CN117069453A - 一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法 - Google Patents

一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法 Download PDF

Info

Publication number
CN117069453A
CN117069453A CN202311066000.7A CN202311066000A CN117069453A CN 117069453 A CN117069453 A CN 117069453A CN 202311066000 A CN202311066000 A CN 202311066000A CN 117069453 A CN117069453 A CN 117069453A
Authority
CN
China
Prior art keywords
gas slag
filling material
response surface
aggregate
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311066000.7A
Other languages
English (en)
Inventor
郭育霞
胡维扬
武仁杰
马嘉辉
王潇璇
万颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202311066000.7A priority Critical patent/CN117069453A/zh
Publication of CN117069453A publication Critical patent/CN117069453A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/12Waste materials; Refuse from quarries, mining or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/28Cements from oil shales, residues or waste other than slag from combustion residues, e.g. ashes or slags from waste incineration
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00724Uses not provided for elsewhere in C04B2111/00 in mining operations, e.g. for backfilling; in making tunnels or galleries
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明的目的在于提供一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法,属于矿业工程技术领域,本发明在分拣煤气化渣去除杂质并晾晒的基础上,通过球磨得到了制备充填材料的煤气化渣超细粉体,然后用破碎机对煤矸石进行破碎和筛分,得到了制备充填材料的粗骨料、中骨料和细骨料,最后将水泥、煤气化渣超细粉体、煤矸石骨料、激发剂和水,混合均匀,制备得到胶结充填材料。本发明不仅可以解决煤气化渣火山灰活性较低的问题,并且有效控制了胶结充填开采过程中胶结充填材料短缺,充填成本高的问题,保障可持续发展,并且有效的利用了广泛堆积的煤气化渣,减轻了对周围环境的污染危害和大规模土地的占用。

Description

一种基于响应面法复合激发煤气化渣制备胶结充填材料的 方法
技术领域
本发明属于矿业工程技术领域,具体涉及一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法。
背景技术
煤炭是世界三大主要传统能源之一,在世界的能源结构中有着重要地位。同时,煤炭的直接燃烧会引起环境污染,全球气候变暖等问题。煤气化技术作为重要的煤炭清洁利用技术迅速发展,具有效率高,二氧化碳、二氧化硫和氮氧化物排放量低,灵活性高等特点,但是煤气化过程中会产生大量固体废弃物——煤气化渣。在我国每年煤气化渣的排放量超过3300万吨,大量煤气化渣的堆积不仅重用了大量土地资源,消耗了过多堆放场地建设和管理费用,而且容易对周围土壤和环境造成污染。煤气化渣主要成分包括氧化硅、氧化钙和氧化铝,具有潜在的火山灰活性。然而,煤气化渣中大量硅铝氧化物呈玻璃体结构不能直接参与水化反应,所以合理、经济的激发煤气化渣活性并大规模再利用成为一个亟需解决的问题。
随着国家对生态环境的高度重视,传统开采方式不太适合国家的发展战略,充填开采得到了高度重视,充填开采是一种利用水泥、煤矸石、粉煤灰等堆积物制备成的胶结物,输送到采空区进行充填的开采技术。随着对这些材料的重新开发利用以及材料的来源范围有限,其数量上难以满足充填开采的需求。因此,亟需一种成本较低,来源范围广泛且满足强度需求的新材料来解决上述问题,保证充填材料的稳定性。
综上所述,充填开采从面临原材料成本高、来源窄等问题,而煤气化渣具有回收利用率低、占用空间、污染环境,将煤气化渣进行简单处理后,可以替代水泥充当胶凝材料用于充填开采,将两者结合,既解决了充填材料短缺,而且充分利用了煤气化渣,使其变废为宝。
发明内容
本发明的目的在于提供一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法,以解决煤气化渣火山灰活性较低的问题,有效控制充填开采过程中胶结充填材料短缺,充填成本高的问题,保障可持续发展,并且有效的利用广泛堆积的煤气化渣,减轻了对周围环境的污染危害和大规模土地的占用。
本发明采用如下技术方案:
一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法,包括如下步骤:
第一步,收集煤气化后的固体残渣,分拣清理煤气化渣的尘土与杂质,然后进行晾晒,晒干后利用行星式球磨机研磨形成超细粉,得到煤气化渣超细粉;
第二步,收集煤矸石,用鄂式破碎机进行破碎使其颗粒粒径小于15mm,随后振动筛将破碎煤矸石进行筛分,得到0-5mm的细骨料、5-10mm的中骨料和10-15的粗骨料;
第三步,向煤气化渣超细粉中加入复合激发剂并搅拌均匀;
第四步,将水泥与细骨料、中骨料、粗骨料及含有复合激发剂的煤气化渣超细粉按比例混合搅拌均匀,加入水搅拌均匀,得到胶结充填材料。
进一步地,第一步中所述行星式球磨机的转速为500r/min,球磨时间为100min,所得煤气化渣超细粉的比表面积大于等于400m2/kg。
进一步地,第三步中所述复合激发剂包括基于响应面法设计,各因素水平为占煤气化渣超细粉质量的0.5%-1.5%电石渣、0%-2%脱硫石膏、2%-3%元明粉、4%-10%水玻璃。
进一步地,第四步中所述水泥、细骨料、中骨料、粗骨料及含有复合激发剂的煤气化渣超细粉的重量百分数为:水泥:10%、细骨料:12%、中骨料:4%、粗骨料:4%、含有激发剂的煤气化渣超细粉:70%,加水后形成的胶结充填材料的质量浓度为80%。
进一步地,第四步中所述水泥为普通的P.O 42.5硅酸盐水泥。
本发明的有益效果如下:
本发明在分拣煤气化渣去除杂质并晾晒的基础上,通过球磨得到了制备充填材料的煤气化渣超细粉体,然后用破碎机对煤矸石进行破碎和筛分,得到了制备充填材料的粗骨料、中骨料和细骨料,最后将水泥、煤气化渣超细粉体、煤矸石骨料、激发剂和水,混合均匀,制备得到胶结充填材料。本发明不仅可以解决煤气化渣火山灰活性较低的问题,并且有效控制了胶结充填开采过程中胶结充填材料短缺,充填成本高的问题,保障可持续发展,并且有效的利用了广泛堆积的煤气化渣,减轻了对周围环境的污染危害和大规模土地的占用。
附图说明
图1是电石渣掺量与脱硫石膏掺量对28d抗压强度影响的响应面;
图2是电石渣掺量与元明粉掺量对28d抗压强度影响的响应面;
图3是电石渣掺量与水玻璃掺量对28d抗压强度影响的响应面;
图4是脱硫石膏掺量与元明粉掺量对28d抗压强度影响的响应面;
图5是脱硫石膏掺量与水玻璃掺量对28d抗压强度影响的响应面;
图6是元明粉掺量与水玻璃掺量对28d抗压强度影响的响应面;
图7是实际值与预测值的散点图;
图8是实际值与残差的散点图;
图9是预测值与残差的散点图。
具体实施方式
一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法,包括如下步骤:
第一步,收集煤气化后的固体残渣,分拣清理煤气化渣的尘土与杂质,然后进行晾晒,晒干后利用行星式球磨机研磨形成超细粉,得到煤气化渣超细粉;
第二步,收集煤矸石,用鄂式破碎机进行破碎使其颗粒粒径小于15mm,随后振动筛将破碎煤矸石进行筛分,得到0-5mm的细骨料、5-10mm的中骨料和10-15的粗骨料;
第三步,向煤气化渣超细粉中加入复合激发剂并搅拌均匀;
第四步,将水泥与细骨料、中骨料、粗骨料及含有复合激发剂的煤气化渣超细粉按比例混合搅拌均匀,加入水搅拌均匀,得到胶结充填材料。
实施例1
本实施例提供一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法
步骤一,收集陕西省某化工厂的废弃煤气化渣,分拣清理去除灰尘、石块等杂质并晾晒;
步骤二,将上述晒干的煤气化渣进行球磨,得到充填材料的煤气化渣超细粉体,其比表面积为440m2/kg;
步骤三,利用鄂式破碎机对煤矸石进行破碎,并将粒径大于15mm的煤矸石进行再次破碎,使其粒径均小于15mm;
步骤四,用振动筛筛分破碎后的煤矸石,得到制备充填材料的粗骨料、中骨料和细骨料,其中细骨料粒径为0-5mm,中骨料粒径为5-10mm,粗骨料粒径为10-15mm;
步骤五,将上述制得的煤气化渣超细粉中加入电石渣、脱硫石膏、元明粉、水玻璃的复合激发剂并搅拌均匀;
步骤六,水泥与上述制得的细骨料、中骨料、粗骨料及含有电石渣的煤气化渣超细粉均匀搅拌后加入水制备充填体,其中各固体组分的重量配比为:水泥:10%,细骨料:12%,中骨料:4%,粗骨料:4%,含有复合激发剂的煤气化渣超细粉:70%,均匀混合,随后加入水形成质量浓度为80%的胶结充填材料。
将实例1制备得到的煤气化渣胶结充填材料浇筑成50mm×100mm的圆柱体时间,以空白样为对照例(28d强度为8.42MPa),24h后脱模,放入温度(20±2℃),相对湿度95%的养护室养护28d,分别测定养护3d、7d、14d、28d试件的单轴抗压强度。
1.响应面实验设计及结果
实验建立四因素三水平的响应面实验,因素水平表如表1所示。
表1复合激发剂响应面各因素水平
共响应29组实验,以电石渣掺量(%)、脱硫石膏掺量(%)、元明粉掺量(%)和水玻璃掺量(%)为影响因素,28d抗压强度为考察指标,设计组合与其对应结果如表2所示。
表2复合激发剂响应面设计及实验结果
2.回归方程拟合及方差分析
以电石渣掺量(A)、脱硫石膏掺量(B)、元明粉掺量(C)和水玻璃掺量(D)为自变量对28d抗压强度Y进行数据拟合建立回归方程:
方差分析如表3所示,根据表3可知,该回归方程模型P值极为显著,说明该模型有较好的拟合度,实验方法可行;失拟项P值不显著,说明该模型误差较小;因素F值越大、P值越小,说明该因素对结果影响较大。
表3响应面实验方差结果
注:**:P<0.01为显著;
3.响应面曲面图分析
响应面曲面图被用于分析某些目标值和自变量。它们共同构成了一个三维空间图,通过分析三维响应曲面图,可以显著反映不同因素对响应目标值的影响,以达到获得反应过程中每个因素的相应交互因子的作用。响应面可以通过不同条件下响应值参数来确定影响的有效性。
响应面实验曲面图如图1-6所示,图7为本实验中预测与实际值的散点图,图8为残差的正态概率分布图,图9为残差与预测值的散点图,可以看出数据分布的线性关系较好。
4. 预测模型验证实验
通过响应面软件计算得到最优结果:电石渣掺量0.97%、脱硫石膏掺量2%、元明粉掺量3%和水玻璃掺量10%,优化迭代55次得到28d抗压强度12.46MPa。进行三次实验验证,得到28d抗压强度为11.64MPa,与理论值偏差0.82MPa,证明响应面实验得到的提取工艺有较高的可信度。
最后应说明的是:以上各实施方式仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施方式对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施方式技术方案的范围。

Claims (5)

1.一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法,其特征在于:包括如下步骤:
第一步,收集煤气化后的固体残渣,分拣清理煤气化渣的尘土与杂质,然后进行晾晒,晒干后利用行星式球磨机研磨形成超细粉,得到煤气化渣超细粉;
第二步,收集煤矸石,用鄂式破碎机进行破碎使其颗粒粒径小于15mm,随后振动筛将破碎煤矸石进行筛分,得到0-5mm的细骨料、5-10mm的中骨料和10-15的粗骨料;
第三步,向煤气化渣超细粉中加入复合激发剂并搅拌均匀;
第四步,将水泥与细骨料、中骨料、粗骨料及含有复合激发剂的煤气化渣超细粉按比例混合搅拌均匀,加入水搅拌均匀,得到胶结充填材料。
2.根据权利要求1所述的一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法,其特征在于:第一步中所述行星式球磨机的转速为500r/min,球磨时间为100min,所得煤气化渣超细粉的比表面积大于等于400m2/kg。
3.根据权利要求1所述的一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法,其特征在于:第三步中所述复合激发剂包括基于响应面法设计,各因素水平为占煤气化渣超细粉质量的0.5%-1.5%电石渣、0%-2%脱硫石膏、2%-3%元明粉、4%-10%水玻璃。
4.根据权利要求3所述的一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法,其特征在于:第四步中所述水泥、细骨料、中骨料、粗骨料及含有复合激发剂的煤气化渣超细粉的重量百分数为:水泥:10%、细骨料:12%、中骨料:4%、粗骨料:4%、含有激发剂的煤气化渣超细粉:70%,加水后形成的胶结充填材料的质量浓度为80%。
5.根据权利要求1所述的一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法,其特征在于:第四步中所述水泥为普通的P.O 42.5硅酸盐水泥。
CN202311066000.7A 2023-08-23 2023-08-23 一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法 Pending CN117069453A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311066000.7A CN117069453A (zh) 2023-08-23 2023-08-23 一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311066000.7A CN117069453A (zh) 2023-08-23 2023-08-23 一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法

Publications (1)

Publication Number Publication Date
CN117069453A true CN117069453A (zh) 2023-11-17

Family

ID=88703870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311066000.7A Pending CN117069453A (zh) 2023-08-23 2023-08-23 一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法

Country Status (1)

Country Link
CN (1) CN117069453A (zh)

Similar Documents

Publication Publication Date Title
Mishra et al. Green cement for sustainable concrete using marble dust
CN112851277A (zh) 镁-煤渣基新型铺路与矿用充填材料及其制备方法
CN113213789B (zh) 基于生活垃圾焚烧飞灰制备的路面砖及其制备方法
CN105645794B (zh) 一种大掺量工业废渣硅酸盐水泥制备方法
CN114105580A (zh) 一种利用大宗煤矿工业固废制备活性粉末混凝土的方法
CN113929321A (zh) 一种优化镁渣基胶凝材料及其制备方法
Shi et al. Eco-friendly solid waste-based cementitious material containing a large amount of phosphogypsum: Performance optimization, micro-mechanisms, and environmental properties
Liu et al. The role of different ratios of biochar in the artificial lightweight cold-bonded aggregates (ALCBAs) containing high volume of red mud (RM)
Song et al. Disposal of solid waste as building materials: A study on the mechanical and durability performance of concrete composed of gold tailings
CN112341086A (zh) 大掺量固废混凝土及其制备方法
Nakayenga et al. Effect of limestone and granite stone powder on properties of cement-treated clay composites and their socioeconomic and environmental impacts
Vidyadhara et al. An investigation on pozzolanicity of mechanically activated pond ash
Wang et al. Characteristic contaminant removal purification and high value ecological utilization technology of calcination modified manganese residue
Wang et al. Feasibility study on preparation of fully-waste building blocks using alkali-activated materials to solidify construction and demolition waste residue: Formulation optimization and reaction mechanism
CN115028395B (zh) 一种固废建材制品及其制备方法
CN112694275B (zh) 一种脱硫灰作为掺合料资源化利用成套预处理方法及应用
CN117069453A (zh) 一种基于响应面法复合激发煤气化渣制备胶结充填材料的方法
Kuzmin et al. Production of Portland cement using fluorine gypsum–hydrofluoric acid waste
Murtazaev et al. Ecological Aspect of the Usage of Ahy and Slag Waste in the Chechen Republic
Nasimuzzaman et al. Slag and silica fume-based geopolymer mortar using locally available waste filler materials
CN113354313B (zh) 一种利用混凝土废渣制备免烧水泥的方法
CN117303811A (zh) 一种利用氯石灰激发煤气化渣制备胶结充填材料的方法
CN117229002A (zh) 一种利用脱硫石膏激发煤气化渣制备胶结充填材料的方法
Muttaqin et al. Fly ash and ceramic residue based geopolymer mortars
CN117229003A (zh) 一种利用元明粉激发煤气化渣制备胶结充填材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination