CN111900868B - 抑制三相mmc共模电压的最近零共模矢量调制方法及系统 - Google Patents

抑制三相mmc共模电压的最近零共模矢量调制方法及系统 Download PDF

Info

Publication number
CN111900868B
CN111900868B CN202010839746.7A CN202010839746A CN111900868B CN 111900868 B CN111900868 B CN 111900868B CN 202010839746 A CN202010839746 A CN 202010839746A CN 111900868 B CN111900868 B CN 111900868B
Authority
CN
China
Prior art keywords
vector
common mode
voltage
phase
mmc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010839746.7A
Other languages
English (en)
Other versions
CN111900868A (zh
Inventor
蒋栋
陈嘉楠
赵炫
张野驰
孙伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202010839746.7A priority Critical patent/CN111900868B/zh
Publication of CN111900868A publication Critical patent/CN111900868A/zh
Application granted granted Critical
Publication of CN111900868B publication Critical patent/CN111900868B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种抑制三相MMC共模电压的最近零共模矢量调制方法及系统,包括:(1)计算控制器给定的三相参考值对应电平数的标幺值,并获得与每相标幺值相邻的两个电平;(2)根据(1)中每相获得的两个邻近电平,三相一共可以合成8个矢量,从中筛选出3个共模电压为零的矢量;(3)将(2)中得到的零共模矢量分别与控制器给定的参考矢量进行比较,得到差值最小的矢量即为最近零共模矢量,将该矢量作为该控制周期的矢量作用于MMC,从而可以消除共模电压。本发明适用于任意电平/子模块数的MMC,可以降低变换器输出的共模电压,从而抑制共模电流和共模干扰,同时避免了多电平变换器传统空间矢量方法中复杂的矢量定位和选择的计算过程。

Description

抑制三相MMC共模电压的最近零共模矢量调制方法及系统
技术领域
本发明属于电力电子技术领域,更具体地,涉及一种抑制三相MMC共模电压的最近零共模矢量调制方法及系统。
背景技术
模块化多电平变换器(MMC)凭借易于模块化,开关损耗低,耐压高,控制灵活等优势,成为中高压应用场所电压变换最具潜力的备选方案,得到国内外的广泛研究和关注。
从调制方法上来分,MMC有两大类调制方法:一类是适用于开关频率较低子模块数较多的情况,包含最近电平逼近,最近矢量合成以及特定谐波消除等调制方法;另一大类是是适用于开关频率较高子模块数较少的情况,包含载波移相,载波层叠以及空间矢量合成等调制方法。上述的所有调制方法都没有考虑共模电压的问题,在MMC运行时不可避免地产生共模电压。
共模电压的危害主要有以下三个方面。第一,对于逆变器供电的电力传动系统,共模电压会在电机轴上感应出电压并作用于轴承,当感应电压超过轴承润滑油膜的击穿阈值就会迅速放电,长久累计会损坏轴承,降低其运行寿命。第二,对光伏逆变并网系统,光伏阵列存在较大的对地杂散电容,高频的共模电压会感应出漏电流从而损坏光伏板。第三,共模电压感应出的高频共模电流,进一步传播和衍化导致电磁干扰,妨碍控制系统和通信系统。
现有报道的抑制MMC共模电压的技术,仅有基于载波移相和载波层叠技术的共模电压抑制方法。然而这些方法仅适用于子模块数较少的MMC系统,而MMC的主要应用场合是子模块数较多的情况,此时载波移相等高开关频率的调制方法不再适用。缺乏专门针对子模块数多低开关频率运行的MMC的共模电压抑制方法。
发明内容
针对现有技术的缺陷,本发明提供了一种抑制三相MMC共模电压的最近零共模矢量调制方法及系统,其目的在于降低MMC常规调制方式导致的高频共模电压从而产生共模漏电流与干扰,由此解决应用MMC进行电能变换的电机系统的电机轴承与光伏发电系统光伏板容易受到共模电压导致的损害的技术问题。
为实现上述目的,按照本发明的一方面,提供了一种抑制三相MMC共模电压的最近零共模矢量调制方法及系统,包括以下步骤:
(1)计算当前控制周期控制器给定的三相电压参考值对应电平数的标幺值,并获得与每相标幺值相邻的两个电平;
(2)根据(1)中每相标幺值相邻的两个电平,三相一共合成8种电压矢量,根据零共模电压矢量计算方法,从中筛选出3个共模电压为零的矢量,即为零共模矢量;
(3)将(2)中得到的零共模矢量分别与控制器给定的三相电压参考值进行比较,得到差值最小的矢量即为最近零共模矢量,将该矢量作为下一控制周期的矢量作用于多电平变换器。
可选地,步骤(1)包括:
控制器根据相应的控制方法得到三相的参考电压值ua,ub和uc的前提条件下,计算三相参考值对应电平数的标幺值为:
Figure BDA0002641007140000021
上式中Vdc为MMC的直流母线电压,N为MMC桥臂中串联的子模块数且一般为偶数。
每相可以选取的相邻电平数为:
Figure BDA0002641007140000031
Figure BDA0002641007140000032
上式中floor(x)函数表示小于等于x的最大整数,ceil(x)函数表示大于等于x的最小整数,ni的取值为0,1,2,…,N。
可选地,所述步骤(2)包括:
所述步骤(1)得到的8个矢量分别为:
Figure BDA0002641007140000033
若MMC的共模电压为零,则三相的电平数应当满足:
Figure BDA0002641007140000034
将上述8个矢量代入上式即可选出其中满足共模电压为零的3个矢量V1,V2,V3,即为零共模矢量。
可选地,所述步骤(3)包括:
参考矢量的计算公式为:
Figure BDA0002641007140000035
零共模矢量与参考矢量的差值求解方法为:
Figure BDA0002641007140000036
最近零共模矢量为即为与参考矢量差值最小的零共模矢量。
按照本发明的另一方面,提供了一种抑制三相MMC共模电压的最近零共模矢量调制系统,包括:
相邻电平获取模块,用于计算当前控制周期控制器给定的三相电压参考值对应电平数的标幺值,并获得与每相标幺值相邻的两个电平;
零共模矢量获取模块,用于根据每相标幺值相邻的两个电平,三相一共合成8个电压矢量,从中筛选出3个共模电压为零的矢量,即为零共模矢量;
控制矢量获取模块,用于零共模矢量分别与控制器给定的三相电压参考值进行比较,得到差值最小的矢量即为最近零共模矢量,将该矢量作为下一控制周期的矢量作用于多电平变换器。
通过本发明所构思的以上技术方案,与现有常规的用于MMC的调制方法相比,通过选择最近零共模矢量来逼近参考矢量,能够大幅度地降低共模电压,从而抑制杂散电容耦合的共模漏电流,能够防止电机系统的电机轴承和光伏系统的光伏板受到损害,同时共模电流的抑制也能够防止进一步传播和衍化,降低了电磁干扰的可能性,从而确保了系统的安全可靠运行。
附图说明
图1是本发明适用的模块化多电平变换器的示意图;
图2是多电平零共模矢量图;
图3是最近电平逼近正弦波的原理图;
图4是本发明所提出方法的实现流程图;
图5是本发明中提到的邻近电平的示意图;
图6是本发明的共模电压对比图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间不构成冲突就可以相互组合。
本发明适用于如图1所示的模块化多电平变换器,其子模块数可以为任意数(实际应用一般为偶数个子模块数)。该拓扑共有3个相单元,2个桥臂通过电感连接组成一个相单元,而每个桥臂由N个子模块串联而成,子模块是典型的半桥结构。该变换器既可以运行于整流器模式。也可以运行于逆变器模式。三相交流侧既可以接电网也可以带电动机等三相负载。
图2是多电平变换器的空间矢量(以五电平为例)。空间矢量合成的方法具有直流电压利用率高,THD小的优势,因而被广泛用于两电平和三电平等电平数较少的变换器。随着电平数的增长,空间矢量呈指数增长,即2N。所以采用空间矢量合成的方法愈发复杂,无法实际应用。但是随着电平数的增多,矢量呈几何级数增长,采用最近的矢量代替参考矢量的优势凸显出来,然是矢量的定位与选择仍然是一个复杂的问题。
图3是模块化多电平变换器常用的最近电平逼近的方法,用阶梯波来近似等效正弦波。随着电平数的增加,阶梯波对正弦波的近似效果越好。
本发明充分结合了图2和图3这两种调制方式的优势,以共模电压消除为目标,提出了一种抑制三相MMC共模电压的最近零共模矢量调制方法及系统,具体实施步骤如图4所示:
(1)在当前控制周期控制器给定三相电压参考值的前提条件下,计算三相电压参考值对应电平数的标幺值,并获得与每相标幺值相邻的两个电平。
控制器根据相应的控制方法得到三相参考电压值ua,ub和uc的前提条件下,计算三相电压参考值对应电平数的标幺值为:
Figure BDA0002641007140000051
上式中Vdc为MMC的直流母线电压,N为MMC桥臂中串联的子模块数且一般为偶数。
每相可以选取的相邻电平数为:
Figure BDA0002641007140000061
Figure BDA0002641007140000062
上式中floor(x)函数表示小于等于x的最大整数,ceil(x)函数表示大于等于x的最小整数。ni的取值为0,1,2,…,N。图5是本发明中提到的邻近电平的示意图。
(2)根据(1)中每相标幺值相邻的两个电平,三相一共可以合成8种电压矢量,根据零共模电压矢量计算方法,从中筛选出3个共模电压为零的矢量,即为零共模矢量。
所述步骤(1)得到的8个矢量分别为:
Figure BDA0002641007140000063
若MMC的共模电压为零,则三相的电平数应当满足:
Figure BDA0002641007140000064
将上述8个矢量代入上式即可选出其中满足共模电压为零的3个矢量V1,V2,V3,即为零共模矢量。
(3)将(2)中得到的零共模矢量分别与控制器给定的三相电压参考值进行比较,得到差值最小的矢量即为最近零共模矢量,将该矢量作为下一控制周期的矢量作用于多电平变换器。
参考矢量的计算公式为:
Figure BDA0002641007140000065
零共模矢量与参考矢量的差值求解方法为:
Figure BDA0002641007140000071
最近零共模矢量为即为与参考矢量差值最小的零共模矢量。在该控制周期内将选出的最近零共模矢量对模块化多电平变换器进行控制即可消除系统输出的共模电压,
图6是常规最近电平逼近方法和所提出的最近零共模矢量方法的共模电压对比图。运行工况为8个子模块,子模块电压为100V。可以看出,常规方法会产生高频的共模电压脉冲,幅值可达33V(子模块电压的三分之一),而所提出的最近零共模电压矢量基本极大地抑制了共模电压,幅值不超过0.5V。从而抑制杂散电容耦合的共模漏电流,能够防止电机系统的电机轴承和光伏系统的光伏板受到损害,同时共模电流的抑制也能够防止进一步传播和衍化,降低了电磁干扰的可能性,从而确保了系统的安全可靠运行。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种抑制三相MMC共模电压的最近零共模矢量调制方法,其特征在于,包括以下步骤:
(1)计算当前控制周期控制器给定的三相电压参考值ua,ub和uc对应电平数的标幺值
Figure FDA0003057749900000011
并获得与每相标幺值相邻的两个电平ni
Figure FDA0003057749900000012
Figure FDA0003057749900000013
其中,ui为三相电压参考值,Vdc为MMC的直流母线电压,N为MMC桥臂中串联的子模块数,floor(x)函数表示小于等于x的最大整数,ceil(x)函数表示大于等于x的最小整数,ni的取值为0,1,2,…,N;i=a,b,c;
(2)根据(1)中每相标幺值相邻的两个电平,三相一共合成8个电压矢量,分别为:
Figure FDA0003057749900000014
若MMC的共模电压为零,则三相的电平数应当满足:
Figure FDA0003057749900000015
将上述8个电压矢量代入上式选出其中满足共模电压为零的3个矢量V1,V2,V3,即为零共模矢量;
(3)将(2)中得到的零共模矢量分别与控制器给定的三相电压参考值进行比较,得到差值最小的矢量即为最近零共模矢量,将该矢量作为下一控制周期的矢量作用于多电平变换器。
2.根据权利要求1所述的最近零共模矢量调制方法,其特征在于,所述步骤(3)包括:
三相电压参考值的计算公式为:
Figure FDA0003057749900000021
其中,a和b分别是三相参考值的实部和虚部;
零共模矢量与参考矢量的差值求解方法为:
Figure FDA0003057749900000022
最近零共模矢量为与参考矢量差值最小的零共模矢量。
3.一种抑制三相MMC共模电压的最近零共模矢量调制系统,其特征在于,包括:
相邻电平获取模块,用于计算当前控制周期控制器给定的三相电压参考值ua,ub和uc对应电平数的标幺值
Figure FDA0003057749900000023
并获得与每相标幺值相邻的两个电平ni
Figure FDA0003057749900000024
Figure FDA0003057749900000025
其中,ui为三相电压参考值,Vdc为MMC的直流母线电压,N为MMC桥臂中串联的子模块数,floor(x)函数表示小于等于x的最大整数,ceil(x)函数表示大于等于x的最小整数,ni的取值为0,1,2,…,N;i=a,b,c;
零共模矢量获取模块,用于根据每相标幺值相邻的两个电平,三相一共合成8个电压矢量,
分别为:
Figure FDA0003057749900000031
若MMC的共模电压为零,则三相的电平数应当满足:
Figure FDA0003057749900000032
将上述8个电压矢量代入上式选出其中满足共模电压为零的3个矢量V1,V2,V3,即为零共模矢量;
控制矢量获取模块,用于零共模矢量分别与控制器给定的三相电压参考值进行比较,得到差值最小的矢量即为最近零共模矢量,将该矢量作为下一控制周期的矢量作用于多电平变换器。
4.根据权利要求3所述的最近零共模矢量调制系统,其特征在于,三相电压参考值的计算公式为:
Figure FDA0003057749900000033
其中,a和b分别是三相参考值的实部和虚部;
零共模矢量与参考矢量的差值求解方法为:
Figure FDA0003057749900000034
最近零共模矢量为与参考矢量差值最小的零共模矢量。
CN202010839746.7A 2020-08-19 2020-08-19 抑制三相mmc共模电压的最近零共模矢量调制方法及系统 Active CN111900868B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010839746.7A CN111900868B (zh) 2020-08-19 2020-08-19 抑制三相mmc共模电压的最近零共模矢量调制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010839746.7A CN111900868B (zh) 2020-08-19 2020-08-19 抑制三相mmc共模电压的最近零共模矢量调制方法及系统

Publications (2)

Publication Number Publication Date
CN111900868A CN111900868A (zh) 2020-11-06
CN111900868B true CN111900868B (zh) 2021-07-27

Family

ID=73229790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010839746.7A Active CN111900868B (zh) 2020-08-19 2020-08-19 抑制三相mmc共模电压的最近零共模矢量调制方法及系统

Country Status (1)

Country Link
CN (1) CN111900868B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113890405B (zh) * 2021-08-19 2023-12-05 北京交通大学 消除mmc共模电压的脉冲顺接载波移相正弦脉宽调制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917406A (zh) * 2015-05-27 2015-09-16 浙江大学 一种适用于mmc的基于共模注入的最近电平逼近调制方法
CN110739875A (zh) * 2019-11-07 2020-01-31 北京交通大学 消除mmc共模电压的六段式最近电平逼近调制方法
CN111342646A (zh) * 2020-03-04 2020-06-26 华北电力大学 一种模块化多电平变换器的环流抑制方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917406A (zh) * 2015-05-27 2015-09-16 浙江大学 一种适用于mmc的基于共模注入的最近电平逼近调制方法
CN110739875A (zh) * 2019-11-07 2020-01-31 北京交通大学 消除mmc共模电压的六段式最近电平逼近调制方法
CN111342646A (zh) * 2020-03-04 2020-06-26 华北电力大学 一种模块化多电平变换器的环流抑制方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于最近电平调制的MMC控制策略研究及仿真;赵永等;《山东理工大学学报(自然科学版)》;20170331;第31卷(第2期);第23-26页 *
箝位五电平逆变器零矢量共模电压抑制的仿真研究;李银玲;《控制与信息技术》;20180430(第4期);第23-26,31页 *

Also Published As

Publication number Publication date
CN111900868A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
EP2160828B1 (en) Four pole neutral-point clamped three phase converter with zero common mode voltage output
US7952896B2 (en) Power conversion architecture with zero common mode voltage
Kim et al. Design and control of a grid-connected three-phase 3-level NPC inverter for building integrated photovoltaic systems
Hota et al. A modified T-structured three-level inverter configuration optimized with respect to PWM strategy used for common-mode voltage elimination
Rahimi et al. New topology to reduce leakage current in three-phase transformerless grid-connected photovoltaic inverters
Ali et al. A." Performance Analysis of Switched Capacitor Multilevel DC/AC Inverter using Solar PV Cells."
US7099165B1 (en) Network harmonic scrubber
CN111900868B (zh) 抑制三相mmc共模电压的最近零共模矢量调制方法及系统
Abarzadeh et al. A modified static ground power unit based on active natural point clamped converter
EP3082246B1 (en) Systems and methods for controlling inverters
Nain et al. Comparative evaluation of three-phase AC-AC voltage/current-source converter systems employing latest GaN power transistor technology
Adithya Study of multilevel sinusoidal PWM methods for cascaded h-bridge multilevel inverters
Zhang et al. Carrier-based modulation strategy of indirect matrix converters for common-mode voltage reduction
Chaves et al. Space vector modulation techniques for common-mode voltage reduction in three-phase transformerless split-source inverters
Uddin et al. Recent advances in common mode voltage mitigation techniques based on mpc
US20230369964A1 (en) Electric power converter
Brum Chaves et al. Virtual space vector modulation strategy for common‐mode voltage reduction in three‐phase three‐level flying‐capacitor split‐source inverters
Tsai et al. An edge-aligned modulation technique to suppress leakage current in the back-to-back neutral-point clamped converter
Syed et al. A Novel Single-Phase Multilevel Transformerless PV Inverter For Reduced Common-mode current
Jiang et al. Passive filter design to mitigate dead-Time effects in three-level T-type NPC transformerless PV inverters modulated with zero CMV PWM
Carpaneto et al. A Novel approach for DC-link voltage ripple reduction in cascaded multilevel converters
Tian et al. A new space vector modulation technique for common-mode voltage reduction in both magnitude and third-order component
Jaskulski et al. Space vector modulation extended to voltage source converters with multiple legs in parallel
Alemi et al. Performance analysis of high‐power three‐phase current source inverters in photovoltaic applications
CN215120150U (zh) 并联并网逆变系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant