型所作决策方案,通过结合到多无人机系统知识图谱中,以检验任务解决方案在图谱中是否存在一致的节点、路径,并比较大语言模型所预测多无人机系统最终结果状态与任务规划的预期目标是否一致,以验证该决策方案的可行性;对于知识图谱所作决策,检查输出的决策方案是否符合场景约束条件,以及决策方案中所调用的实体、资源,现有系统是否满足以验证该决策方案的可行性;
为验证所作决策的正确性,对于多无人机系统知识图谱及大语言模型所作决策,分别通过在多无人机模拟运行环境或实际场景中运行以验证二者所作决策的正确性;
82)设定指标、评价决策并分阶段评估:
在对两种方案的可行性和正确性进行分析后,设定指标辅助评估决策性能,指标包括任务完成时间、资源利用率、执行效率;将决策方案划分多个阶段,对于不同阶段利用指标对知识图谱和大语言模型所作决策方案进行评估;
83)分阶段择优选取所作决策,并融合:
对于不同的指标赋予不同的权重,通过对各个指标进行加权评价以得到各阶段两种方案的得分,以辅助进行择优选取,最终融合以得到一个综合的最优解决策略。
有益效果
本发明的一种基于大语言模型的多无人机任务规划方法,与现有技术相比利用了知识图谱和大语言模型各自的优势,能够在依据无人机数据、场景信息等数据构建知识图谱的基础上,使用大语言模型通过知识萃取的方式,将大语言模型预训练过程中所使用的庞大的语料库中有用的知识部分补充到知识图谱中,最终形成有益于规划多无人机任务的知识库,并用于更好的监测和解释大模型规划结果的合理性,通过数据融合形成最终规划方案。
本发明能够利用大语言模型出色的实体识别、实体抽取能力,有效减少多无人机系统知识图谱的构建成本、提高所构建知识图谱的可靠性。
本发明设计的知识图谱与大语言模型结合输出可解释规划及决策部分,对于多无人机系统所指派任务,知识图谱和大语言模型能够分别输出可解释性的决策规划解,并通过设立多种评价指标,对所规划方案进行分阶段评估,最终择优融合为一个最优方案,能够有效提高任务规划方案效率及可解释性。
附图说明
图1为本发明的方法顺序图;
图2为本发明所涉及的基于大语言模型的可解释多无人机任务规划系统的技术流程图;
图3为本发明针对多无人机系统任务规划领域所建立的本体模型。
具体实施方式
为使对本发明的结构特征及所达成的功效有更进一步的了解与认识,用以较佳的实施例及附图配合详细的说明,说明如下:
为使对本发明的结构特征及所达成的功效有更进一步的了解与认识,用以较佳的实施例及附图配合详细的说明,说明如下:
本发明的实施例中的知识图谱可以是多种类型的知识图谱,实施例中的大语言模型可以通过当前可部署、微调的开源模型构建,也可以是自行创立构建的模型。此外,为了方便对本发明实施例进行具体描述,知识图谱中的所有数据以采用RDF(资源描述框架)进行表达和存储为例,对本发明实施例方案进行详细说明。举例说明,以[实体,属性,属性值]、[实体1,关系,实体2]等三元组形式表示知识图谱中存在的数据。本发明实施例中知识图谱还可以以其他形式表示和存储,本发明实施例对此不作具体限定。其中图2为所设计的多无人机任务规划系统的整体流程图。
如图1所示,本发明所述的一种基于大语言模型的多无人机任务规划系统的构建,包括以下步骤:
第一步,收集整理场景信息,建立数据集:明确多无人机系统运用场景目标领域范围,通过多种途径收集领域范围内相关的数据和信息,并结合现有无人机信息,对数据进行整理、标注、验证、修订、扩充等工作,建立包含无人机及其功能信息的场景信息数据集。其具体步骤如下:
(1)确定多无人机系统应用场景下,以无人机种类、可探测区域、环境信息、无人机功能、任务方法等知识数据为目标,通过包括技术报告、开放数据集、在线资源、传感器信息收集等方式收集整理相关场景信息数据。
(2)根据收集、整理到的数据信息,构建一个场景信息数据集。这可以包括任务规划中涉及的实体(例如不同种类的无人机、环境地形、气象数据、区域经纬度信息、可执行任务动作等),关系(例如无人机与环境之间的交互关系、任务与环境之间的关系等),以及相应的属性和约束等。
(3)对创建的场景信息数据集进行数据整理和标注,完善数据集中的结构及语义信息。收集到的数据中存在结构化的数据、半结构化以及非结构化数据,在进行后续的信息抽取前,使用标注工具或自定义脚本对这些数据进行初步的整理和标注工作,初步将同类别数据划分为同一区域。
(4)对场景信息数据集中的数据进行验证和修订,确保数据的准确性和一致性。检查数据是否与领域知识相符,并修正任何错误或不一致之处。对于数据集中存在的缺省值进行处理,主要是针对数据集中结构化的数据,可人工手动一次性补全数据集中的缺失值,以及对一些异常值进行处理。
第二步,建立知识图谱本体模型:对场景信息数据集进行实体识别,确定概念和实体集合,汇总并总结转换为知识图谱模型中的实体和关系,确定实体之间的关系,构建该多无人机系统的知识图谱本体模型。其具体步骤如下:
(1)使用大语言模型对所构建的场景信息数据集进行实体识别。通过自设定的提示(Prompt)模式,结合大语言模型自动识别提取已构建数据集中数据文本中的实体,也可以采用基于规则的方法或者序列标注模型(如BERT、CRF等)来进行实体识别任务。
(2)使用大语言模型进行关系识别,即识别实体之间的关系。主要采用基于规则的方法、基于模式匹配的方法或者采用序列标注模型来进行关系识别。序列标注模型可以利用带有标注的训练数据进行训练,或者使用无监督学习的方法。
(3)将抽取的信息进行形式化表示,对于多无人机系统任务规划领域问题,无人机任务大多是一种抽象的概念,存在着诸如[任务1,包含,操作1]、[动作1,存在,执行结果]等这样的抽象实体对。在构建多无人机系统知识图谱本体模型的过程中,需要从已构建场景信息数据集中的结构化数据、半结构化数据、非结构化数据中准确的提取出完全的实体对和抽象实体对,充分抽取任务与无人机之间、任务与环境之间、无人机与动作之间等实体关系对。
(4)据实体识别和关系识别的结果,将识别、抽取到的实体和关系属性构建成多无人机系统知识图谱的本体模型。根据实际需求和领域知识,确定实体和关系的定义,建立实体之间的关系和约束规则。Protégé作为一个常用的本体编辑和构建工具,支持本体的可视化编辑、实体和关系的定义、约束规则的设置等功能,利用Protégé编辑构建多无人机系统知识图谱本体模型,将属性、实体和关系转化为图谱的节点和边,将收集到的数据转化为知识图谱本体模型中的实体和关系。本实用例中,对于多无人机系统任务规划领域所建立的本体模型如图3所示。
(5)对构建的多无人机系统知识图谱本体模型进行验证和评估,确保模型的准确性和完整性。根据验证结果,对模型进行修订和扩充,不断优化和完善模型的质量。
第三步,使用领域知识微调大语言模型:利用所整理收集到的场景信息数据集,通过微调策略对大语言模型进行微调并进行评估和优化。具体步骤如下:
(1)根据已收集的场景信息数据集,提取、归纳出适用于大语言模型微调多无人机系统任务规划场景下的数据集,诸如
{Question:“How to strike target objectA?”
Answer:“Sequential execution:Task1:Get_Location(Object)、Task2:Go_to(Area)、Task3:Attack(Object).Among them,the subtasks of Task1 include:SubTask1:Get_Location(ObjectA)、SubTask2:Get_Location(AttackUAV)、the subtasksof Task2
include:SubTask1:Plan_Path(AttackUAV)、SubTask2:Control_Fly(Path)、thesubtasks of Task3 include:SubTask1:UVA_Strike(ObjectA)”}这样的对话型数据集,能够有效辅助大语言模型通过已有方法对指派任务进行决策及规划。
(2)根据上述构建好的对话型数据集,对大语言模型进行微调。可以采用诸如LoRA、P-Tuning V2、Freeze等微调方法对欲微调的大语言模型进行微调。对于大模型微调的方法是在不断的迭代的,因此对于微调的方法应当不受限制,只需要根据自身的硬件条件以及当前能够采用的较高效的微调方法择优选取即可。使用预训练的大语言模型作为初始模型,将微调数据集输入模型进行微调训练,根据具体策略和任务需求,调整模型的参数和超参数。
(3)明确微调的任务目标,并定义评估指标来衡量微调模型的性能,评估指标采用精确度、召回率等。在微调过程中,定期对模型进行评估,使用自创建的多无人机系统任务规划验证集辅助评估评价指标,评测模型微调后的性能,根据验证结果对大语言模型采取修正或调整等措施,并根据评估结果判断是否继续微调优化模型。
第四步,建立知识图谱,并输入到大语言模型中:抽取场景信息数据集中的信息,形成结构化数据,结合已构建的知识图谱本体模型,建立该多无人机系统的知识图谱。对于外界不断更新以及多无人机系统运行过程中所收集的数据及信息,不断地通过大语言模型高效提取新数据中的实体和关系,扩展和更新到构建的知识图谱。并将不断更新的知识图谱输入到大语言模型中。具体步骤如下:
(1)根据需求和数据规模,选择一个适合存储知识图谱的系统,如图数据库或三元组存储系统。常见的图数据库,包括有Neo4j、JanusGraph、OrientDB和ArangoDB等。三元组存储系统可以使用基于RDF(Resource Description Framework)的系统,如Apache Jena和Virtuoso。
(2)依据本体模型及所构建的场景信息数据集建立多无人机系统知识图谱。在存储系统中创建模式定义,包括实体类别、属性和关系的定义,这可以使用存储系统提供的查询语言或API进行操作。将场景信息数据集中的数据进一步处理为三元组或其他形式易于存储的数据,如[method,has_submethod1,submethod1]、[UAV,own,Action]等形式。将整理好的数据导入存储系统中,数据可以以RDF格式或其他支持的格式进行表示,导入数据可以使用存储系统提供的数据导入工具、API或自定义脚本进行操作。
(3)利用系统中无人机传感器所收集信息不断完善补充、补全已建立的知识图谱。对多无人机系统运行过程中诸如侦察无人机等具备采集信息的无人机,所收集到的传感器数据进行采集和整合。这包括雷达数据、红外数据、气象数据、目标位置信息、其余无人机位置信息等多种类型的传感器信息,对这些传感器数据进行数据去噪、数据校准和数据格式转换等数据预处理操作,以确保数据的准确性和一致性。将收集及识别出的信息与已建立的多无人机系统知识图谱进行对比和更新,添加到已构建的多无人机系统知识图谱中。
(4)对于多无人机系统知识图谱中使用三元组形式存储的数据,通过形如“Thefollowing is data in the form of triples of the knowledge graph in the fieldof multi-UAV system mission planning.Please fully understand it and use it asa reference and basis for decision-making and planning of multi-UAV relatedtasks:[method,has_submethod1,submethod1]、[UAV,own,Action]、[UVA,is_in,environment]、
[latitude,belong,position]……”形式的提示(Prompt),将知识图谱中的数据输入到大语言模型中。提高大语言模型在多无人机系统任务规划领域的语义理解、生成和推理能力及性能。
(5)将构建好的多无人机系统知识图谱数据进行共享,以便其他研究者和开发者可以使用和贡献,并定期维护和更新,以保持其完整性、实用性和时效性。
第五步,通过知识萃取不断补全知识图谱:利用大语言模型所蕴含的丰富的常识知识,通过知识萃取的方式不断地扩充到已构建的多无人机系统知识图谱。针对已构建多无人机系统知识图谱中的实体或关系,可以采用全局或局部的方式,结合所设计的提示(Prompt),利用大语言模型对知识图谱进行不断地补全。对于大语言模型所萃取的新的实体关系对,进行验证和筛选等操作后,更新同步到知识图谱中。对于不断完善的知识图谱,及时地通过提示(Prompt)更新输入到大语言模型中。具体步骤如下:
(1)选取待补全或完善的实体或关系,通过设计提示(Prompt)进行知识萃取。准备待补全知识的实体集合,这可以是知识图谱中已有的实体,也可以是根据领域知识和需求手动选择的实体集合,包括实体的属性、关系、定义、特征等信息。并以所选取的实体或关系作为依据,构建与大语言模型交互的提示(Prompt),用于从大语言模型知识萃取,获取需要的数据及知识信息。以本实用例为例,为了补全关于打击无人机等实体相关数据时,可以设计形如以下提示(Prompt):“Please give me some knowledge map triplet form withAttackUAV as the head entity,such as(UAV,own,hardWare),supplementaryexamples:”
(2)通过设计的提示(Prompt)及现有多无人机系统知识图谱,利用大语言模型的预训练知识,通过知识萃取的方式来补全已建知识图谱中实体的相关属性、关系等。将待补全实体或关系结合设计的提示(Prompt)模板,输入到大语言模型中进行预测和生成,从大语言模型的输出中提取与待补全实体或关系相关的知识点。
(3)对从大语言模型中萃取的知识进行验证和过滤,计算其可靠性。对于大语言模型通过头实体h,而输出的三元组对(h,r,t),首先统计生成的三元组对个数n,并通过以下公式分别计算所萃取三元组中的关系r或尾实体t的合理性:
其中N(h,t)为以h为头实体,t为尾实体的三元组数量,同理N(h,r)为以h为头实体,r为关系的三元组数量,γ为设定的介于0与1之间的平滑系数,通过适当调整γ的大小,减小大语言模型生成无效或不可用三元组带来的影响。
通过计算所萃取三元组中的关系r或尾实体t的合理性,能够进一步计算所萃取的三元组(h,r,t)的合理性,其计算公式如下:
P(t,r|h)=p(r|h)·p(t|h)
通过计算所萃取的三元组(h,r,t)的合理性得分,对各三元组对进行排序,根据需求选取部分三元组对补全到知识图谱中。根据知识图谱的本体模型和结构,将三元组对对应的转化为图谱中的实体、关系、属性,并与已有的知识进行关联和链接,将补全后的知识点与知识图谱进行整合,更新和维护知识图谱的内容。
(4)选取所萃取三元组对中最相关的实体或关系,重复上述操作。为了不断丰富现有知识图谱,将通过大语言模型所萃取的知识三元组对中与现有知识图谱最相关的一些尾实体或关系重复进行提示(Prompt)的设计及知识萃取。其中计算最相关尾实体或关系的公式分别如下:
与/>分别为根据头实体h所萃取得到的知识三元组中,最相关的头实体及关系,可以选择重复前述操作,以最相关的头实体或尾实体为主体,重复进行知识萃取。
第六步,针对多无人机系统任务做可解释性的决策或规划:对于多无人机系统运行过程中所指派的任务,采用两种形式进行求解,分别是通过知识图谱输出任务规划方案,以及通过输入了知识图谱的大语言模型输出任务规划方案。即利用知识图谱所具备的可解释性,输出具有可解释性的多无人机任务规划方案,并对于大语言模型做出的规划方案同步使用知识图谱进行解释,使大语言模型输出策略具有可解释性。具体步骤如下:
利用大语言模型输出任务、问题的决策:
利用微调训练后的大语言模型输出一个任务的决策方案,最重要的是对提示(Prompt)的设计,让大语言模型明确任务的描述和目标,了解多无人机系统需要完成的任务是什么,以及任务的要求和约束。
对于提示(Prompt)的设计需要明确的让大语言模型理解和学会根据任务的复杂性,将任务分解为更小的子任务,这些子任务可以根据任务的特点和知识图谱中的相关信息进行划分。
因此对于提示(Prompt)的设计可以参考以下模板格式:
“问题表述模块:用以表述所需要解决的一系列任务规划问题属于多无人机系统模块,并明确要求大语言模型不能够使用任何它认为可能存在的假设方法。
模板案例模块:给出一个任务问题,并给出期望大语言模型能够输出的解决方案,作为大语言模型学习输出方式和方法的案例。可以视情况添加多个方案。”
在设计提示(Prompt)的过程中,可以采用提示工程(Prompt Engineering)方法,不断的优化所设计的提示(Prompt),以辅助设计出较优的提示词,提高大语言模型输出任务决策方案的能力。常见的提示工程(Prompt Engineering)技术包括零样本提示(zero-shot prompting)、小样本提示(Few-shot Prompting)、链式思考提示(Chain-of-ThoughtPrompting)、思维树(Tree of Thoughts)框架等方法。
以下为针对于多无人机系统在探查目标信息、打击目标区域等场景下的一些任务规划问题,采用的提示(Prompt)范例:
“I hope you can help me use the UAV correctly.First of all,you needto completely use the input Knowledge Graph in the field of multi-UAV systemmission planning as the basis for your mission planning.At the same time,donot use any hypothetical functions that you think may exist.You should onlyuse defined function methods that exist in the Knowledge Graph.
The following is a task for AttackUAV to attack target A,you need tolearn how to plan the mission:
1)Step 1—analyze the resources and information required by the task:search and analyze the required resources and information required by thetask in the natural language instruction.For the task of attacking ObjectA,aseries of resource information such as the environment,drones,and sensorinformation are required,as well as the task of striking ObjectA.
2)Step 2—Get the required information:After the analysis in Step1,call the perception module of the UAV system to obtain relevant information,that is,use the Get_Location(Object)methods to obtain the current AttackUAVlocation and target A location.
3)Step 3—Plan the flight path of the UAV:Call the Go_to(Area)methodwith the obtained information.
4)Step 4—Decompose the high-level task into sub-actions.Decomposethe high-level actions in the previous steps into atomic actions that the UAVcan directly execute.That is,Get_Location(Object)is decomposed into Get_Location(ObjectA),Get_Location(AttackUAV),Go_to(Area)is decomposed into Plan_Path(AttackUAV),Control_Fly(Path),and Attack(Object)is decomposed into UVA_Strike(ObjectA).
After the above four steps,you have completed the task planning ofstriking target A,so I need you to be able to make decisions and plan othertasks in this way,and I hope you can take the output format of this exampleas an example,outputting solutions to other tasks.The output format of thisexample is as follows:
‘Execute in sequence:
[Get_Location(ObjectA),Get_Location(AttackUAV),Plan_Path(AttackUAV),Control_Fly(Path),UVA_Strike(ObjectA)]’”
对于多无人机系统问题,需要严格采用已有知识图谱中的知识或分解任务方法,对于大语言模型输出规划决策的每一步,需要严格对应于知识图谱中的方法。使用图搜索等遍历方法,在已构建的多无人机系统知识图谱中查找大语言模型输出决策的对应路径和方法,为大语言模型输出的决策增添可解释性。
利用知识图谱输出任务、问题的决策:
明确任务的目标和约束条件,包括起始状态、目标状态、可利用资源、前提条件等。这些信息可以作为对任务规划、决策的搜索和推理的输入。利用语义解析器分析自然语言指令形式或其他可解析形式的任务语言指令,分解提取出需要多无人机系统执行的复杂任务。利用图搜索算法或偏序算法等在已构建的知识图谱中搜索该复杂任务的分解路径,并将通过搜索或推理查询得到的一系列分解步骤生成输出为可执行的原子动作序列,作为知识图谱所生成的任务规划决策方案。在本实用例中,给予多无人机系统一个“Pleaseattack target objectA”自然语言指令,系统首先通过语义解析器分析得到需要多无人机系统需要执行跟随目标A的操作,通过分析得到无人机系统需要执行Get_Location(Object)、Go_to(Area)、Attack(Object)等一系列操作。通过知识图谱提取这些执行这些指令所需要的一系列环境、无人机、传感器信息等资源信息后,生成获取这些资源的原子动作序列。本例中即需要获取跟随无人机当前所在位置、目标所在位置、等,故调用感知模块执行
Get_Location(ObjectA)、Get_Location(AttackUAV)等动作。
同时在已构建的知识图谱中利用图搜索算法等查询Attack(Object)等任务的分解步骤,依次查找到Get_Location(Object)、Go_to(Area)、Attack(Object)等任务的分解步骤如下:[Get_Location(ObjectA),Get_Location(AttackUAV),Plan_Path(AttackUAV),Control_Fly(Path),UVA_Strike(ObjectA)]。将分解得到的原子操作序列加入到规划解中,最终形成“Please attack target objectA”任务指令的任务规划解。
第七步,对所作规划方案进行评价及融合:定义评价指标作为衡量两者所输出策略质量的标准,这些指标可以包括任务完成时间、资源利用率、执行效率等。使用定义的评价指标对知识图谱输出的策略和大语言模型输出的策略分别进行评估并分配权重;根据评价指标的权重以及评估结果,对知识图谱输出的策略和大语言模型输出的策略进行择优选取并融合以得到一个综合的最优策略;根据融合后的综合策略,进行进一步的优化和调整,其包括对无人机相关参数的调整、策略的细化和改进;将进一步优化后的融合综合策略作为多无人机的任务规划方案。具体步骤如下:
(1)针对问题领域设计合适的评价指标。对于多无人机系统任务规划领域,知识图谱所输出的规划解和大语言模型输出的规划解中,代价、效率和收益等都是最重要的指标,其次,任务的完成时间、用户满意度、资源利用率等评价指标,也能够辅助评价两者输出的规划解。在本实用例中,采用打击无人机进行一些目标打击收益、任务完成时间、路径规划合理性为指标,评价任务规划方案。
(2)对规划解进行阶段划分。通过人工或自定义,将规划任务划分为多个阶段,对于每个阶段,采取独立评价的方式,择优选取知识图谱或大语言模型所输出对应阶段的规划解。在对各个不同的阶段进行评价的过程中,所设计的评价指标可以采用不同的权重以更加贴切不同阶段的需求。本实用例中,将打击无人机打击目标的规划解划分为收集信息、规划路径、打击目标三个阶段。
(3)对规划解各阶段进行评价。对规划解所划分的各个阶段,分别选取适宜的评价指标,以对各阶段规划方案进行合理的评价。本实用例中,对于打击无人机打击目标的规划解中打击目标阶段,采用打击收益及打击代价为评价指标进行评价。具体打击收益的公式表达为下:
Vij为无人机i打击目标j所获得的打击收益,其中Gj为无人机击打目标j的价值,Pi为无人机在打击目标j的过程中,被其他目标清除的概率,Jij为无人机i打击标j的打击代价,其公式如下
其中,k1、k2为加权系数,根据具体运用场景计算所得,Lij为无人机i为接近目标j的路径代价,h为无人机的高度代价。其中路径代价计算表达式如下:
其中(lon1,lat1,h1)为路径上某点的一组坐标,以经度、纬度、高度来表达。
利用以上评价指标表达式,结合实际运行情况,分别对知识图谱及大语言模型的规划解中打击目标阶段进行评价。
(4)对规划解进行融合。对规划解进行分阶段划分后,重复上述操作,利用评价指标对不同阶段的规划解进行评价,通过评价结果择优选取各阶级的最优规划方案,最终形成一个可执行的最优规划方案。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (7)

1.一种基于大语言模型的多无人机任务规划方法,其特征在于,包括以下步骤:
11)建立场景信息数据集:明确多无人机系统运用场景目标领域范围,收集领域范围内的数据和信息,并结合无人机信息对数据进行整理、标注、验证、修订、扩充,建立包含无人机及其功能信息的场景信息数据集;
12)建立知识图谱本体模型:对场景信息数据集进行实体识别,确定概念和实体集合,汇总并总结转换为知识图谱模型中的实体和关系,确定实体之间的关系,构建该多无人机系统的知识图谱本体模型;
13)使用领域知识进行大语言模型的微调:利用所整理收集到的场景信息数据集,通过微调策略对大语言模型进行微调并进行评估和优化;
14)大语言模型的输入:抽取场景信息数据集中的信息,形成结构化数据,结合已构建的知识图谱本体模型,建立该多无人机系统的知识图谱;将外界不断更新以及多无人机系统运行过程中所收集的数据及场景信息,不断地通过大语言模型提取新数据中的实体和关系,扩展和更新到构建的知识图谱中,并将不断更新的知识图谱输入到大语言模型中;
15)通过知识萃取不断补全知识图谱;
16)针对多无人机系统任务做可解释性的决策或规划;
所述针对多无人机系统任务做可解释性的决策或规划包括以下步骤:
161)利用大语言模型输出任务规划方案:
1611)明确定义多无人系统所指派任务的目标、约束和限制条件,即任务的输入和输出要求所需的资源和约束条件,确保多无人机系统中已有资源能够满足任务规划的需求;
1612)根据所明确的任务指令所需资源和约束条件,以及任务的目标,设计提示;通过提示工程完善所设计的提示;
1613)调整提示使得下游任务适应微调后的大语言模型,最后将提示输入到大语言模型中,通过大语言模型输出多无人机任务的任务规划方案;
162)利用多无人机系统知识图谱辅助输出任务规划方案:
1621)检测、查验多无人机系统知识图谱的结构和内容是否能够覆盖所指派任务所涉及的信息,包括多无人机系统状态信息、位置信息、功能信息、资源信息、分解方法信息;
1622)将大语言模型输出的任务规划路径映射到多无人机系统知识图谱中,通过使用图搜索的方式,将大语言模型输出的任务规划方案与知识图谱中节点或边进行对应,在知识图谱中检验大语言模型输出的规划方法的可行性;
1623)针对所指派的多无人机任务,通过知识图谱的推理和图搜索机制,使知识图谱根据任务要求获取当前多无人机系统中已有无人机的相关信息、以辅助推导逻辑关系,生成任务规划方案;
1624)对所作任务规划方案做解释或可视化,输出多无人机任务的解决策略的同时,提供解释或可视化的方式来展示知识图谱决策搜索路径;
17)对所作规划方案进行评价及融合:定义评价指标作为衡量知识图谱和大语言模型所输出策略质量的标准,使用定义的评价指标对知识图谱输出的策略和大语言模型输出的策略分别进行评估并分配权重;根据评价指标的权重以及评估结果,对知识图谱输出的策略和大语言模型输出的策略进行择优选取并融合以得到一个综合的最优策略;根据融合后的综合策略,进行进一步的优化和调整,其包括对无人机相关参数的调整、策略的细化和改进;将进一步优化后的融合综合策略作为多无人机的任务规划方案。
2.根据权利要求1所述的一种基于大语言模型的多无人机任务规划方法,其特征在于,所述建立场景信息数据集包括以下步骤:
21)获取多无人机系统应用需求,即明确多无人机系统应用的目标领域的范围,其包括涵盖的任务类型、环境特征、无人机种类及其能力;
22)通过在线资源、传感器收集的方式,收集与当前领域相关的知识信息,构建出场景信息数据集;
221)将收集到的知识整理成易于处理的形式,将非结构化数据、半结构化数据及结构化数据,建立成多无人机系统的数据集;
对数据集中的数据进行标注,正确标注出数据集中的实体和关系,并对构建的数据集进行验证,确保数据的准确性和一致性,修订数据中存在的错误并补全缺省信息;
222)通过数据增强技术及自动化抽取方式,从不易处理的非结构化数据中提取有效信息以扩充数据集,以增加数据量及数据的多样性。
3.根据权利要求1所述的一种基于大语言模型的多无人机任务规划方法,其特征在于,所述建立知识图谱本体模型包括以下步骤:
31)通过大语言模型抽取场景信息数据集中多无人机任务规划领域中数据信息,包括无人机种类、传感器信息、无人机机载设备、无人机能源、续航的实体和属性;
32)将所抽取的实体、属性,通过三元组形式进行表示,即[头实体,关系,尾实体]形式,并通过文本分析和关系抽取技术识别和提取实体之间的关系,根据已有三元组实体对,归纳多无人机任务规划系统领域的标签,并通过大语言模型对已有的三元组实体对进行归类;
33)使用知识图谱本体构建工具来建立多无人机系统的知识图谱本体模型;将三元组实体对中的属性、实体和关系转化为知识图谱中的节点和边,根据已构建的知识图谱本体模型,补充三元组实例,建立多无人机系统知识图谱;
34)对建立的知识图谱本体模型进行校验和验证,确保知识图谱本体模型的准确性和一致性,检查实体和关系之间的链接是否正确、属性是否完整和准确。
4.根据权利要求1所述的一种基于大语言模型的多无人机任务规划方法,其特征在于,所述使用领域知识进行大语言模型的微调包括以下步骤:
41)设定大语言模型在已有的多无人机领域数据基础上对于多无人机任务的目标预期,采用参数高效微调方法对大语言模型模型进行微调;
42)根据微调目标及设备资源,从所收集到用于预训练的数据集中提取样本用于微调,并以设定的微调目标为准不断调整模型的参数;
43)选取公开的有效数据集或自行构建的测试集数据对微调后的大模型进行测试,当微调达到设定的模型性能后,将微调后的模型部署到实际应用中。
5.根据权利要求1所述的一种基于大语言模型的多无人机任务规划方法,其特征在于,所述大语言模型的输入包括以下步骤:
51)将大语言模型所识别和抽取的形式化数据,以及多无人机系统在实际场景运行过程中传感器收集到的信息,整理为形如[头实体,关系,尾实体]的三元组形式;
52)将已有三元组对中的实体与知识图谱本体模型中定义的实体进行链接,建立实体与数据之间的对应关系,逐步将形式化数据根据知识图谱本体模型输入到知识图谱的节点中,并存储在图数据库或存储系统中;
53)将知识图谱中的数据转换为输入形式,结合构建的提示输入到大语言模型中,作为大语言模型针对领域任务决策的知识库及依据;并将构建好的知识图谱数据进行共享、定期维护和更新。
6.根据权利要求1所述的一种基于大语言模型的多无人机任务规划方法,其特征在于,所述通过知识萃取不断补全知识图谱包括以下步骤:
61)根据知识图谱中已有的实体和关系,设计针对多无人机任务规划系统领域知识萃取的提示,通过将多无人机系统知识图谱中的实体或属性以及所设计的提示作为输入,以生成与之相关的实体、关系及属性;
62)对大语言模型所知识萃取得到的实体或关系,重复利用提示的机制,引导大语言模型进一步萃取新的实体、关系或属性,直至无新的知识出现;
63)对于大语言模型所萃取的新实体对,使用三元组(h,r,t)向量化表示,并通过语义匹配模型或评价函数对三元组实体对的合理性进行评价以进行筛选和验证。
7.根据权利要求1所述的一种基于大语言模型的多无人机任务规划方法,其特征在于,所述对所作规划方案进行评价及融合包括以下步骤:
71)评估所作决策的可行性和正确性:
为验证所作决策的可行性,对于大语言模型所作决策方案,通过结合到多无人机系统知识图谱中,以检验任务解决方案在图谱中是否存在一致的节点、路径,并比较大语言模型所预测多无人机系统最终结果状态与任务规划的预期目标是否一致,以验证该决策方案的可行性;对于知识图谱所作决策,检查输出的决策方案是否符合场景约束条件,以及决策方案中所调用的实体、资源,现有系统是否满足以验证该决策方案的可行性;
为验证所作决策的正确性,对于多无人机系统知识图谱及大语言模型所作决策,分别通过在多无人机模拟运行环境或实际场景中运行以验证二者所作决策的正确性;
72)设定指标、评价决策并分阶段评估:
在对两种方案的可行性和正确性进行分析后,设定指标辅助评估决策性能,指标包括任务完成时间、资源利用率、执行效率;将决策方案划分多个阶段,对于不同阶段利用指标对知识图谱和大语言模型所作决策方案进行评估;
73)分阶段择优选取所作决策,并融合:
对于不同的指标赋予不同的权重,通过对各个指标进行加权评价以得到各阶段两种方案的得分,以辅助进行择优选取,最终融合以得到一个综合的最优解决策略。
CN202311160901.2A 2023-09-08 2023-09-08 一种基于大语言模型的多无人机任务规划方法 Active CN117151338B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311160901.2A CN117151338B (zh) 2023-09-08 2023-09-08 一种基于大语言模型的多无人机任务规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311160901.2A CN117151338B (zh) 2023-09-08 2023-09-08 一种基于大语言模型的多无人机任务规划方法

Publications (2)

Publication Number Publication Date
CN117151338A CN117151338A (zh) 2023-12-01
CN117151338B true CN117151338B (zh) 2024-05-28

Family

ID=88909810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311160901.2A Active CN117151338B (zh) 2023-09-08 2023-09-08 一种基于大语言模型的多无人机任务规划方法

Country Status (1)

Country Link
CN (1) CN117151338B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117371761A (zh) * 2023-12-04 2024-01-09 集美大学 一种智慧海洋物联网任务调度方法、装置、设备及介质
CN117669737B (zh) * 2023-12-20 2024-04-26 中科星图数字地球合肥有限公司 一种端到端地理行业大语言模型构建及使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104866692A (zh) * 2015-06-18 2015-08-26 北京理工大学 一种基于自适应代理模型的飞行器多目标优化方法
CN111737492A (zh) * 2020-06-23 2020-10-02 安徽大学 一种基于知识图谱技术的自主机器人任务规划方法
CN112308492A (zh) * 2020-11-10 2021-02-02 济南浪潮高新科技投资发展有限公司 基于深度学习与知识图谱融合的仓库管理方法及系统
CN113591108A (zh) * 2021-07-05 2021-11-02 北京瑞博众成科技有限公司 数字孪生现场安全管控平台

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6454201B2 (ja) * 2015-03-26 2019-01-16 東京エレクトロン株式会社 基板搬送方法及び基板処理装置
EP4170449B1 (en) * 2021-10-22 2024-01-31 Tata Consultancy Services Limited System and method for ontology guided indoor scene understanding for cognitive robotic tasks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104866692A (zh) * 2015-06-18 2015-08-26 北京理工大学 一种基于自适应代理模型的飞行器多目标优化方法
CN111737492A (zh) * 2020-06-23 2020-10-02 安徽大学 一种基于知识图谱技术的自主机器人任务规划方法
CN112308492A (zh) * 2020-11-10 2021-02-02 济南浪潮高新科技投资发展有限公司 基于深度学习与知识图谱融合的仓库管理方法及系统
CN113591108A (zh) * 2021-07-05 2021-11-02 北京瑞博众成科技有限公司 数字孪生现场安全管控平台

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Research on the Intelligent Construction of UAV Knowledge Graph Based on Attentive Semantic Representation;Yi Fan;《drones》;20230429;第7卷(第6期);全文 *
面向无人机海上侦察任务的自适应粒度分解策略研究;陈行军;《火力与指挥控制》;20230816;第49卷(第01期);131-138 *

Also Published As

Publication number Publication date
CN117151338A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
CN117151338B (zh) 一种基于大语言模型的多无人机任务规划方法
CN110633409B (zh) 一种融合规则与深度学习的汽车新闻事件抽取方法
CN111026842B (zh) 自然语言处理方法、自然语言处理装置及智能问答系统
CN109062939A (zh) 一种面向汉语国际教育的智能导学方法
CN112507699B (zh) 一种基于图卷积网络的远程监督关系抽取方法
CN110990590A (zh) 一种基于强化学习和迁移学习的动态金融知识图谱构建方法
CN109614495B (zh) 一种结合知识图谱和文本信息的相关公司挖掘方法
CN112148890B (zh) 基于网络群体智能的教学知识点图谱系统
CN101901247A (zh) 一种领域本体约束的垂直搜索引擎方法及系统
CN112380325A (zh) 基于联合知识嵌入模型和事实记忆网络的知识图谱问答系统
CN113761893B (zh) 一种基于模式预训练的关系抽取方法
CN115599899B (zh) 基于飞行器知识图谱的智能问答方法、系统、设备及介质
CN113254630B (zh) 一种面向全球综合观测成果的领域知识图谱推荐方法
CN116484024A (zh) 一种基于知识图谱的多层次知识库构建方法
CN112597285A (zh) 一种基于知识图谱的人机交互方法及系统
Skryagin et al. Neural-probabilistic answer set programming
CN113779267A (zh) 一种基于意图的星上智能任务决策方法
CN110909124B (zh) 基于人在回路的混合增强智能需求精准感知方法及系统
CN114238524B (zh) 基于增强样本模型的卫星频轨数据信息抽取方法
CN114818707A (zh) 一种基于知识图谱的自动驾驶决策方法和系统
CN117473054A (zh) 基于知识图谱的通用智能问答方法及装置
JP2023147236A (ja) 説明により強化された機械学習パイプライン
CN116226404A (zh) 一种针对肠-脑轴的知识图谱构建方法及知识图谱系统
CN116244277A (zh) 一种nlp识别与知识库构建方法及系统
CN115934966A (zh) 基于遥感影像推荐信息的自动标注方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant