CN117155100B - 一种三相四桥臂并网逆变器的漏电流抑制方法 - Google Patents

一种三相四桥臂并网逆变器的漏电流抑制方法 Download PDF

Info

Publication number
CN117155100B
CN117155100B CN202311413436.9A CN202311413436A CN117155100B CN 117155100 B CN117155100 B CN 117155100B CN 202311413436 A CN202311413436 A CN 202311413436A CN 117155100 B CN117155100 B CN 117155100B
Authority
CN
China
Prior art keywords
signal
logic
logic signal
phase
leakage current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311413436.9A
Other languages
English (en)
Other versions
CN117155100A (zh
Inventor
谭广军
张翱
郭新宇
阿林丹·戈什
陈智
韦金龙
曾旭阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN202311413436.9A priority Critical patent/CN117155100B/zh
Publication of CN117155100A publication Critical patent/CN117155100A/zh
Application granted granted Critical
Publication of CN117155100B publication Critical patent/CN117155100B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0038Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种三相四桥臂并网逆变器的漏电流抑制方法,属于太阳能设备中的并网逆变器技术领域,所述方法是指对于三相四桥臂光伏并网逆变器漏电流抑制的载波调制策略,是通过开关信号调制方式实现,将三相对称正弦波分别与三角载波VC通过比较器比较得到A、B、C三相逻辑信号;将三相逻辑信号与数学逻辑运算结合,只需要改变三相中任一相逻辑信号,就能够使共模电压稳定在某个值,无论电路处于何种模态,共模电压均维持恒定,使得漏电流控制在允许范围内。本发明采用数学逻辑控制来消除三相四桥臂光伏并网逆变器的漏电流,没有复杂的计算过程,实现过程简单。

Description

一种三相四桥臂并网逆变器的漏电流抑制方法
技术领域
本发明涉及太阳能设备中直流功率输入到交流功率输出的并网逆变器控制技术领域,尤其是一种三相四桥臂并网逆变器的漏电流抑制方法。
背景技术
在并网系统中,通常将光伏系统分为隔离型和非隔离型。如果光伏系统中含有变压器,则称为隔离式光伏并网系统,否则称为非隔离式光伏并网系统。非隔离式光伏并网系统具有体积小、效率高、成本低等特点,受到众多学者的研究。无变压器逆变器以其体积小、成本低、效率高等优点受到越来越多的关注。然而,由于缺乏电流隔离,因此存在泄漏电流的问题。泄漏电流的产生会引起电磁干扰和潜在的安全问题。德国VDE-0126-1-1标准规定:光伏系统漏电流峰值大于300mA,则光伏并网逆变器必须在0.3S内从电网中切除。
现有技术中,光伏并网系统漏电流解决方案之一是通过调制策略保证系统共模电压恒定。调制策略可分为两类:空间矢量调制策略和载波调制策略。对于载波调制策略,中国专利申请号为201410131070.0,其名称为《一种三相四桥臂光伏并网逆变器漏电流抑制方法》,该申请方案通过加入时间信号,通过判断时间信号的区间和特殊的逻辑控制,从而达到抑制共模电压的存在,由于时间信号的加入,需要对时间信号进行判断和划分,使得控制难度增大。对于载波调制策略,中国专利申请为202010233077 .9,其名称为《一种三相四桥臂Z源逆变器的漏电流抑制方法》,该申请方案是通过扇区判断来代替时间信号,该申请方案与申请号为201410131070.0的发明专利相类似,只是扇区信号替代了时间信号,并且在原有的基础上,加入了三个载波并且载波移相,控制难度没有减少。
因此,有必要研发一种控制方法更加简单、实现过程也更加简单的三相四桥臂并网逆变器的漏电流抑制方法。
发明内容
本发明需要解决的技术问题是提供一种三相四桥臂并网逆变器的漏电流抑制方法,不需要加入时间信号,采用数学逻辑控制来消除三相四桥臂光伏并网逆变器的漏电流,只需要改变三相中任一相逻辑信号就可以消除漏电流,控制系数减少,调制方式没有复杂的计算过程,实现过程更加简单。
为解决上述技术问题,本发明所采用的技术方案是:
一种三相四桥臂并网逆变器的漏电流抑制方法,对于三相四桥臂光伏并网逆变器漏电流抑制的载波调制策略,是通过开关信号调制方式实现,将三相对称正弦波分别与三角载波VC通过比较器比较得到A、B、C三相逻辑信号;将三相逻辑信号与数学逻辑运算结合,只需要改变三相中任一相逻辑信号,就能够使共模电压稳定在某个值,无论电路处于何种模态,共模电压均维持恒定,使得漏电流控制在允许范围内;
所述比较器包括比较器1、比较器2和比较器3,所述三相逻辑信号包括第一逻辑信号、第二逻辑信号/>和第三逻辑信号/>;所述数学逻辑运算分别通过加减运算器1、加减运算器2、加减运算器3、加减运算器4、绝对值运算器、乘法运算器1、乘法运算器2、加法运算器1运算。
将第一逻辑信号、第二逻辑信号/>、第三逻辑信号/>送到比较器后的逻辑电路得到第一开关信号/>、第二开关信号/>、第三开关信号/>、第四开关信号/>、第五开关信号/>、第六开关信号/>、第七开关信号/>和第八开关信号/>,具体过程为:
第一逻辑信号直接得到第一开关信号/>
第一逻辑信号通过非门1得到第二开关信号/>
第二逻辑信号直接得到第三开关信号/>
第二逻辑信号通过非门2得到第四开关信号/>
将第一逻辑信号、第二逻辑信号/>通过加减运算器1得到第四逻辑信号a,数值1与第一逻辑信号/>通过加减运算器2得到第五逻辑信号b,数值1与第二逻辑信号/>通过加减运算器3得到第六逻辑信号c,第四逻辑信号a通过绝对值运算器得到第七逻辑信号d;
第七逻辑信号d、第三逻辑信号通过乘法运算器1得到第八逻辑信号e,第五逻辑信号b、第六逻辑信号c通过乘法运算器2得到第九逻辑信号f;
第八逻辑信号e、第九逻辑信号f通过加法运算器1得到第五开关信号
第五开关信号通过非门3得到第六开关信号/>
第七开关信号通过加减运算器4,从数值2减去第一开关信号/>、第三开关信号/>和第五开关信号/>通过结果得到;
第七开关信号通过非门4得到第八开关信号/>
本发明技术方案的进一步改进在于:所用载波既能为单载波,也能为双载波。
由于采用了上述技术方案,本发明取得的技术进步是:
1、本发明将三相对称正弦波分别与三角载波比较得到A、B、C三相逻辑信号、/>,将三相逻辑信号与数学逻辑运算结合,只需要改变三相中任一相逻辑信号,就可以使共模电压稳定在某个值,可以对三相任意调制信号有效,无论电路处于何种模态,共模电压均维持恒定,使得漏电流控制在允许范围内,有效的减小了控制难度。
2、本发明不需要添加时间信号或者对扇区划分,对三相逻辑信号、/>、/>任意一相进行控制仍然有效,减少了控制系数,该调制方式没有复杂的计算过程,实现更加简单。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图;
图1是本发明实施例中提供的三相四桥臂并网逆变器的开关信号载波调制策略原理图;为了方便理解图中等效于/>,/>等效于/>
图2是本发明实施例中三相四桥臂并网逆变器的电路图。
具体实施方式
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语 “包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
下面结合附图及实施例对本发明做进一步详细说明:
如图1所示,为三相四桥臂并网逆变器的开关信号载波调制策略原理图。
一种三相四桥臂并网逆变器的漏电流抑制方法,包括以下步骤:
(1)对于三相四桥臂光伏并网逆变器漏电流抑制的载波调制策略,是通过开关信号调制方式实现,由调制波分别和三角载波VC通过比较器1、比较器2、比较器3得到第一逻辑信号/>、第二逻辑信号/>、第三逻辑信号/>
(2)将第一逻辑信号、第二逻辑信号/>、第三逻辑信号/>分别送到比较器1、比较器2、比较器3后的逻辑电路得到第一开关信号/>、 第二开关信号/>
第三开关信号、第四开关信号/>、第五开关信号/>、第六开关信号/>、第七开关信号/>、第八开关信号/>,具体过程为:
第一逻辑信号直接得到第一开关信号/>(/>等效于/>);
第一逻辑信号通过非门1(NOT1)得到第二开关信号/>
第二逻辑信号直接得到第三开关信号/>(/>等效于/>);
第二逻辑信号通过非门2(NOT2)得到第四开关信号/>
将第一逻辑信号、第二逻辑信号/>通过加减运算器1得到第四逻辑信号a,数值1与第一逻辑信号/>通过加减运算器2得到第五逻辑信号b,数值1与第二逻辑信号/>通过加减运算器3得到第六逻辑信号c,第四逻辑信号a通过绝对值运算器得到第七逻辑信号d;
第七逻辑信号d、第三逻辑信号通过乘法运算器1得到第八逻辑信号e,第五逻辑信号b、第六逻辑信号c通过乘法运算器2得到第九逻辑信号f;
第八逻辑信号e、第九逻辑信号f通过加法运算器1得到第五开关信号
第五开关信号通过非门3(NOT3)得到第六开关信号/>
第七开关信号通过加减运算器4,从数值2减去第一开关信号/>(/>等效于)、第三开关信号/>(/>等效于/>)和第五开关信号/>通过结果得到;
第七开关信号通过非门4(NOT4)得到第八开关信号/>
所述开关信号调制方式属于载波调制方式,所用载波既可以为单载波,也可以为双载波,无需判断参考矢量所在扇区,也无需计算矢量作用时间。
如图2所示,为三相四桥臂并网逆变器的电路图。图中,/>,/>,/>,分别表示A点、B点、C点、D点与N点之间的电压差,/>表示电源电压,/>表示共模电压。
为了验证本发明提供的三相四桥臂并网逆变器漏电流抑制方法的有效性,采用本发明提供的三相四桥臂并网逆变器漏电流抑制方法分别对C相、B相和A相进行载波调制控制所得到的开关状态结果如下表1、表2和表3所示。
表1、表2和表3中各参数及取值原理:为正弦波/>与三角载波VC通过比较器得到的A相逻辑信号;/>为正弦波/>与三角载波VC通过比较器得到的B相逻辑信号;/>为正弦波/>与三角载波VC通过比较器得到的C相逻辑信号;/>、/>、/>、/>分别为第一开关信号、第三开关信号、第五开关信号和第七开关信号,该开关状态0为关断,1为开通。/>为A相相电压的状态;/>为B相相电压状态;/>为C相相电压状态;/>为D相相电压状态,为共模电压,表达式为/>
对C相进行载波调制控制所得到的开关状态结果如下表1所示:
表1 对C相进行载波调制控制所得到的开关状态结果表
由上表1可知,采用本申请提供的三相四桥臂并网逆变器漏电流抑制方法对C相进行载波调制控制,即实现了系统共模电压的恒定,为/>,从而保证漏电流得到了有效抑制。
对B相进行载波调制控制所得到的开关状态结果如表2所示:
表2 对B相进行载波调制控制所得到的开关状态结果表
由上表2可知,采用本申请提供的三相四桥臂并网逆变器漏电流抑制方法对B相进行载波调制控制,即实现了系统共模电压的恒定,为/>,从而保证漏电流得到了有效抑制。
对A相进行载波调制控制所得到的开关状态结果如表3所示:
表3 对A相进行载波调制控制所得到的开关状态结果表
由上表3可知,采用本申请提供的三相四桥臂并网逆变器漏电流抑制方法对A相进行载波调制控制,即实现了系统共模电压的恒定,为/>,从而保证漏电流得到了有效抑制。
综上所述,结合表1、2、3所示的开关状态和图1所示的逻辑电路,只需要改变三相(A、B、C)中任一相逻辑信号,就能够使共模电压稳定在某个值,无论电路处于何种模态,共模电压均维持恒定,使得漏电流控制在允许范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (2)

1.一种三相四桥臂并网逆变器的漏电流抑制方法,其特征在于,对于三相四桥臂并网逆变器漏电流抑制的载波调制策略,是通过开关信号调制方式实现,将三相对称正弦波分别与三角载波VC通过比较器比较得到A、B、C三相逻辑信号;将三相逻辑信号与数学逻辑运算结合,只需要改变三相中任一相逻辑信号,就能够使共模电压稳定在某个值,无论电路处于何种模态,共模电压均维持恒定,使得漏电流控制在允许范围内;
所述比较器包括比较器1、比较器2和比较器3,所述三相逻辑信号包括第一逻辑信号Sa、第二逻辑信号Sb和第三逻辑信号Sc;所述数学逻辑运算分别通过加减运算器1、加减运算器2、加减运算器3、加减运算器4、绝对值运算器、乘法运算器1、乘法运算器2、加法运算器1运算;
将第一逻辑信号Sa、第二逻辑信号Sb、第三逻辑信号Sc送到比较器后的逻辑电路得到第一开关信号S1a、第二开关信号S2a、第三开关信号S1b、第四开关信号S2b、第五开关信号S1c、第六开关信号S2c、第七开关信号S1d和第八开关信号S2d,具体过程为:
第一逻辑信号Sa直接得到第一开关信号S1a
第一逻辑信号Sa通过非门1得到第二开关信号S2a
第二逻辑信号Sb直接得到第三开关信号S1b
第二逻辑信号Sb通过非门2得到第四开关信号S2b
将第一逻辑信号Sa、第二逻辑信号Sb通过加减运算器1,第一逻辑信号Sa减去第二逻辑信号Sb得到第四逻辑信号a,数值1与第一逻辑信号Sa通过加减运算器2,从数值1减去第一逻辑信号Sa得到第五逻辑信号b,数值1与第二逻辑信号Sb通过加减运算器3,从数值1减去第二逻辑信号Sb得到第六逻辑信号c,第四逻辑信号a通过绝对值运算器得到第七逻辑信号d;
第七逻辑信号d、第三逻辑信号Sc通过乘法运算器1得到第八逻辑信号e,第五逻辑信号b、第六逻辑信号c通过乘法运算器2得到第九逻辑信号f;
第八逻辑信号e、第九逻辑信号f通过加法运算器1得到第五开关信号S1c
第五开关信号S1c通过非门3得到第六开关信号S2c
第七开关信号S1d通过加减运算器4,从数值2减去第一开关信号S1a、第三开关信号S1b和第五开关信号S1c得到;
第七开关信号S1d通过非门4得到第八开关信号S2d
2.根据权利要求1所述的一种三相四桥臂并网逆变器的漏电流抑制方法,其特征在于:所用载波既能为单载波,也能为双载波。
CN202311413436.9A 2023-10-30 2023-10-30 一种三相四桥臂并网逆变器的漏电流抑制方法 Active CN117155100B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311413436.9A CN117155100B (zh) 2023-10-30 2023-10-30 一种三相四桥臂并网逆变器的漏电流抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311413436.9A CN117155100B (zh) 2023-10-30 2023-10-30 一种三相四桥臂并网逆变器的漏电流抑制方法

Publications (2)

Publication Number Publication Date
CN117155100A CN117155100A (zh) 2023-12-01
CN117155100B true CN117155100B (zh) 2024-01-05

Family

ID=88910336

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311413436.9A Active CN117155100B (zh) 2023-10-30 2023-10-30 一种三相四桥臂并网逆变器的漏电流抑制方法

Country Status (1)

Country Link
CN (1) CN117155100B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368442A (zh) * 2013-07-16 2013-10-23 上海煦达新能源科技有限公司 一种并网逆变器
CN103956890A (zh) * 2014-04-01 2014-07-30 燕山大学 一种三相四桥臂光伏并网逆变器漏电流抑制方法
CN111293871A (zh) * 2020-03-29 2020-06-16 西南交通大学 一种三相四桥臂z源逆变器的漏电流抑制方法
US20230314487A1 (en) * 2021-07-21 2023-10-05 University Of North Carolina Charlotte On-state voltage measurement of high-side and low-side power transistors in a half-bridge for in-situ prognostics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368442A (zh) * 2013-07-16 2013-10-23 上海煦达新能源科技有限公司 一种并网逆变器
CN103956890A (zh) * 2014-04-01 2014-07-30 燕山大学 一种三相四桥臂光伏并网逆变器漏电流抑制方法
CN111293871A (zh) * 2020-03-29 2020-06-16 西南交通大学 一种三相四桥臂z源逆变器的漏电流抑制方法
US20230314487A1 (en) * 2021-07-21 2023-10-05 University Of North Carolina Charlotte On-state voltage measurement of high-side and low-side power transistors in a half-bridge for in-situ prognostics

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Dong Yang,et al..Topology Optimization Analysis of Leakage Current Suppression in Three-Level Four-Leg Photovoltaic Grid-Connected Inverter.IEEE.2023,第50145-50156页. *
非隔离型三相四桥臂光伏逆变器漏电流抑制研究;郭小强 等;《电工技术学报》;第31卷(第19期);第66-73页 *

Also Published As

Publication number Publication date
CN117155100A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
Guo et al. ESI: A novel three-phase inverter with leakage current attenuation for transformerless PV systems
Dekka et al. A space-vector PWM-based voltage-balancing approach with reduced current sensors for modular multilevel converter
Lee et al. A novel carrier-based PWM method for Vienna rectifier with a variable power factor
Hou A multicarrier PWM for parallel three-phase active front-end converters
Wang et al. A novel model predictive control strategy to eliminate zero-sequence circulating current in paralleled three-level inverters
US9611836B2 (en) Wind turbine power conversion system
Khadkikar et al. Implementation of single-phase synchronous dq reference frame controller for shunt active filter under distorted voltage condition
Liao et al. Simplified PWM with switching constraint method to prevent circulating currents for paralleled bidirectional AC/DC converters in grid-tied system using graphic analysis
EP3335293A1 (en) Method and system for a gas tube switch based voltage source high voltage direct current transmission system
Tran et al. An advanced modulation strategy for three-to-five-phase indirect matrix converters to reduce common-mode voltage with enhanced output performance
CN103956890A (zh) 一种三相四桥臂光伏并网逆变器漏电流抑制方法
CN111293871B (zh) 一种三相四桥臂z源逆变器的漏电流抑制方法
Hakami et al. Dual-carrier-based PWM method for DC-link capacitor lifetime extension in three-level hybrid ANPC inverters
Abarzadeh et al. A modified static ground power unit based on active natural point clamped converter
EP3723264B1 (en) Single-phase five-level converter control method and device
Zhang et al. A novel modulation method based on model prediction control with significantly reduced switching loss and current zero-crossing distortion for Vienna rectifier
Jeong et al. Finite control set–model predictive control of H8 inverter considering dead-time effect for PMSM drive systems with reduced conducted common-mode EMI and current distortions
CN117155100B (zh) 一种三相四桥臂并网逆变器的漏电流抑制方法
Monfared et al. Overview of modulation techniques for the four-switch converter topology
Omar et al. Comparative study of a three phase cascaded H-bridge multilevel inverter for harmonic reduction
CN112803823B (zh) 脉冲宽度调制方法、逆变器和控制器
Nannapaneni et al. Control of indirect matrix converter by using improved SVM method
Nguyen et al. The carrier-based PWM method to reduce common-mode voltage for three-level T-type neutral point clamp inverter
CN110829494B (zh) 基于三电平并网变流器svpwm调制自动切换控制方法及系统
CN111900868B (zh) 抑制三相mmc共模电压的最近零共模矢量调制方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant