CN116969821A - Method for photo-thermal catalysis of hydration carbonylation reaction of 4-tert-butyl phenylacetylene by using carbon nano tube - Google Patents
Method for photo-thermal catalysis of hydration carbonylation reaction of 4-tert-butyl phenylacetylene by using carbon nano tube Download PDFInfo
- Publication number
- CN116969821A CN116969821A CN202210425228.XA CN202210425228A CN116969821A CN 116969821 A CN116969821 A CN 116969821A CN 202210425228 A CN202210425228 A CN 202210425228A CN 116969821 A CN116969821 A CN 116969821A
- Authority
- CN
- China
- Prior art keywords
- reaction
- add
- tert
- carbon nanotubes
- butylphenylacetylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 45
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 43
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 43
- 238000006703 hydration reaction Methods 0.000 title claims abstract description 28
- 238000005810 carbonylation reaction Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000036571 hydration Effects 0.000 title claims abstract description 23
- ZSYQVVKVKBVHIL-UHFFFAOYSA-N 1-tert-butyl-4-ethynylbenzene Chemical group CC(C)(C)C1=CC=C(C#C)C=C1 ZSYQVVKVKBVHIL-UHFFFAOYSA-N 0.000 title claims description 31
- 238000006555 catalytic reaction Methods 0.000 title description 3
- 238000006243 chemical reaction Methods 0.000 claims abstract description 78
- 239000012363 selectfluor Substances 0.000 claims abstract description 22
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 claims abstract description 19
- 229910052724 xenon Inorganic materials 0.000 claims abstract description 18
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 230000000694 effects Effects 0.000 claims abstract description 11
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 5
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 5
- 239000011737 fluorine Substances 0.000 claims abstract description 5
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 75
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 36
- 239000000047 product Substances 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 239000011259 mixed solution Substances 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 16
- 239000011521 glass Substances 0.000 claims description 15
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 12
- 239000012074 organic phase Substances 0.000 claims description 12
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 6
- 238000002390 rotary evaporation Methods 0.000 claims description 6
- 238000010898 silica gel chromatography Methods 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 239000012043 crude product Substances 0.000 claims description 5
- 239000003480 eluent Substances 0.000 claims description 5
- 238000002955 isolation Methods 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- 238000004128 high performance liquid chromatography Methods 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 239000012141 concentrate Substances 0.000 claims 2
- 238000005303 weighing Methods 0.000 claims 2
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 238000005286 illumination Methods 0.000 claims 1
- 230000009466 transformation Effects 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 150000001345 alkine derivatives Chemical class 0.000 abstract description 12
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 abstract description 8
- -1 aryl alkyne Chemical class 0.000 abstract description 8
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 238000001308 synthesis method Methods 0.000 abstract description 3
- 239000002253 acid Substances 0.000 abstract description 2
- 239000003054 catalyst Substances 0.000 abstract description 2
- 230000001699 photocatalysis Effects 0.000 abstract description 2
- 230000006315 carbonylation Effects 0.000 abstract 2
- 239000000654 additive Substances 0.000 abstract 1
- 239000007800 oxidant agent Substances 0.000 abstract 1
- 230000001590 oxidative effect Effects 0.000 abstract 1
- 238000007146 photocatalysis Methods 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- 230000003197 catalytic effect Effects 0.000 description 7
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 6
- 238000011161 development Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- UEXCJVNBTNXOEH-UHFFFAOYSA-N phenyl acethylene Natural products C#CC1=CC=CC=C1 UEXCJVNBTNXOEH-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 150000002730 mercury Chemical class 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- DPKBAXPHAYBPRL-UHFFFAOYSA-M tetrabutylazanium;iodide Chemical compound [I-].CCCC[N+](CCCC)(CCCC)CCCC DPKBAXPHAYBPRL-UHFFFAOYSA-M 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- BPBNKCIVWFCMJY-UHFFFAOYSA-N 1-ethynyl-4-phenylbenzene Chemical group C1=CC(C#C)=CC=C1C1=CC=CC=C1 BPBNKCIVWFCMJY-UHFFFAOYSA-N 0.000 description 1
- NHUBNHMFXQNNMV-UHFFFAOYSA-N 2-ethynylpyridine Chemical compound C#CC1=CC=CC=N1 NHUBNHMFXQNNMV-UHFFFAOYSA-N 0.000 description 1
- JXYITCJMBRETQX-UHFFFAOYSA-N 4-ethynylaniline Chemical group NC1=CC=C(C#C)C=C1 JXYITCJMBRETQX-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Natural products CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 1
- 239000005997 Calcium carbide Substances 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 150000007860 aryl ester derivatives Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- FFFMSANAQQVUJA-UHFFFAOYSA-N but-1-ynylbenzene Chemical compound CCC#CC1=CC=CC=C1 FFFMSANAQQVUJA-UHFFFAOYSA-N 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 239000012707 chemical precursor Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 235000019256 formaldehyde Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000001247 metal acetylides Chemical group 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005935 nucleophilic addition reaction Methods 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- CLZWAWBPWVRRGI-UHFFFAOYSA-N tert-butyl 2-[2-[2-[2-[bis[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]-5-bromophenoxy]ethoxy]-4-methyl-n-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]anilino]acetate Chemical compound CC1=CC=C(N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)C(OCCOC=2C(=CC=C(Br)C=2)N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)=C1 CLZWAWBPWVRRGI-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 238000006257 total synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/26—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydration of carbon-to-carbon triple bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
- B01J21/185—Carbon nanotubes
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
技术领域Technical field
本发明涉及一种绿色化学合成方法,尤其是利用碳纳米管的光热效应在条件较为温和的情况下,实现了对芳基乙炔水合羰基化反应的催化,属与技术领域。The invention relates to a green chemical synthesis method, in particular utilizing the photothermal effect of carbon nanotubes to achieve catalysis of the hydration and carbonylation reaction of aryl acetylene under relatively mild conditions, and belongs to the technical field.
背景技术Background technique
羰基化反应作为一种形成碳氧键的方法,在天然产物全合成中的应用价值很高。由芳基乙酮、芳基乙醛等羰基类化学前体可以制备芳基羧酸、芳基氨基酸、芳基酯以及它们的衍生物,而制备出的这些化学品也是合成很多天然产物、药物非常重要的中间体。1860年Berthelot发现了乙炔在硫酸中的水合作用。与此同时,M.Kutscheroff发现了汞盐催化的炔烃水合反应能够生成丙炔气体,炔烃水合的概念就开始出现。1916年开始,德国工业化生产乙酸就是从乙炔水合生成乙醛,再进行锰催化空气氧化。乙炔最初是由水和电石制备的,但在1940年之后,CH4的热裂化法逐渐替代能源密集型的碳化物的分解法,成为制得乙炔的来源。水合乙炔的方法已经能用于大规模生产多种工业化学品。1938年人们发现了有机介质中末端炔烃的水合羰基化反应,直到1970年,乙炔仍然是生产乙烯基衍生物、丙烯酸酯和炔烃化学品的重要有机原料。As a method to form carbon-oxygen bonds, carbonylation reaction has high application value in the total synthesis of natural products. Aryl carboxylic acids, aryl amino acids, aryl esters and their derivatives can be prepared from carbonyl chemical precursors such as aryl ethyl ketones and aryl acetaldehyde. These chemicals are also used to synthesize many natural products and drugs. Very important intermediate. In 1860 Berthelot discovered the hydration of acetylene in sulfuric acid. At the same time, M. Kutscheroff discovered that the hydration reaction of alkynes catalyzed by mercury salts can generate propyne gas, and the concept of alkyne hydration began to appear. Beginning in 1916, Germany's industrial production of acetic acid was based on the hydration of acetylene to produce acetaldehyde, which was then oxidized by manganese-catalyzed air. Acetylene was initially produced from water and calcium carbide, but after 1940, the thermal cracking of CH 4 gradually replaced the energy-intensive decomposition of carbides as the source of acetylene. The method of hydrated acetylene has been used to produce a variety of industrial chemicals on a large scale. The hydration carbonylation reaction of terminal alkynes in organic media was discovered in 1938, and until 1970, acetylene remained an important organic raw material for the production of vinyl derivatives, acrylates, and alkyne chemicals.
在羰基化合物的各种传统合成方法中,水与炔烃的催化加成反应也叫水合反应,它是以不饱和碳氢化合物前体为原料的合成方法,具有简洁高效的优势。但是,已报道的大多数炔烃水合反应所使用的催化剂是以有毒或昂贵的过渡金属为基础来催化的。例如,经典的Kucherov反应是在HgSO4-H2SO4催化下,使炔烃与水发生亲核加成反应生成醛或酮,反应虽然较为容易,但汞盐的使用对人类和环境都有很大危害性。随着全球经济与科技的高但是污染严重、有毒的汞废物处理一直是水合反应的固有问题,多年来,人们一直在研究除汞以外的其他金属为基础的炔烃水合方法,以发展新的,更有效的炔烃水合工艺。因此,科学家们一直致力于开发出更安全、更易于操作的炔烃羰基化反应。Among the various traditional synthesis methods of carbonyl compounds, the catalytic addition reaction of water and alkynes is also called hydration reaction. It is a synthesis method using unsaturated hydrocarbon precursors as raw materials and has the advantage of simplicity and efficiency. However, most of the reported catalysts for alkyne hydration reactions are based on toxic or expensive transition metals. For example, the classic Kucherov reaction is a nucleophilic addition reaction between alkynes and water to form aldehydes or ketones under the catalysis of HgSO 4 -H 2 SO 4. Although the reaction is relatively easy, the use of mercury salts is harmful to humans and the environment. Very harmful. With the rapid development of global economy and technology, however, the disposal of seriously polluting and toxic mercury waste has been an inherent problem of hydration reactions. For many years, other metal-based alkyne hydration methods besides mercury have been studied to develop new , a more efficient alkyne hydration process. Therefore, scientists have been working hard to develop safer and easier-to-operate alkynes carbonylation reactions.
随着全球经济与科技的高速发展,人类越来越意识到可持续发展的重要性。许多合成化学家都注重绿色化学的研究方向。随着光催化自由基反应的出现和迅速发展,人们开始思考用更绿色环保的光化学方法替代传统有机反应。With the rapid development of global economy and science and technology, humans are increasingly aware of the importance of sustainable development. Many synthetic chemists focus on the research direction of green chemistry. With the emergence and rapid development of photocatalytic free radical reactions, people have begun to think about replacing traditional organic reactions with greener and more environmentally friendly photochemical methods.
发明内容Contents of the invention
本发明解决的技术问题是:提出一种光热催化4-叔丁基苯乙炔水合羰基化反应,该方法不使用强酸强碱,条件温和,可在常温常压下进行,绿色高效的合成羰基化产物。The technical problem solved by the present invention is to propose a photothermal catalytic hydration carbonylation reaction of 4-tert-butylphenylacetylene. This method does not use strong acid or alkali, has mild conditions, can be carried out at normal temperature and pressure, and is a green and efficient synthesis of carbonyl. chemical products.
为了解决上述技术问题,本发明提出的技术方案是:一种利用碳纳米管的光热效应催化4-叔丁基苯乙炔水合羰基化反应的方法,具体步骤包括:In order to solve the above technical problems, the technical solution proposed by the present invention is: a method for utilizing the photothermal effect of carbon nanotubes to catalyze the hydration carbonylation reaction of 4-tert-butylphenylacetylene. The specific steps include:
称取四丁基溴化铵和铝片一起加入容器中,然后加入4-叔丁基苯乙炔和乙腈,溶解,取氟试剂Selectfluor溶于水中,然后加入上述混合溶液中并加入碳纳米管,将反应在氙灯的照射下进行搅拌,得到目标产物,反应路线如下:Weigh tetrabutylammonium bromide and aluminum flakes into the container, then add 4-tert-butylphenylacetylene and acetonitrile, dissolve, take the fluorine reagent Selectfluor and dissolve it in water, then add it to the above mixed solution and add carbon nanotubes. The reaction is stirred under the irradiation of a xenon lamp to obtain the target product. The reaction route is as follows:
优选的,称取四丁基溴化铵和一块铝片一起加入玻璃瓶中,然后加入4-叔丁基苯乙炔和乙腈,溶解,取氟试剂Selectfluor溶于水中,然后加入上述混合溶液中并加入的碳纳米管,将反应在氙灯的照射下进行搅拌,并用TLC板检测反应进程,反应结束后,旋蒸除掉乙腈,然后加入乙酸乙酯进行萃取,并且将有机相水洗三遍,用无水硫酸钠进行干燥后,收集有机相在旋蒸上进行浓缩,将所得到粗产物,用硅胶色谱柱分离纯化,以乙酸乙酯/正己烷为洗脱剂,得到纯的目标产物。Preferably, weigh tetrabutylammonium bromide and an aluminum piece and add them into a glass bottle, then add 4-tert-butylphenylacetylene and acetonitrile to dissolve, take the fluorine reagent Selectfluor and dissolve it in water, then add it to the above mixed solution and mix Add the carbon nanotubes, stir the reaction under the irradiation of a xenon lamp, and use a TLC plate to detect the reaction progress. After the reaction is completed, the acetonitrile is removed by rotary evaporation, and then ethyl acetate is added for extraction, and the organic phase is washed three times with water. After drying over anhydrous sodium sulfate, the organic phase was collected and concentrated on a rotary evaporator. The obtained crude product was separated and purified using a silica gel chromatography column, using ethyl acetate/n-hexane as the eluent to obtain the pure target product.
优选的,乙腈与水的体积比为1:1。Preferably, the volume ratio of acetonitrile to water is 1:1.
优选的,常温常压下,光照反应6h即可完成反应底物的转化。Preferably, under normal temperature and pressure, the conversion of the reaction substrate can be completed in 6 hours of light reaction.
优选的,反应结束后,反应体系温度可达到40℃。Preferably, after the reaction is completed, the temperature of the reaction system can reach 40°C.
优选的,4-叔丁基苯乙炔,四丁基溴化铵,Selectfluor的摩尔比为:1:5:3。其中碳纳米管与Selectfluor的质量比为:5:2。Preferably, the molar ratio of 4-tert-butylphenylacetylene, tetrabutylammonium bromide and Selectfluor is: 1:5:3. The mass ratio of carbon nanotubes to Selectfluor is: 5:2.
优选的,在手套箱中称取2mmol的四丁基溴化铵,和一块1cm×1cm的铝片一起加入玻璃瓶中,然后加入52.5μL 0.4mmol的4-叔丁基苯乙炔和8mL的乙腈,溶解,取0.425g1.2mmol的Selectfluor溶于8mL的水溶液中,然后加入上述混合溶液中并且加入1g的8-15nm碳纳米管,将反应在氙灯的照射下进行搅拌,并用TLC板检测反应进程,反应结束后,旋蒸除掉乙腈,然后加入乙酸乙酯进行萃取,并且将有机相水洗三遍,用无水硫酸钠进行干燥后,收集有机相在旋蒸上进行浓缩,将所得到粗产物,用硅胶色谱柱分离纯化,以乙酸乙酯/正己烷为洗脱剂,得到纯的目标产物,分离产率81%,HPLC产率96.5%。Preferably, weigh 2 mmol of tetrabutylammonium bromide in the glove box, add it to a glass bottle together with a piece of 1 cm × 1 cm aluminum sheet, and then add 52.5 μL of 0.4 mmol of 4-tert-butylphenylacetylene and 8 mL of acetonitrile. , dissolve, take 0.425g1.2mmol Selectfluor and dissolve it in 8mL of aqueous solution, then add it to the above mixed solution and add 1g of 8-15nm carbon nanotubes, stir the reaction under the irradiation of a xenon lamp, and use a TLC plate to detect the reaction progress , after the reaction is completed, acetonitrile is removed by rotary evaporation, and then ethyl acetate is added for extraction, and the organic phase is washed three times with water, and after drying with anhydrous sodium sulfate, the organic phase is collected and concentrated on a rotary evaporator, and the obtained crude The product was separated and purified using a silica gel chromatography column, using ethyl acetate/n-hexane as the eluent, to obtain the pure target product, with an isolation yield of 81% and an HPLC yield of 96.5%.
本发明的有益效果:Beneficial effects of the present invention:
(1)一种利用碳纳米管的光热效应实现对芳基炔烃水合反应催化的研究方法,碳纳米管可以吸收近乎所有波长的光,具有良好的传热性能,CNTs具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。(1) A research method that uses the photothermal effect of carbon nanotubes to catalyze the hydration reaction of aryl alkynes. Carbon nanotubes can absorb light of almost all wavelengths and have good heat transfer properties. CNTs have a very large long diameter. Therefore, its heat exchange performance along the length direction is very high, while its heat exchange performance in the vertical direction is relatively low. Through appropriate orientation, carbon nanotubes can synthesize highly anisotropic thermal conductivity materials. In addition, carbon nanotubes have high thermal conductivity. As long as a trace amount of carbon nanotubes is doped in the composite material, the thermal conductivity of the composite material will be greatly improved.
(2)本发明方法操作简单易行,在常温常压下,直接以碳纳米管作为光热材料,催化4-叔丁基苯乙炔水合羰基化反应。本方法可以在较短的时间内,得到81%目标酮产物的分离产率。(2) The method of the present invention is simple and easy to operate. It directly uses carbon nanotubes as photothermal materials to catalyze the hydration carbonylation reaction of 4-tert-butylphenylacetylene under normal temperature and pressure. This method can obtain an isolation yield of 81% of the target ketone product in a short period of time.
(3)本发明方法可以直接利用太阳光作为光源,同时在克级反反应下也具有良好的产率,为以后该方法应用于大规模生产提供了可能。(3) The method of the present invention can directly use sunlight as a light source, and also has a good yield under gram-level reaction, which provides the possibility for the method to be applied to large-scale production in the future.
(4)采用铜、锌等金属替换本发明的铝,催化4-叔丁基苯乙炔水合羰基化反应效果转化率极低,或是采用四丁基碘化铵、四丁基四氟硼酸铵等替换本发明的四丁基溴化铵,催化4-叔丁基苯乙炔水合羰基化反应效果转化率也极低,本发明的组合具有催化4-叔丁基苯乙炔水合羰基化反应,高目标酮产物的分离产率81%。如实施2催化4-甲酸甲酯苯乙炔产率只有71%。(4) Using copper, zinc and other metals to replace the aluminum of the present invention, the catalytic hydration carbonylation reaction of 4-tert-butylphenylacetylene has a very low conversion rate, or tetrabutylammonium iodide or tetrabutylammonium tetrafluoroborate can be used When replacing the tetrabutylammonium bromide of the present invention, the conversion rate of the catalytic hydrated carbonylation reaction of 4-tert-butylphenylacetylene is also extremely low. The combination of the present invention has the ability to catalyze the hydrated carbonylation reaction of 4-tert-butylphenylacetylene with high The isolated yield of the target ketone product was 81%. For example, in the implementation of 2, the yield of 4-methylformate phenylacetylene is only 71%.
附图说明Description of the drawings
下面结合附图对本发明的作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.
图1是碳纳米管光热催化4-叔丁基苯乙炔水合羰基化反应的应用核磁图(A)和高效液相图(B)。Figure 1 shows the applied NMR image (A) and high-performance liquid phase image (B) of the hydrated carbonylation reaction of 4-tert-butylphenylacetylene catalyzed by carbon nanotubes.
图2是碳纳米管光热催化4-甲酸甲酯苯乙炔水合羰基化反应的应用(A),核磁图(B)和高效液相图(C)。Figure 2 shows the application of carbon nanotube photothermal catalytic hydration carbonylation reaction of 4-methyl formate phenyl acetylene (A), NMR image (B) and high performance liquid phase image (C).
图3是碳纳米管光热催化4-叔丁基苯乙炔水合羰基化反应的应用。Figure 3 shows the application of carbon nanotube photothermal catalytic hydration carbonylation reaction of 4-tert-butylphenylacetylene.
具体实施方式Detailed ways
实施例1Example 1
在手套箱中称取2mmol的四丁基溴化铵,和一块1cm×1cm的铝片一起加入玻璃瓶中,然后加入52.5μL(0.4mmol)的4-叔丁基苯乙炔和8mL的乙腈,溶解。取0.425g(1.2mmol,3equiv)的Selectfluor溶于8mL的水溶液中,然后加入上述混合溶液中并且加入1g的碳纳米管(先丰纳米,8-15nm)。将反应在氙灯的照射下进行搅拌,并用TLC板检测反应进程。常温常压下,光照反应6h即可完成反应底物的转化。反应结束后,反应体系温度可达到40℃。Weigh 2 mmol of tetrabutylammonium bromide in the glove box, add it to the glass bottle together with a piece of 1 cm × 1 cm aluminum piece, then add 52.5 μL (0.4 mmol) of 4-tert-butylphenylacetylene and 8 mL of acetonitrile. Dissolve. Dissolve 0.425g (1.2mmol, 3equiv) of Selectfluor in 8mL of aqueous solution, then add it to the above mixed solution and add 1g of carbon nanotubes (Xianfeng Nano, 8-15nm). The reaction was stirred under the irradiation of a xenon lamp, and the reaction progress was monitored using a TLC plate. Under normal temperature and pressure, the conversion of the reaction substrate can be completed in 6 hours of light reaction. After the reaction is completed, the temperature of the reaction system can reach 40°C.
反应结束后,旋蒸除掉乙腈,然后加入乙酸乙酯进行萃取,并且将有机相水洗三遍。用无水硫酸钠进行干燥后,收集有机相在旋蒸上进行浓缩,将所得到粗产物。用硅胶色谱柱分离纯化(以乙酸乙酯/正己烷为洗脱剂),得到纯的目标产物,分离产率81%,HPLC产率96.5%。After the reaction is completed, the acetonitrile is removed by rotary evaporation, and then ethyl acetate is added for extraction, and the organic phase is washed three times with water. After drying with anhydrous sodium sulfate, the organic phase was collected and concentrated on a rotary evaporator to obtain a crude product. Separate and purify using silica gel chromatography column (using ethyl acetate/n-hexane as eluent) to obtain the pure target product, with an isolation yield of 81% and an HPLC yield of 96.5%.
图1是碳纳米管光热催化4-叔丁基苯乙炔水合羰基化反应的应用核磁图(A)和高效液相图(B),分别证明产物的结构和产物的转化率。Figure 1 shows the applied NMR image (A) and high-performance liquid phase image (B) of the hydrated carbonylation reaction of 4-tert-butylphenylacetylene catalyzed by carbon nanotubes, respectively proving the structure of the product and the conversion rate of the product.
实施例2Example 2
在手套箱中称取2mmol的四丁基溴化铵,和一块1cm×1cm的铝片一起加入玻璃瓶中,然后加入64mmg(0.4mmol)的4-甲酸甲酯苯乙炔和8mL的乙腈,溶解。取0.425g(1.2mmol,3equiv)的Selectfluor溶于8mL的水中并且加入1g的碳纳米管,然后加入上述混合溶液中。将反应在氙灯的照射下进行搅拌,并用TLC板检测反应进程。反应结束后,旋蒸除掉乙腈,然后加入乙酸乙酯进行萃取,并且将有机相水洗三遍。用无水硫酸钠进行干燥后,收集有机相在旋蒸上进行浓缩,将所得到粗产物。用硅胶色谱柱分离纯化(以乙酸乙酯/正己烷为洗脱剂),得到纯的目标产物,分离产率71%,HPLC产率83%。Weigh 2 mmol of tetrabutylammonium bromide in the glove box, add it to a glass bottle together with a piece of 1 cm × 1 cm aluminum sheet, then add 64 mmg (0.4 mmol) of 4-methylformate phenylacetylene and 8 mL of acetonitrile, and dissolve . Dissolve 0.425g (1.2mmol, 3equiv) of Selectfluor in 8mL of water, add 1g of carbon nanotubes, and then add it to the above mixed solution. The reaction was stirred under the irradiation of a xenon lamp, and the reaction progress was monitored using a TLC plate. After the reaction is completed, the acetonitrile is removed by rotary evaporation, and then ethyl acetate is added for extraction, and the organic phase is washed three times with water. After drying with anhydrous sodium sulfate, the organic phase was collected and concentrated on a rotary evaporator to obtain a crude product. Separate and purify using silica gel chromatography column (using ethyl acetate/n-hexane as eluent) to obtain the pure target product, with an isolation yield of 71% and an HPLC yield of 83%.
图2是碳纳米管光热催化4-甲酸甲酯苯乙炔水合羰基化反应的应用(A),核磁图(B)和高效液相图(C),分别证明产物的结构和产物的转化率。Figure 2 shows the application of carbon nanotube photothermal catalytic hydration and carbonylation reaction of 4-methyl formate phenyl acetylene (A), nuclear magnetic spectrum (B) and high performance liquid phase diagram (C), respectively proving the structure of the product and the conversion rate of the product. .
对比例Comparative ratio
1、在手套箱中称取0.644g(2mmol,5equiv)的四丁基溴化铵,和一块1cm×1cm的铝片一起加入玻璃瓶中,然后加入52.5μL的4-叔丁基苯乙炔和8mL的乙腈,溶解。取0.425g(1.2mmol,3equiv)的Selectfluor溶于8mL的水中并且分别加入0.5g和1.5g的碳纳米管,然后加入上述混合溶液中。将反应在氙灯的照射下进行搅拌,并用TLC板检测反应进程。通过检测发现,过多或者过少的碳纳米管均会影响反应的转化效率,导致转化效率降低。当使用0.5g的碳纳米管时,需要8h才能实现底物的全部转化,而当使用1.5g时,则需要6.5h才能实现底物的全部转化。1. Weigh 0.644g (2mmol, 5equiv) of tetrabutylammonium bromide in the glove box, add it to a glass bottle together with a 1cm×1cm aluminum piece, then add 52.5μL of 4-tert-butylphenylacetylene and 8 mL of acetonitrile, dissolved. Dissolve 0.425g (1.2mmol, 3equiv) of Selectfluor in 8mL of water and add 0.5g and 1.5g of carbon nanotubes respectively, and then add them to the above mixed solution. The reaction was stirred under the irradiation of a xenon lamp, and the reaction progress was monitored using a TLC plate. Through testing, it was found that too many or too few carbon nanotubes will affect the conversion efficiency of the reaction, resulting in a reduction in conversion efficiency. When 0.5g of carbon nanotubes is used, it takes 8h to achieve complete conversion of the substrate, and when 1.5g is used, it takes 6.5h to achieve complete conversion of the substrate.
2、在手套箱中称取0.644g(2mmol,5equiv)的四丁基溴化铵,和一块1cm×1cm的铝片一起加入玻璃瓶中,然后加入46.8mmg的4-氨基苯乙炔和8mL的乙腈,溶解。取0.425g(1.2mmol,3equiv)的Selectfluor溶于8mL的水中并且加入1g的碳纳米管,然后加入上述混合溶液中。将反应在氙灯的照射下进行搅拌,并用TLC板检测反应进程。通过检测发现,反应是不发生的,未检测到目标产物。2. Weigh 0.644g (2mmol, 5equiv) of tetrabutylammonium bromide in the glove box, add it to the glass bottle together with a piece of 1cm×1cm aluminum sheet, then add 46.8mmg of 4-aminophenylacetylene and 8mL of Acetonitrile, dissolved. Dissolve 0.425g (1.2mmol, 3equiv) of Selectfluor in 8mL of water, add 1g of carbon nanotubes, and then add it to the above mixed solution. The reaction was stirred under the irradiation of a xenon lamp, and the reaction progress was monitored using a TLC plate. Through detection, it was found that the reaction did not occur and the target product was not detected.
3、在手套箱中称取0.644g(2mmol,5equiv)的四丁基溴化铵,和一块1cm×1cm的铝片一起加入玻璃瓶中,然后加入41.2mmg的2-乙炔基吡啶和8mL的乙腈,溶解。取0.425g(1.2mmol,3equiv)的Selectfluor溶于8mL的水中并且加入1g的碳纳米管,然后加入上述混合溶液中。将反应在氙灯的照射下进行搅拌,并用TLC板检测反应进程。通过检测发现,反应是不发生的,未检测到目标产物,该反应体系不适用于含氮杂环的炔烃。3. Weigh 0.644g (2mmol, 5equiv) of tetrabutylammonium bromide in the glove box, add it to the glass bottle together with a piece of 1cm×1cm aluminum sheet, then add 41.2mmg of 2-ethynylpyridine and 8mL of Acetonitrile, dissolved. Dissolve 0.425g (1.2mmol, 3equiv) of Selectfluor in 8mL of water, add 1g of carbon nanotubes, and then add it to the above mixed solution. The reaction was stirred under the irradiation of a xenon lamp, and the reaction progress was monitored using a TLC plate. Through detection, it was found that the reaction did not occur, the target product was not detected, and the reaction system was not suitable for nitrogen-containing heterocyclic alkynes.
4、在手套箱中称取0.644g(2mmol,5equiv)的四丁基溴化铵,和一块1cm×1cm的铝片一起加入玻璃瓶中,然后加入52mmg的1-苯基-1-丁炔和8mL的乙腈,溶解。取0.425g(1.2mmol,3equiv)的Selectfluor溶于8mL的水中并且加入1g的碳纳米管,然后加入上述混合溶液中。将反应在氙灯的照射下进行搅拌,并用TLC板检测反应进程。通过检测发现,反应是不发生的,未检测到目标产物,该反应体系不适用于非末端炔烃。4. Weigh 0.644g (2mmol, 5equiv) of tetrabutylammonium bromide in the glove box, add it to the glass bottle together with a 1cm×1cm aluminum piece, and then add 52mmg of 1-phenyl-1-butyne. and 8 mL of acetonitrile to dissolve. Dissolve 0.425g (1.2mmol, 3equiv) of Selectfluor in 8mL of water, add 1g of carbon nanotubes, and then add it to the above mixed solution. The reaction was stirred under the irradiation of a xenon lamp, and the reaction progress was monitored using a TLC plate. Through detection, it was found that the reaction did not occur, the target product was not detected, and the reaction system was not suitable for non-terminal alkynes.
5、在手套箱中称取0.644g(2mmol,5equiv)的四丁基溴化铵,和一块1cm×1cm的铝片一起加入玻璃瓶中,然后加入71.22mmg的4-乙炔联苯和8mL的乙腈,溶解。取0.425g(1.2mmol,3equiv)的Selectfluor溶于8mL的水中并且加入1g的碳纳米管,然后加入上述混合溶液中。将反应在氙灯的照射下进行搅拌,并用TLC板检测反应进程。待反应结束后,对产物分离纯化,得到目标产物仅有39%的产率。5. Weigh 0.644g (2mmol, 5equiv) of tetrabutylammonium bromide in the glove box, add it to the glass bottle together with a 1cm×1cm aluminum piece, then add 71.22mmg of 4-ethynylbiphenyl and 8mL of Acetonitrile, dissolved. Dissolve 0.425g (1.2mmol, 3equiv) of Selectfluor in 8mL of water, add 1g of carbon nanotubes, and then add it to the above mixed solution. The reaction was stirred under the irradiation of a xenon lamp, and the reaction progress was monitored using a TLC plate. After the reaction is completed, the product is separated and purified, and the yield of the target product is only 39%.
6、在手套箱中称取2mmol的四丁基溴化铵,和一块1cm×1cm的铜片一起加入玻璃瓶中,然后加入52.5μL(0.4mmol)的4-叔丁基苯乙炔和8mL的乙腈,溶解。取0.425g(1.2mmol,3equiv)的Selectfluor溶于8mL的水溶液中,然后加入上述混合溶液中并且加入1g的碳纳米管(先丰纳米,8-15nm)。将反应在氙灯的照射下进行搅拌,并用TLC板检测反应进程。结果发现,并未发生反应。6. Weigh 2 mmol of tetrabutylammonium bromide in the glove box, add it to the glass bottle together with a 1 cm × 1 cm copper piece, then add 52.5 μL (0.4 mmol) of 4-tert-butylphenylacetylene and 8 mL of Acetonitrile, dissolved. Dissolve 0.425g (1.2mmol, 3equiv) of Selectfluor in 8mL of aqueous solution, then add it to the above mixed solution and add 1g of carbon nanotubes (Xianfeng Nano, 8-15nm). The reaction was stirred under the irradiation of a xenon lamp, and the reaction progress was monitored using a TLC plate. It was found that no reaction occurred.
7、在手套箱中称取2mmol的四丁基溴化铵,和一块1cm×1cm的锌片一起加入玻璃瓶中,然后加入52.5μL(0.4mmol)的4-叔丁基苯乙炔和8mL的乙腈,溶解。取0.425g(1.2mmol,3equiv)的Selectfluor溶于8mL的水溶液中,然后加入上述混合溶液中并且加入1g的碳纳米管(先丰纳米,8-15nm)。将反应在氙灯的照射下进行搅拌,并用TLC板检测反应进程。结果发现,并没有监测到目标产物的生成。7. Weigh 2 mmol of tetrabutylammonium bromide in the glove box, add it to the glass bottle together with a 1 cm × 1 cm zinc piece, then add 52.5 μL (0.4 mmol) of 4-tert-butylphenylacetylene and 8 mL of Acetonitrile, dissolved. Dissolve 0.425g (1.2mmol, 3equiv) of Selectfluor in 8mL of aqueous solution, then add it to the above mixed solution and add 1g of carbon nanotubes (Xianfeng Nano, 8-15nm). The reaction was stirred under the irradiation of a xenon lamp, and the reaction progress was monitored using a TLC plate. It was found that the formation of the target product was not detected.
9.在手套箱中称取0.738g(2mmol,5equiv)的四丁基碘化铵,和一块1cm×1cm的铝片一起加入玻璃瓶中,然后加入52.5μL的4-叔丁基苯乙炔和8mL的乙腈,溶解。取0.425g(1.2mmol,3equiv)的Selectfluor溶于8mL的水中并且加入1g的碳纳米管,然后加入上述混合溶液中。将反应在氙灯的照射下进行搅拌,并用TLC板检测反应进程。反应结束后,目标产物的转化率仅为37.5%。9. Weigh 0.738g (2mmol, 5equiv) of tetrabutylammonium iodide in the glove box, add it to the glass bottle together with a 1cm×1cm aluminum piece, then add 52.5μL of 4-tert-butylphenylacetylene and 8 mL of acetonitrile, dissolved. Dissolve 0.425g (1.2mmol, 3equiv) of Selectfluor in 8mL of water, add 1g of carbon nanotubes, and then add it to the above mixed solution. The reaction was stirred under the irradiation of a xenon lamp, and the reaction progress was monitored using a TLC plate. After the reaction, the conversion rate of the target product was only 37.5%.
10.在手套箱中称取0.658g(2mmol,5equiv)的四丁基四氟硼酸铵,和一块1cm×1cm的铝片一起加入玻璃瓶中,然后加入52.5μL的4-叔丁基苯乙炔和8mL的乙腈,溶解。取0.425g(1.2mmol,3equiv)的Selectfluor溶于8mL的水中并且加入1g的碳纳米管,然后加入上述混合溶液中。将反应在氙灯的照射下进行搅拌,并用TLC板检测反应进程。反应结束后,目标产物的转化率仅为19.6%。10. Weigh 0.658g (2mmol, 5equiv) of tetrabutyl ammonium tetrafluoroborate in the glove box, add it to the glass bottle together with a piece of 1cm×1cm aluminum sheet, and then add 52.5μL of 4-tert-butylphenylacetylene. and 8 mL of acetonitrile to dissolve. Dissolve 0.425g (1.2mmol, 3equiv) of Selectfluor in 8mL of water, add 1g of carbon nanotubes, and then add it to the above mixed solution. The reaction was stirred under the irradiation of a xenon lamp, and the reaction progress was monitored using a TLC plate. After the reaction, the conversion rate of the target product was only 19.6%.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210425228.XA CN116969821A (en) | 2022-04-21 | 2022-04-21 | Method for photo-thermal catalysis of hydration carbonylation reaction of 4-tert-butyl phenylacetylene by using carbon nano tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210425228.XA CN116969821A (en) | 2022-04-21 | 2022-04-21 | Method for photo-thermal catalysis of hydration carbonylation reaction of 4-tert-butyl phenylacetylene by using carbon nano tube |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116969821A true CN116969821A (en) | 2023-10-31 |
Family
ID=88475404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210425228.XA Pending CN116969821A (en) | 2022-04-21 | 2022-04-21 | Method for photo-thermal catalysis of hydration carbonylation reaction of 4-tert-butyl phenylacetylene by using carbon nano tube |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116969821A (en) |
-
2022
- 2022-04-21 CN CN202210425228.XA patent/CN116969821A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104447271B (en) | A kind of method taking illumination as condition alcohol catalysis synthesizing benzoic acids | |
CN103611548B (en) | A kind of redox graphene/ZnIn 2s 4photochemical catalyst and its preparation method and application | |
CN103910623A (en) | Preparation method for benzoic acid | |
CN105061185A (en) | Method for catalytic synthesis of benzoic acid by use of anthraquinone under lighting condition | |
CN105152922A (en) | Method for synthesizing benzoic acid with thioxanthone catalyst under condition of illumination | |
CN105152905A (en) | Method for synthesizing benzoic acid through thioxanthene catalysis under condition of illumination | |
CN106588658B (en) | Method for synthesizing dimethyl carbonate | |
CN110922315A (en) | Preparation method of Laolatinib intermediate compound | |
CN114751809A (en) | Method for preparing p-bromoanisole by oxidation bromination method | |
CN103012079B (en) | The method of solid base catalyst catalytically synthesizing glycol propenyl ether | |
WO2018209842A1 (en) | Preparation process for trifluoroacetic acid | |
CN116969821A (en) | Method for photo-thermal catalysis of hydration carbonylation reaction of 4-tert-butyl phenylacetylene by using carbon nano tube | |
CN103435477B (en) | A kind of method of synthesizing p-ethoxybenzoic acid | |
CN104447297B (en) | One catalyzes and synthesizes benzoic method taking illumination as condition organic amine | |
CN105906484A (en) | Method for preparing phenol by directly oxidizing benzene | |
CN102329222B (en) | Method for oxidizing cyclohexane to prepare hexane diacid through one-step method and catalyst used by same | |
CN107805195A (en) | The preparation method of benzoic acid under a kind of illumination condition | |
CN102675052B (en) | Method for preparing dihydroxybenzene through phenol hydroxylation reaction | |
CN1865256A (en) | 6,7-dihydroligustilide and alkylidene phthalide synthesis method | |
CN104710306A (en) | Method for preparing acetate through ester interchange-adsorption ethanol removal combined technology | |
CN106117048B (en) | A kind of method for synthesizing biphenyl -4- methyl formates | |
CN104141148B (en) | A kind of method of electrochemical synthesis trimethylamine | |
CN113174056B (en) | A kind of copper-containing coordination polymer based on asymmetric indole dicarboxylic acid, its preparation method and application | |
CN111704599B (en) | Preparation method of xanthene compound | |
CN107915618A (en) | A kind of synthetic method of benzoic acid using illumination as 9 thiophene ketone compound for catalysis of condition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |