CN117004176A - 一种超双疏液泡棉及其制备方法 - Google Patents

一种超双疏液泡棉及其制备方法 Download PDF

Info

Publication number
CN117004176A
CN117004176A CN202311157899.3A CN202311157899A CN117004176A CN 117004176 A CN117004176 A CN 117004176A CN 202311157899 A CN202311157899 A CN 202311157899A CN 117004176 A CN117004176 A CN 117004176A
Authority
CN
China
Prior art keywords
super
amphiphobic
foam
reagent
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311157899.3A
Other languages
English (en)
Other versions
CN117004176B (zh
Inventor
黄金霞
赵思洋
郭志光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN202311157899.3A priority Critical patent/CN117004176B/zh
Publication of CN117004176A publication Critical patent/CN117004176A/zh
Application granted granted Critical
Publication of CN117004176B publication Critical patent/CN117004176B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2361/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Colloid Chemistry (AREA)

Abstract

本发明涉及一种超双疏液泡棉,该超双疏液泡棉是利用聚二甲基硅氧烷将P25二氧化钛纳米颗粒粘合在多孔蜜胺泡棉表面及内部,并由全氟辛基三氯硅烷不饱和修饰制得。同时,本发明还公开了该超双疏液泡棉的制备方法。本发明所得超双疏液泡棉在空气中具有超疏水性;其通过水预润湿,在水下具有超疏油性;通过空气预润湿,在水下具有超亲油性,对乳液可实现高效、快速分离。

Description

一种超双疏液泡棉及其制备方法
技术领域
本发明涉及油水分离和海洋防污技术领域,尤其涉及一种超双疏液泡棉及其制备方法。
背景技术
近年来,研究者们受大自然的启发,设计了多种具有不同超润湿性的功能材料。由于众多超润湿材料对水和油的亲和力截然相反,它们在油水分离技术的应用展现出明显的优势。多孔材料被人们广泛应用于油水分离,这些材料包括分离膜、海绵、纤维、气凝胶等。其中,超润湿膜材料利用尺寸筛分效应可对分层油水混合物和油水乳液实现高纯度、低能耗、便捷的分离。然而在分离过程中,膜的孔洞很容易堵塞阻挡了分离的进行。特别是对于分离含有高粘度油的乳液,此现象更为明显,甚至有些膜无法实现分离。而诸如海绵等具有大孔径的超润湿三维多孔材料可通过强吸附作用提高分离速度,为解决此问题开辟新的途径。由于乳液中乳化的液滴表面存在界面活性成分,油水界面膜稳固,导致液滴较为稳定不易合并,对其分离难度增加。目前大孔径超润湿吸附材料主要用于分层油水混合物的分离,但很少能够实现乳液分离。
为了拓宽超润湿材料的功能和应用场景,研究者们在同一表面上实现了多种不同介质中的超润湿性,如兼具超疏水性和水下超疏油性表面。然而,超疏水-水下超疏油表面的表面能所处范围狭窄,且表面粗糙度较高,因此实现该润湿性较为困难。人们开发出多种超疏水-水下超疏油性二维材料,而制备具有超疏水-水下超疏油性的三维材料还未曾报道。在多相介质中具有超润湿性的表面通常通过作为介质相的水或油的预润湿诱导实现在介质中超润湿性质的转换,而空气作为残留相用于诱导介质中超润湿性的转换却鲜有报道。
发明内容
本发明所要解决的技术问题是提供一种可用于高效乳液分离的超双疏液泡棉。
本发明所要解决的另一个技术问题是提供该超双疏液泡棉的制备方法。
为解决上述问题,本发明所述的一种超双疏液泡棉,其特征在于:该超双疏液泡棉是利用聚二甲基硅氧烷(PDMS)将P25二氧化钛纳米颗粒(TiO2)粘合在多孔蜜胺泡棉表面及内部,并由全氟辛基三氯硅烷(FOTS)不饱和修饰制得。
所述超双疏液泡棉在空气中具有超疏水性;其通过水预润湿,在水下具有超疏油性;通过空气预润湿,在水下具有超亲油性。
如上所述的一种超双疏液泡棉的制备方法,包括以下步骤:
⑴分别将聚二甲基硅氧烷(PDMS)和固化剂加入正己烷中,使其充分溶解并均匀混合,形成试剂A;
⑵将P25二氧化钛纳米颗粒(TiO2)加入试剂A中,超声处理并搅拌10 min,形成试剂B;
⑶市售的蜜胺泡棉清洗后浸入试剂B中反复挤压并超声处理10 min;之后取出泡棉,将多余的液体挤出并在150 ℃固化10 min;将上述浸涂及固化过程循环三次制得TiO2-PDMS泡棉;
⑷将全氟辛基三氯硅烷(FOTS)溶于正己烷中,形成试剂C;
⑸将TiO2-PDMS泡棉浸入试剂C中2 h后取出,用无水乙醇清洗并烘干,即得具有超双疏液性的TiO2@FOTS-PDMS泡棉。
所述步骤⑴试剂A中聚二甲基硅氧烷(PDMS)和固化剂的浓度分别为16.67 mg/mL、1.67 mg/mL。
所述步骤⑵试剂B中P25二氧化钛纳米颗粒(TiO2)的浓度为6.67 mg/mL。
所述步骤⑶试剂C中全氟辛基三氯硅烷(FOTS)的体积浓度为0.06%。
本发明与现有技术相比具有以下优点:
1、本发明利用聚二甲基硅氧烷将二氧化钛纳米颗粒粘合在多孔蜜胺泡棉表面及内部,并由全氟辛基三氯硅烷不饱和修饰制得,所得的超双疏液泡棉,孔径在100 μm左右,相比现有的乳液分离滤膜,其孔径更大。
2、本发明所述超双疏液泡棉是一种兼具超疏水性和水下超疏油性的三维多孔材料。当泡棉被水预润湿时,在水下展现出超疏油性;而当被空气预润湿时,则在水下展现出超亲油性,实现了水下超疏油和超亲油的转换,拓宽了超润湿材料的功能,可用于防污和油水分离。
3、本发明所述材料具有较大孔径,通过在水下对油滴强吸附作用提高分离速度,实现对多种水包油乳液,尤其对含有高粘度油乳液的快速、高效分离,分离后水的化学需氧量(COD)均在120 mg/L以下。
4、本发明在使用时仅需改变预润湿相,即可分别实现防污和快速、高效的乳液分离,克服了现有技术中乳液分离材料在实际应用时分离流速慢,孔易污染的缺陷。
5、本发明工艺简单,易操作,普适性强,不仅适用于市售的泡棉,还可以应用到其他多孔基底,制备超双疏液材料。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1为本发明实施例1制备的超双疏液泡棉的扫描电镜照片。
图2为本发明实施例1制备的超双疏液泡棉的光学照片和润湿性质的照片。
图3为本发明实施例1制备的超双疏液泡棉(a)分别经水和被空气预润湿后水下润湿性质的光学照片(b,c),并用于抗污(d,e)和油水分离(f,g)。
图4为本发明实施例1制备的超双疏液泡棉经空气预润湿后用于乳液分离,乳液分离前(左侧)后(右侧)的光学照片。
图5为本发明实施例1制备的超双疏液泡棉经空气预润湿后用于乳液分离,分离后滤液的化学需氧量(COD)。
具体实施方式
一种超双疏液泡棉,该超双疏液泡棉是利用聚二甲基硅氧烷(PDMS)将P25二氧化钛纳米颗粒(TiO2)粘合在多孔蜜胺泡棉表面及内部,并由全氟辛基三氯硅烷(FOTS)不饱和修饰制得。
超双疏液泡棉在空气中具有超疏水性;其通过水预润湿,在水下具有超疏油性;通过空气预润湿,在水下具有超亲油性。
一种超双疏液泡棉的制备方法,包括以下步骤:
⑴分别将聚二甲基硅氧烷(PDMS)和固化剂加入正己烷中,使其充分溶解并均匀混合,形成试剂A。
试剂A中聚二甲基硅氧烷(PDMS)和固化剂的浓度分别为16.67 mg/mL、1.67 mg/mL。这是因为:较低的浓度容易导致P25与基底的结合力降低,进而容易从基底表面脱落。较高的浓度容易导致泡棉表面及内部粗糙度降低,难以达到超双疏液效果。
⑵将P25二氧化钛纳米颗粒(TiO2)加入试剂A中,超声处理并搅拌10 min,形成试剂B。
试剂B中P25二氧化钛纳米颗粒(TiO2)的浓度为6.67 mg/mL。这是因为:较低的浓度容易导致泡棉表面及内部粗糙度降低,难以达到超双疏液效果。较高的浓度容易导致P25颗粒团聚,从而不能均匀包覆在基底表面及内部,团聚的颗粒与基底的结合力较弱,容易从基底表面脱落。
⑶市售的蜜胺泡棉清洗后浸入试剂B中反复挤压并超声处理10 min;之后取出泡棉,将多余的液体挤出并在150 ℃固化10 min;将上述浸涂及固化过程循环三次制得TiO2-PDMS泡棉。
⑷将全氟辛基三氯硅烷(FOTS)溶于正己烷中,形成试剂C。
试剂C中全氟辛基三氯硅烷(FOTS)的体积浓度为0.06%,该浓度会大大影响材料的表面能从而影响超双疏液性。
⑸将TiO2-PDMS泡棉浸入试剂C中2 h后取出,用无水乙醇清洗并烘干,即得具有超双疏液性的TiO2@FOTS-PDMS泡棉。
实施例1 一种超双疏液泡棉的制备方法,包括以下步骤:
⑴分别将1 g PDMS和0.1 g固化剂加入60 mL正己烷中,使其充分溶解并均匀混合。
⑵称取0.4 g的P25加入上述溶液中,超声处理并搅拌10 min,形成均一的TiO2-PDMS悬浊液。
⑶将3块清洗后的蜜胺泡棉(2 cm × 2 cm × 2 cm)浸入TiO2-PDMS悬浊液中反复挤压并超声处理10 min。之后取出泡棉,将多余的液体挤出并在150 ℃固化10 min。将上述浸涂及固化过程循环三次制得TiO2-PDMS泡棉。
⑷将30 μL的FOTS溶于50 mL正己烷中配制成修饰液。
⑸将TiO2-PDMS泡棉浸入修饰液中修饰2 h后,将泡棉取出用无水乙醇清洗并烘干,制得具有超双疏液性的TiO2@FOTS-PDMS泡棉。
对所制备的超双疏液泡棉进行性能测试:
如图1所示,经扫描电镜观察,泡棉纤维表面具有微-纳米多级结构,孔径约为100μm。
该超双疏液泡棉的光学照片如图2所示,其在空气中水的接触角和水下油的接触角为分别为158.9 ± 2.5°和162.1 ± 1.4°。因此,表现出优异的超疏水-水下超疏油性。
如图3所示,在空气中,水滴在制备的超双疏液泡棉上呈球形,而油滴则完全铺展浸润(a)。当超双疏液泡棉被水预润湿时,水下的油滴在制备的超双疏液泡棉上呈球形,在水下展现出超疏油性(b);而当被空气预润湿时,在水下的油滴则完全铺展浸润,在水下展现出超亲油性(c),实现了水下超疏油性和水下超亲油性的转换。当经水预润湿的泡棉浸入到上层漂浮油的油水混合物中,取出观察其变化(d),其表面没有沾染任何油滴(e);而当泡棉直接浸入到含有油滴的油水混合物时,其在水中能选择性地快速吸附油滴(f),被油污染的泡棉易冲洗(g)。实验表明分别利用空气和水对超双疏液泡棉预润湿,实现了油水分离和抗污功能的转换。
分别将不同粘度的油(PAO 2、PAO 10、PAO 40)和水以1/100的体积比混合,配制成多种稳定的水包油乳液。将制备的泡棉放入盛有乳液的离心管中剧烈振荡30 s进行乳液分离。分离过程结束后,观察分离前后乳液的变化。如图4所示,分离前所有的乳液均呈乳白色且较为浑浊,其中分布着无数细小的油滴(左侧)。分离后所有得到滤液均透明清澈,并且在光学显微镜下观察不到油滴的存在(右侧)。以上实验结果证明该超双疏液泡棉对多种含有不同粘度油的乳液,实现了有效分离。
进一步通过测量滤液的化学需氧量(COD)来详细评估该泡棉对各种乳液的分离效率,如图5所示,分离水包PAO 2乳液、水包PAO 10乳液和水包PAO 40乳液后所得到的滤液COD值很小,均在120 mg/L以下。
以上实验结果证明了该超双疏液泡棉对于不同的水包油乳液,尤其对含有高粘度油的乳液,实现了高效、快速分离。

Claims (6)

1.一种超双疏液泡棉,其特征在于:该超双疏液泡棉是利用聚二甲基硅氧烷将P25二氧化钛纳米颗粒粘合在多孔蜜胺泡棉表面及内部,并由全氟辛基三氯硅烷不饱和修饰制得。
2.如权利要求1所述的一种超双疏液泡棉,其特征在于:所述超双疏液泡棉在空气中具有超疏水性;其通过水预润湿,在水下具有超疏油性;通过空气预润湿,在水下具有超亲油性。
3.如权利要求1或2所述的一种超双疏液泡棉的制备方法,包括以下步骤:
⑴分别将聚二甲基硅氧烷和固化剂加入正己烷中,使其充分溶解并均匀混合,形成试剂A;
⑵将P25二氧化钛纳米颗粒加入试剂A中,超声处理并搅拌10 min,形成试剂B;
⑶市售的蜜胺泡棉清洗后浸入试剂B中反复挤压并超声处理10 min;之后取出泡棉,将多余的液体挤出并在150 ℃固化10 min;将上述浸涂及固化过程循环三次制得TiO2-PDMS泡棉;
⑷将全氟辛基三氯硅烷溶于正己烷中,形成试剂C;
⑸将TiO2-PDMS泡棉浸入试剂C中2 h后取出,用无水乙醇清洗并烘干,即得具有超双疏液性的TiO2@FOTS-PDMS泡棉。
4.如权利要求3所述的一种超双疏液泡棉的制备方法,其特征在于:所述步骤⑴试剂A中聚二甲基硅氧烷和固化剂的浓度分别为16.67 mg/mL、1.67 mg/mL。
5.如权利要求3所述的一种超双疏液泡棉的制备方法,其特征在于:所述步骤⑵试剂B中P25二氧化钛纳米颗粒的浓度为6.67 mg/mL。
6.如权利要求3所述的一种超双疏液泡棉的制备方法,其特征在于:所述步骤⑶试剂C中全氟辛基三氯硅烷的体积浓度为0.06%。
CN202311157899.3A 2023-09-08 2023-09-08 一种超双疏液泡棉及其制备方法 Active CN117004176B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311157899.3A CN117004176B (zh) 2023-09-08 2023-09-08 一种超双疏液泡棉及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311157899.3A CN117004176B (zh) 2023-09-08 2023-09-08 一种超双疏液泡棉及其制备方法

Publications (2)

Publication Number Publication Date
CN117004176A true CN117004176A (zh) 2023-11-07
CN117004176B CN117004176B (zh) 2024-04-16

Family

ID=88565651

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311157899.3A Active CN117004176B (zh) 2023-09-08 2023-09-08 一种超双疏液泡棉及其制备方法

Country Status (1)

Country Link
CN (1) CN117004176B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101748461A (zh) * 2008-12-02 2010-06-23 中国科学院兰州化学物理研究所 一种超疏水超双疏表面制备技术
CN102977291A (zh) * 2012-11-01 2013-03-20 中科院广州化学有限公司 一种可交联型含氟聚合物及其在制备超双疏表面中的应用
CN107033718A (zh) * 2017-04-27 2017-08-11 山东交通学院 一种适于广泛基体的超疏水/超疏油涂层及其制备方法
US20180243666A1 (en) * 2017-02-24 2018-08-30 Board Of Trustees Of The University Of Arkansas Composite for oil-water separation, synthesis methods and applications of same
KR20190049380A (ko) * 2017-11-01 2019-05-09 울산대학교 산학협력단 멜라민 수지 기반 복합체 및 이를 포함하는 유수분리용 재료
CN114773946A (zh) * 2021-12-31 2022-07-22 西南科技大学 一种超疏热液复合涂层的制备方法
CN116003725A (zh) * 2023-01-10 2023-04-25 中国科学院宁波材料技术与工程研究所 一种超疏水油水分离多孔泡沫及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101748461A (zh) * 2008-12-02 2010-06-23 中国科学院兰州化学物理研究所 一种超疏水超双疏表面制备技术
CN102977291A (zh) * 2012-11-01 2013-03-20 中科院广州化学有限公司 一种可交联型含氟聚合物及其在制备超双疏表面中的应用
US20180243666A1 (en) * 2017-02-24 2018-08-30 Board Of Trustees Of The University Of Arkansas Composite for oil-water separation, synthesis methods and applications of same
CN107033718A (zh) * 2017-04-27 2017-08-11 山东交通学院 一种适于广泛基体的超疏水/超疏油涂层及其制备方法
KR20190049380A (ko) * 2017-11-01 2019-05-09 울산대학교 산학협력단 멜라민 수지 기반 복합체 및 이를 포함하는 유수분리용 재료
CN114773946A (zh) * 2021-12-31 2022-07-22 西南科技大学 一种超疏热液复合涂层的制备方法
CN116003725A (zh) * 2023-01-10 2023-04-25 中国科学院宁波材料技术与工程研究所 一种超疏水油水分离多孔泡沫及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHIHAO LI ET AL.: ""Flexible 3D porous superhydrophobic composites for oil-water separation and organic solvent detection"", 《MATERIALS AND DESIGN》, vol. 196, pages 109144 *

Also Published As

Publication number Publication date
CN117004176B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
Qiu et al. Designing novel superwetting surfaces for high-efficiency oil–water separation: design principles, opportunities, trends and challenges
Deng et al. Recent development of super-wettable materials and their applications in oil-water separation
Liao et al. A high-performance and robust membrane with switchable super-wettability for oil/water separation under ultralow pressure
Shahabadi et al. Bio-inspired superhydrophobic and superoleophilic nanofibrous membranes for non-aqueous solvent and oil separation from water
Li et al. Recent developments in the application of membrane separation technology and its challenges in oil-water separation: A review
Zhao et al. Cellulose-based special wetting materials for oil/water separation: A review
Yong et al. Oil/water separation based on natural materials with super-wettability: recent advances
Lu et al. Superhydrophilic/superoleophobic shell powder coating as a versatile platform for both oil/water and oil/oil separation
Su et al. A magnetic superhydrophilic/oleophobic sponge for continuous oil-water separation
Peng et al. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation
Zhao et al. Antifouling slippery liquid-infused membrane for separation of water-in-oil emulsions
Ma et al. Electrospun fibers for oil–water separation
Liu et al. A smart switchable bioinspired copper foam responding to different pH droplets for reversible oil–water separation
Bhushan Bioinspired oil–water separation approaches for oil spill clean-up and water purification
Nayak et al. Molecularly grafted PVDF membranes with in-air superamphiphilicity and underwater superoleophobicity for oil/water separation
Li et al. Hierarchical rough surfaces formed by LBL self-assembly for oil–water separation
Wang et al. Highly-efficient separation of oil and water enabled by a silica nanoparticle coating with pH-triggered tunable surface wettability
US11492272B2 (en) Magnetic, superhydrophobic and superoleophilic medium, synthesizing methods and applications of same
Liang et al. Self-assembly modification of polyurethane sponge for application in oil/water separation
Mir et al. Recent advances in oil/water separation using nanomaterial-based filtration methods for crude oil processing-a review
Sutar et al. Efficient separation of oil-water emulsions: competent design of superwetting materials for practical applications
Liu et al. L-lysine functionalized Ti3C2Tx coated polyurethane sponge for high-throughput oil–water separation
Xia et al. Superhydrophobic DTES-SEP/SiO2@ PDMS coated sponge and stainless steel mesh for efficient oil and water separation
Meng et al. Thiol-ene click chemistry construct superhydrophobic cotton fabric for high-efficiency water-in-oil emulsion separation
Liu et al. Superhydrophobic PODS-modified nickel foam with reversible wettability for oil-water separation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant