CN116949433A - 用于形成碳氧化硅层的方法和系统及使用其形成的结构 - Google Patents

用于形成碳氧化硅层的方法和系统及使用其形成的结构 Download PDF

Info

Publication number
CN116949433A
CN116949433A CN202310423857.3A CN202310423857A CN116949433A CN 116949433 A CN116949433 A CN 116949433A CN 202310423857 A CN202310423857 A CN 202310423857A CN 116949433 A CN116949433 A CN 116949433A
Authority
CN
China
Prior art keywords
silicon
reaction chamber
oxygen
carbon
plasma power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310423857.3A
Other languages
English (en)
Inventor
冉凡勇
刘泽铖
久保田智广
吉田嵩志
冈部介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASM IP Holding BV
Original Assignee
ASM IP Holding BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASM IP Holding BV filed Critical ASM IP Holding BV
Publication of CN116949433A publication Critical patent/CN116949433A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/4554Plasma being used non-continuously in between ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

公开了在衬底表面上形成碳氧化硅层的方法。示例性方法包括向反应室提供无氧反应物,并执行一个或多个沉积循环,其中每个沉积循环包括在硅前体脉冲周期内向反应室提供硅前体,并且在等离子体功率周期内提供等离子体功率,以形成碳氧化硅层。示例性硅前体包括含有硅、氧、碳和可选的氮的分子。硅前体可以进一步包括以下中的一个或多个:(i)一个或两个硅‑氧键,(ii)一个或两个硅‑碳键,或(iii)一个碳‑碳双键。

Description

用于形成碳氧化硅层的方法和系统及使用其形成的结构
技术领域
本公开总体涉及用于形成适于形成电子器件的结构的方法和系统。更具体地,本公开的示例涉及用于形成包含碳氧化硅的层的方法和系统。
背景技术
在诸如场效应晶体管的电子器件的制造过程中,间隔件,尤其是低介电常数或低k间隔件,可以用于例如抑制附近器件部件之间的耦合,否则可能会发生这种耦合。随着晶体管尺寸的减小,这种耦合会变得越来越成问题。
最近,碳氧化硅在例如三维场效应晶体管(比如FinFET和环绕栅极器件)中用作低k间隔件材料的用途受到了关注。然而,形成具有期望的沉积速率、介电常数、湿蚀刻率和保形性的碳氧化硅间隔件材料具有挑战性。事实上,试图改善一种或多种这样性能常常会对一种或多种其他性能产生负面影响。
已经采用等离子体增强沉积过程来提高碳氧化硅的沉积速率。虽然在沉积过程中使用等离子体已经增加了沉积速率,并且可以允许较低的沉积温度,但具有期望的湿蚀刻速率、介电常数和保形性的碳氧化硅仍具有挑战性。
因此,需要形成碳氧化硅和获得期望的间隔件材料特性的改进方法。此外,还需要包括这种图案化结构的器件结构。还需要用于执行该方法的系统。
本部分中阐述的问题和解决方案的任何讨论已经包括在本公开中,仅仅是为了提供本公开的背景,并且不应被认为是承认任何或所有的讨论在本发明做出时是已知的。
发明内容
本公开的各种实施例涉及形成碳氧化硅层的方法。碳氧化硅层可用于形成器件,例如半导体器件和其他电子器件。更具体地,如下面更详细描述,碳氧化硅层可以很好地适用于在电子器件的形成期间形成(例如低k)间隔件。
虽然下面更详细地讨论了本公开的各种实施例解决现有方法和系统的缺点的方式,但总体而言,本公开的各种实施例提供了形成具有期望特性的碳氧化硅层的改进方法,所述期望特性例如相对低的蚀刻速率、相对低的介电常数、相对良好的与相邻层的粘附性以及相对良好或均匀的衬底(例如晶片)内和衬底间的厚度和特性(例如密度或孔隙率)均匀性。
根据本公开的示例,公开了一种在衬底表面上形成碳氧化硅层的方法。该方法可用于在电子器件的形成期间形成例如低k间隔件。示例性方法包括在反应器的反应室内提供衬底,向反应室提供无氧反应物,并执行一个或多个沉积循环,其中每个沉积循环包括在硅前体脉冲周期内向反应室提供硅前体,并且在等离子体功率周期内向电极提供等离子体功率,以在反应器内形成等离子体。根据本公开的示例,硅前体包括包含硅、氧、碳和可选的氮的分子。硅前体可以进一步包括以下中的一个或多个:(i)一个或两个硅-氧键,(ii)一个或两个硅-碳键,或(iii)一个碳-碳双键。如下文更详细阐述,使用这种前体允许形成具有相对高的沉积速率和其他期望特性的碳氧化硅层,例如低蚀刻速率(例如在0.5%稀释氢氟酸中小于1nm/分钟的湿蚀刻速率)和低介电常数(例如小于4.5或小于4或在约3.5和约4.25之间)。根据本公开的进一步示例,无氧反应物包括氩气(Ar)和氢气(H2)中的一种或多种。根据进一步示例,在提供等离子体功率的步骤期间,等离子体功率开启时间占空比可以大于0且小于75%或在约10和约50%之间。
根据本公开的进一步实施例,提供了一种结构。该结构可以包括根据这里阐述的方法形成的层。根据这些实施例的示例,该结构可以包括使用这里描述的方法形成的间隔件。
根据本公开的另外示例,提供了一种系统,该系统配置为执行这里描述的方法和/或形成器件结构。
通过参考附图对某些实施例的以下详细描述,这些和其他实施例对于本领域技术人员来说将变得显而易见;本发明不限于所公开的任何特定实施例。
附图说明
当结合以下说明性附图考虑时,通过参考详细描述和权利要求,可以获得对本公开的示例性实施例的更完整的理解。
图1示出了根据本公开的进一步示例的方法。
图2和图3示出了根据本公开的示例的时序。
图4示出了包括根据本公开的示例形成的间隔件的结构。
图5示出了根据本公开的至少一个实施例的系统。
应当理解,附图中的元件是为了简单和清楚而示出的,并不一定是按比例绘制的。例如,图中的一些元件的尺寸可能相对于其他元件被夸大,以有助于提高对本公开的所示实施例的理解。
具体实施方式
尽管下面公开了某些实施例和示例,但本领域技术人员将理解,本发明延伸到具体公开的实施例和/或本发明的用途及其明显的修改和等同物之外。因此,意图是所公开的本发明的范围不应被下面描述的具体公开的实施例所限制。
本公开总体涉及在衬底表面上形成碳氧化硅层的方法、包括使用该方法形成的碳氧化硅层的结构以及用于执行该方法的系统。如下文更详细描述,示例性方法可用于形成适于形成电子器件的结构。例如,可以使用示例性方法来形成适用于形成三维器件结构的间隔件,所述三维器件结构用于形成例如FinFET和环绕栅极器件。如下面更详细阐述,示例性方法和系统可以提供期望的碳氧化硅层沉积速率,同时保持沉积的碳氧化硅的期望特性(例如介电常数、蚀刻速率、蚀刻选择性等)。
在本公开中,“气体”可以包括在常温常压(NTP)下为气体的材料、蒸发的固体和/或蒸发的液体,并且可以根据情况由单一气体或气体混合物构成。除了处理气体之外的气体,即不经过气体分配组件、多端口注入系统、其他气体分配装置等引入的气体,可以用于例如密封反应空间,并且可以包括密封气体,例如稀有气体。在一些情况下,术语“前体”可以指参与产生另一种化合物的化学反应的化合物,特别是指构成膜基质或膜主骨架的化合物,而术语“反应物”可以指活化前体、改性前体或催化前体反应的化合物,在一些情况下不是前体。在一些情况下,反应物可以包括已经使用激发源(例如等离子体)激活的惰性气体。
这里使用的术语“载气”可以指与一种或多种前体一起提供给反应室的气体。示例性载气包括N2、H2和稀有气体,例如He、Ne、Kr、Ar和Xe。作为特定示例,载气可以包括氢气(H2)、氮气(N2)、氩气(Ar)或氦气(He)中的一种或多种及其任意组合。在某些情况下,稀释气体可以是或包括载气。
与载气相反,吹扫气体可以单独提供给反应室,即不与一种或多种前体一起提供。尽管如此,通常用作载气的气体也可以用作吹扫气体,即使在同一过程中。例如,在循环沉积-蚀刻过程中,在沉积脉冲期间,用作载气的氩气可与一种或多种前体一起提供,用作吹扫气体的氩气可用于分离沉积和蚀刻脉冲。当然,氩气可以被另一种合适的惰性气体代替,例如H2,或者稀有气体,例如He、Ne、Kr、Ar和Xe或其任意组合。因此,向反应室提供气体的方式决定了气体在特定情况下是用作吹扫气体还是载气。因此,如本文所用,术语“吹扫”可以指在两个可以相互反应的气体脉冲之间向反应室提供惰性或基本惰性气体的过程。例如,可以在前体脉冲之间提供吹扫气体。应当理解,吹扫可以在时间或空间上进行,或者两者都进行。例如,在时间吹扫的情况下,可以使用吹扫步骤,例如以向反应室提供前体,然后向反应室提供吹扫气体的时间顺序,其中其上沉积层的衬底不移动。
如本文所用,术语“衬底”可指可用于形成器件、电路或薄膜或可在其上形成器件、电路或薄膜的任何底层材料。衬底可以包括体材料,例如硅(例如单晶硅)、其他IV族材料,例如锗,或者化合物半导体材料,例如GaAs,并且可以包括覆盖或位于体材料下面的一个或多个层。此外,衬底可以包括各种特征,例如在衬底层的至少一部分内或上形成的凹槽、线条等。通过特定的示例,衬底可以包括其上形成有间隔件的突起或凹陷。
在一些实施例中,膜指的是在垂直于厚度方向的方向上延伸以覆盖整个目标或相关表面的层,或者仅仅是覆盖目标或相关表面的层。在一些实施例中,层是指在表面上形成的具有一定厚度的结构,或者膜或非膜结构的同义词。层可以是连续的,也可以是不连续的。膜或层可以由具有某些特性的离散的单个膜或层或者多个膜或层构成,并且相邻膜或层之间的边界可以是或可以不是清晰的,并且可以是或可以不是基于物理、化学和/或任何其他特性、形成过程或顺序和/或相邻膜或层的功能或目的而建立的。
在本公开中,连续可以指不破坏真空、不作为时间线中断、没有任何材料介入步骤、不改变处理条件、紧接其后、作为下一步骤或者在除了一些实施例中的两个结构之外的两个结构之间没有介入离散的物理或化学结构中的一个或多个。例如,可以在一种方法的两个或更多个步骤中、在沉积循环中、和/或在两个或更多个沉积循环中连续供应反应物。
术语“循环沉积过程”或“循环的沉积过程”或“循环沉积循环”可以指将前体脉冲引入反应室和/或使用脉冲等离子体功率在衬底上沉积层,并且包括处理技术,例如原子层沉积(ALD)、循环化学气相沉积(循环CVD)以及包括ALD分量和循环CVD分量的混合循环沉积过程。如下所述,这种过程可以包括等离子体步骤,并被称为等离子体增强过程。
碳氧化硅(SiOC)可以指包括硅、氧和碳的材料。如本文所用,除非另有说明,否则SiOC不旨在限制、约束或限定键合或化学状态,例如膜中Si、C、O和/或任何其他元素的氧化态。在一些实施例中,除了Si、C和O之外,SiOC可以包括一种或多种元素,例如H或N。在一些实施例中,SiOC可以包括Si-C键和/或Si-O键。在一些实施例中,除了Si-C和/或Si-O键之外,SiOC可以包括Si-H键。在一些实施例中,SiOC可包含以原子计大于0%至约60%的碳。在一些实施例中,SiOC可包含以原子计约0.1%至约40%、约0.5%至约30%、约1%至约30%或约5%至约20%的碳。在一些实施例中,SiOC可包含以原子计大于0%至约70%的氧。在一些实施例中,SiOC可包含以原子计约10%至约70%、约15%至约50%或约20%至约40%的氧。在一些实施例中,SiOC可包含以原子计大于0%至约50%的硅。在一些实施例中,SiOC可包含以原子计约10%至约50%、约15%至约40%或约20%至约35%的硅。在一些实施例中,SiOC可包含以原子计约0.1%至约40%、约0.5%至约30%、约1%至约30%或约5%至约20%的氢。在一些实施例中,SiOC可以不包含氮。在一些情况下,SiOC层可以包括以原子计约0.1%至约20%、约0.5%至约15%、约1%至约10%或约1.5%至约5%的氮。在一些实施例中,SiOC包括来自前体的至少一个Si-C键和/或至少一个Si-O键,下面将更详细地讨论。在一些实施例中,SiOC包括来自前体的氮。
如本文所用,术语“重叠”可以指在时间上和反应室内的重合。例如,关于气体脉冲周期,例如前体脉冲周期和反应物周期,当来自相应周期的气体在反应室内或提供给反应室一段时间时,两个或更多个气体周期可以重叠。类似地,等离子体功率周期可以与气体(例如反应物气体)周期重叠(其可以通过一个或多个循环连续,如下所述)。
此外,在本公开中,变量的任何两个数字可以构成该变量的可行范围,并且所指示的任何范围可以包括或不包括端点。此外,在一些实施例中,所指示的变量的任何值(不管它们是否用约指示)可以指精确值或近似值,并且包括等同物,并且可以指平均值、中值、代表性值、多数值等。此外,在本公开中,术语“包括”、“由...构成”和“具有”在一些实施例中可以独立地指“通常或广义地包括”、“包含”、“基本由...组成”或“由...组成”。在本公开中,任何定义的含义在一些实施例中不一定排除普通和习惯的含义。
现在转到附图,图1示出了根据本公开的示例在衬底表面上形成碳氧化硅层的方法100。方法100可用于形成具有相对高的沉积速率、相对低的温度、相对低的湿蚀刻速率和相对低的介电常数的碳氧化硅层。如图所示,方法100包括以下步骤:在反应室内提供衬底(步骤102),向反应室提供无氧反应物(步骤104),以及执行一个或多个沉积循环(循环112)。每个循环112可以包括向反应室提供硅前体(步骤106),以及提供等离子体功率(步骤108)。方法100还可以包括形成间隔件的可选步骤(步骤110)。
在步骤102期间,在反应器的反应室内提供衬底。基底可以是或包括本文所述的任何基底。在步骤102中使用的反应室可以是或包括化学气相沉积反应器系统的反应室,其配置为执行循环沉积过程,特别是等离子体增强循环沉积过程。反应室可以是独立的反应室或组合工具或模块的一部分。
步骤102可以包括在反应室内将衬底加热到期望的沉积温度。在本公开的一些实施例中,步骤102包括将衬底加热到低于600℃或低于500℃的温度。例如,在本公开的一些实施例中,将衬底加热到沉积温度可以包括将衬底加热到约75℃和约550℃之间或约75℃和约500℃之间或约120℃和约300℃之间的温度。除了控制衬底的温度,还可以调节反应室内的压力。例如,在本公开的一些实施例中,在步骤102期间,反应室内的压力可以大于100Pa和/或小于3000Pa,或者在约300和约3000Pa之间,或者在约400和约1500Pa之间。这些温度和压力也适用于步骤104-108。
在步骤104中,向反应室提供无氧反应物。示例性无氧反应物包括例如氩气(Ar)和氢气(H2)中的一种或多种。在这些情况下,无氧反应物可以包括约80至约100或约90至约99.9体积%的氩气(Ar)和/或约0.1至约20或约0.5至约10体积%的氢气(H2)。根据本公开的具体示例,无氧反应物是或包括包含氩气(Ar)和氢气(H2)的混合物。无氧反应物到反应室的流量可被控制并且在约100和约6000sccm之间或者在约1000和约4000sccm之间。
在步骤106期间,在硅前体脉冲周期内,将硅前体提供给反应室。如本文所用,脉冲周期是指气体(例如前体、反应物、惰性气体和/或载气)流向反应室的时间和/或施加功率(例如产生等离子体的功率)的周期。在一些情况下,周期可以在一个或多个沉积循环中是连续的。在一些情况下,连续周期可以包括向反应室连续提供气体。所示脉冲周期(图2所示)的高度和/或宽度不一定表示脉冲的特定量或持续时间。
适用于步骤106的示例性硅前体包括包含硅、氧、碳和可选的氮的分子。该分子可由下式表示:SiaCbOcHdNe,其中,a是至少1到至多2的整数,b是至少5到至多14的整数,c是至少2到至多4的整数,d是至少12到至多30的整数,e是至少0到至多2的整数。
示例性硅前体还包括以下中的一个或多个:(i)一个或两个硅-氧键,(ii)一个或两个硅-碳键,或(iii)一个碳-碳双键。在某些情况下,分子包括两个硅-氧键和两个硅-碳键。另外或可替代地,该分子包含碳-碳双键。在一些情况下,该分子可以包括硅-氮键。
根据进一步的示例,该分子包含选自以下的主链结构:
以及
主链中的每个C可以独立地被独立选择的C1-C21烷基取代。类似地,每个O可以独立地被独立选择的C1-C7烷氧基取代。另外或可替代地,N可以被C1-C14胺官能团取代。
特定的示例性硅前体包括如下。
N-[二甲氧基(丙-2-基)甲硅烷基]-N-甲基甲胺
N-[乙基(二甲氧基)甲硅烷基]-N-甲基甲胺
二异丁基二甲氧基硅烷
二甲氧基二乙基硅烷
二甲氧基甲基乙烯基硅烷。
其他示例性前体/分子包括二甲氧基甲基乙烯基硅烷、双(甲基二甲氧基甲硅烷基)甲烷和1,2-双(甲基二乙氧基甲硅烷基)乙烷。
硅前体脉冲周期的持续时间可以在约0.1和约2.0秒之间,或者在约0.15和约1.0秒之间。硅前体(例如具有载气)的流量可以在约100和约6000sccm之间或者在约1000和约4000sccm之间。硅前体和载气的混合物可以包括约0.1到约40体积%的硅前体。
在步骤108期间,在等离子体功率周期内向电极(例如反应器内)提供等离子体功率,以在反应器内形成等离子体。在一些情况下,等离子体功率可以在等离子体功率周期期间脉动。在该步骤中,反应室内的硅前体可以聚合并形成碳氧化硅层。
在步骤108期间使用的等离子体功率可以在约35和约1500W之间或者在约100和约500W之间。等离子体功率周期的持续时间可以在0.01和5.0秒之间。等离子体脉冲周期,即在等离子体功率周期期间等离子体功率的每个脉冲的持续时间,可以在约0.01和0.2毫秒之间。等离子体功率开启时间占空比可以大于0且小于75%,或者在约10和约50%之间。脉冲等离子体功率的频率可以在约5000和200000Hz之间或约10000和100000Hz之间。
如图所示,方法100可以包括形成间隔件的步骤110。步骤110可以包括蚀刻使用步骤102-108形成的碳氧化硅层的一部分,以在衬底表面上的特征周围或内部形成间隔件。下面在图4中示出了可以在步骤110期间形成的示例性间隔件。
图2和图3示出了适用于方法100的示例性时序200。在所示的示例中,在反应物周期202中向反应室提供反应物,在硅前体脉冲周期204中向反应室提供硅前体,在等离子体功率周期206中施加等离子体功率以形成等离子体。序列200可以包括一个或多个沉积循环208。在所示示例中,每个沉积循环208包括硅前体脉冲周期204和等离子体功率周期206,而反应物周期202可以在一个或多个沉积循环208中是连续的—例如反应物可以在沉积循环208期间或在两个或更多个沉积循环208期间被连续地提供给反应室。
序列200还可以包括载气周期210。在载气周期210期间,载气(例如用于促进提供硅前体),例如氩气、氦气中的一种或多种,单独或以任何组合,被提供给反应室。载气的流量可以在约100和约5000sccm之间。载气周期210可以与反应物周期202重叠。
序列200还可以包括密封气体周期212。在密封气体周期212期间,可以向例如反应器的转移区域提供惰性气体,以减少处理气体向该区域的流动。
在所示示例中,硅前体脉冲周期204在等离子体功率周期206之前停止。反应物周期202和载气周期210可以在一个或多个沉积循环208中是连续的。在一些情况下,在连续周期期间,反应物和/或载气的流量可以改变—例如使得在周期202、204和210的重叠期间,气体到反应室的总(例如体积)流量保持约恒定。
图3更详细地示出了示例性等离子体功率周期206。在所示示例中,等离子体功率周期206包括多个开关周期302,其中每个开关周期302可以具有开启时间304和关闭时间306,其中百分比占空比或占空比可以是开启时间/(开启时间+关闭时间)。上面提供了等离子体功率周期和占空比的示例性持续时间。
如上所述,本文所述方法的优点是可以形成具有所需性质的碳氧化硅层。例如,可以获得具有以下的碳氧化硅层:碳氧化硅层的介电常数小于4.5、小于4.25或小于4或介于约3.5和约4.25之间,和/或碳氧化硅层在0.5%稀氢氟酸中的湿蚀刻速率小于1nm/分钟、小于0.8nm/分钟、小于0.6nm/分钟或介于0.4nm/分钟和0.9nm/分钟之间。
图4示出了根据本公开的示例形成的结构。结构400包括衬底402、特征404和间隔件406。衬底402可以是或包括这里描述的任何衬底。特征404可以包括金属、半导体或电介质图案化特征。可以通过例如根据方法100沉积碳氧化硅层,然后去除该层的一部分,来形成间隔件406。
现在转到图5,示出了根据本公开的示例性实施例的反应器系统500。反应器系统500可用于执行本文所述的一个或多个步骤或子步骤,和/或形成本文所述的一个或多个结构或其部分。
反应器系统500包括在反应器502的内部501(反应区或反应室)中平行且彼此面对的一对导电平板电极514、518。虽然图示了一个反应器502,但是系统500可以包括两个或更多个反应器或反应室。通过将例如来自等离子体功率源508的RF功率施加到一个电极(例如电极518)并将另一个电极(例如电极514)电接地,可以在反应器502内激发等离子体。温度调节器503可以设置在下平台电极514(下电极)中,并且放置在其上的衬底522的温度可以保持在期望的温度,例如上述温度。电极518可以用作气体分配装置,例如喷淋板或喷淋头。可以使用一个或多个气体管线(例如联接到反应物源530(例如,如本文所述的无氧反应物)的反应物气体管线504)和联接到硅前体源531和惰性气体源534的前体气体管线506,将前体气体、反应物气体、载气或惰性气体等引入反应空间501。例如,可以使用管线504将惰性气体和反应物(例如,如上所述)引入反应空间501,和/或可以使用管线506将前体和载气(例如,如上所述)引入反应空间501。尽管示出了两个入口气体管线504、506,但反应器系统500可以包括任何合适数量的气体管线。包括流量控制器532、533、535的流量控制系统可用于控制一种或多种反应物、前体和惰性气体流入反应空间501。
在反应器502中,可以提供具有排气管线521的圆形导管520,反应器502的内部501中的气体可以通过该导管排出到排气源510。此外,转移室523可以设置有密封气体管线529,以将密封气体经由转移室523的内部(转移区)引入反应器502的内部,其中可以设置用于分隔反应区501和转移室523的分隔板525(该图中省略了闸阀,通过该闸阀将衬底转移到转移室523中或从转移室523中转移出)。转移室523还可以设置有联接到排气源510的排气管线527。在一些实施例中,载气向反应室501的连续流动可以使用流通系统(FPS)来实现。
反应器系统500可以包括一个或多个控制器512,其被编程或以其他方式配置成使本文所述的一个或多个方法步骤得以实施。控制器512与各种电源、加热系统、泵、机器人和气流控制器或反应器的阀耦合,如本领域技术人员将理解。举例来说,控制器512可以配置为控制前体、反应物和惰性气体进入一个或多个反应室中的至少一个的气流,以在衬底表面上形成层。控制器512可以进一步配置为提供电力—例如在反应室501内。控制器512可以类似地配置成执行如本文所述的附加步骤。举例来说,控制器512可以配置为控制前体、惰性气体和反应物进入一个或多个反应室中的至少一个的气流,以形成覆盖衬底的碳氧化硅层。
控制器512可以包括电子电路和软件,以选择性地操作系统500中包括的阀、歧管、加热器、泵和其他部件。这种电路和部件用于从相应源引入前体、反应物和吹扫气体。控制器512可以控制气体脉冲序列的定时、衬底和/或反应室的温度、反应室内的压力以及各种其他操作,以提供系统500的正确操作。
控制器512可以包括控制软件,以电动或气动地控制阀来控制前体、反应物和/或吹扫气体流入和流出反应室501和反应器502。控制器512可以包括执行某些任务的模块,例如软件或硬件部件,例如FPGA或ASIC。模块可以有利地配置为驻留在控制系统的可寻址存储介质上,并且配置为执行一个或多个过程。
作为特定示例,控制器512配置为控制硅前体脉冲的硅前体气流(例如在一个或多个循环期间无氧反应物的连续流)和等离子体功率(例如等离子体功率的功率水平、持续时间和/或占空比)。
在一些实施例中,可以使用双室反应器(用于处理彼此靠近设置的衬底的两个部分或隔室),其中反应物气体和稀有气体可以通过共享管线供应,而前体气体通过非共享管线供应。
在系统500的操作期间,诸如半导体晶片的衬底从例如衬底处理区域523转移到反应区501。一旦衬底被转移到反应区501,一种或多种气体,例如前体、反应物、载气和/或吹扫气体,被引入反应空间501。
上述公开的示例实施例不限制本发明的范围,因为这些实施例仅仅是本发明实施例的示例。任何等同的实施例都在本发明的范围内。实际上,除了在此示出和描述的实施例之外,本公开的各种修改,例如所描述的元件的可替代的有用组合,对于本领域技术人员来说从描述中将变得显而易见。这种修改和实施例也旨在落入所附权利要求的范围内。

Claims (24)

1.一种在衬底表面上形成碳氧化硅层的方法,该方法包括以下步骤:
在反应器的反应室内提供衬底;
向反应室提供无氧反应物;以及
执行一个或多个沉积循环,其中每个沉积循环包括:
在硅前体脉冲周期内向反应室提供硅前体;并且
在等离子体功率周期内向电极提供等离子体功率,以在反应器内形成等离子体,
其中,硅前体包括含有硅、氧、碳和可选的氮的分子,硅前体还包括以下中的一个或多个:(i)一个或两个硅-氧键,(ii)一个或两个硅-碳键,或(iii)一个碳-碳双键。
2.根据权利要求1所述的方法,其中,所述无氧反应物包括氩气(Ar)和氢气(H2)中的一种或多种。
3.根据权利要求1或2所述的方法,其中,所述无氧反应物包含约80至约100或约90至约99.9体积%的氩气(Ar)。
4.根据权利要求1-3中任一项所述的方法,其中,所述无氧反应物包含约0至约20或约0.1至约10体积%的氢气(H2)。
5.根据权利要求1-4中任一项所述的方法,其中,所述无氧反应物包括包含氩气(Ar)和氢气(H2)的混合物。
6.根据权利要求1-5中任一项所述的方法,其中,所述等离子体功率周期的持续时间在0.01和5.0秒之间。
7.根据权利要求1-6中任一项所述的方法,其中,等离子体功率开启时间占空比大于0且小于75%或介于约10和约50%之间。
8.根据权利要求1-7中任一项所述的方法,其中,所述分子包含硅-氮键。
9.根据权利要求1-8中任一项所述的方法,其中,所述分子包含选自以下的主链结构:
以及
10.根据权利要求1-9中任一项所述的方法,其中,所述分子由下式表示:SiaCbOcHdNe,其中,a为至少1到至多2的整数,b为至少5到至多14的整数,c为至少2到至多4的整数,d为至少12到至多30的整数,e为至少0到至多2的整数。
11.根据权利要求1-10中任一项所述的方法,其中,所述分子包含两个硅-氧键和两个硅-碳键。
12.根据权利要求1-11中任一项所述的方法,其中,所述分子包含所述碳-碳双键。
13.根据权利要求1-12中任一项所述的方法,其中,所述硅前体包括以下中的一种或多种:N-[二甲氧基(丙-2-基)甲硅烷基]-N-甲基甲胺、N-[乙基(二甲氧基)甲硅烷基]-N-甲基甲胺、二异丁基二甲氧基硅烷、二甲氧基二乙基硅烷、二甲氧基甲基乙烯基硅烷、双(甲基二甲氧基甲硅烷基)甲烷和1,2-双(甲基二乙氧基甲硅烷基)乙烷。
14.根据权利要求1-13中任一项所述的方法,其中,所述碳氧化硅层形成间隔件。
15.根据权利要求1-13中任一项所述的方法,其中,所述碳氧化硅层的介电常数小于4.5。
16.根据权利要求1-15中任一项所述的方法,其中,所述碳氧化硅层在0.5%稀氢氟酸中的湿蚀刻速率小于1nm/分钟。
17.根据权利要求1-16中任一项所述的方法,其中,在所述一个或多个沉积循环中的沉积循环期间,将所述反应物连续提供给所述反应室。
18.根据权利要求1-17中任一项所述的方法,其中,在两个或更多个沉积循环期间,将所述反应物连续提供给所述反应室。
19.根据权利要求1-18中任一项所述的方法,其中,所述硅前体脉冲周期在所述等离子体功率周期之前停止。
20.根据权利要求1-19中任一项所述的方法,其中,所述硅前体脉冲周期的持续时间在约0.1和约2秒之间或者在约0.15和约1秒之间。
21.根据权利要求1-20中任一项所述的方法,其中,所述衬底的温度介于约75℃和约500℃之间或介于约120℃和约300℃之间。
22.根据权利要求1-21中任一项所述的方法,其中,在所述沉积循环期间,所述反应室内的压力在约300和约3000Pa之间或在约400和约1500Pa之间。
23.一种根据权利要求1-22中任一项所述的方法形成的结构。
24.一种用于执行根据权利要求1-22中任一项所述的方法的反应器系统。
CN202310423857.3A 2022-04-26 2023-04-19 用于形成碳氧化硅层的方法和系统及使用其形成的结构 Pending CN116949433A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263334872P 2022-04-26 2022-04-26
US63/334,872 2022-04-26

Publications (1)

Publication Number Publication Date
CN116949433A true CN116949433A (zh) 2023-10-27

Family

ID=88416147

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310423857.3A Pending CN116949433A (zh) 2022-04-26 2023-04-19 用于形成碳氧化硅层的方法和系统及使用其形成的结构

Country Status (5)

Country Link
US (1) US20230340663A1 (zh)
JP (1) JP2023162144A (zh)
KR (1) KR20230151904A (zh)
CN (1) CN116949433A (zh)
TW (1) TW202407135A (zh)

Also Published As

Publication number Publication date
US20230340663A1 (en) 2023-10-26
KR20230151904A (ko) 2023-11-02
TW202407135A (zh) 2024-02-16
JP2023162144A (ja) 2023-11-08

Similar Documents

Publication Publication Date Title
US12068154B2 (en) Method of forming a nitrogen-containing carbon film and system for performing the method
KR20210062561A (ko) 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템
CN113140503A (zh) 形成高纵横比特征的方法
CN111910176A (zh) 向表面上沉积材料的方法和根据此方法形成的结构
US20230139917A1 (en) Selective deposition using thermal and plasma-enhanced process
CN116949433A (zh) 用于形成碳氧化硅层的方法和系统及使用其形成的结构
US20230235453A1 (en) Method and system for forming a silicon oxycarbide layer and structure formed using same
US12100597B2 (en) Method and system for forming patterned structures including silicon nitride
US12031205B2 (en) Method and system for forming a conformal silicon carbon nitride layer and structure formed using same
US20230407465A1 (en) METHOD OF FORMING SiOCN LAYER
US20220319832A1 (en) Method and system for depositing silicon nitride with intermediate treatment process
US20220319831A1 (en) Method and system for forming silicon nitride layer using low radio frequency plasma process
US11970769B2 (en) Cyclical deposition methods
US20220108881A1 (en) Method and system for forming silicon nitride on a sidewall of a feature
US20240014030A1 (en) Method for selective deposition of silicon nitride and structure including selectively-deposited silicon nitride layer
US20230170209A1 (en) Methods of filling recesses on substrate surfaces and forming voids therein
US20220178023A1 (en) Method of forming a structure including silicon-carbon material, structure formed using the method, and system for forming the structure
US20220319833A1 (en) Method and system for mitigating underlayer damage during formation of patterned structures
CN117170177A (zh) 形成光致抗蚀剂底层的高温方法及形成其的系统
CN115216769A (zh) 用可流动碳层填充间隙的方法
CN117364066A (zh) 将可冷凝材料沉积到衬底表面上的方法
CN116356294A (zh) 形成低k材料层的方法、包括该层的结构及其形成系统
KR20220121720A (ko) 포스포실리케이트 유리 층을 형성하는 방법, 방법을 사용하여 형성된 구조 및 방법을 수행하기 위한 시스템

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication