CN116936088A - 骨质疏松患者骨折风险的预测方法及预测装置 - Google Patents

骨质疏松患者骨折风险的预测方法及预测装置 Download PDF

Info

Publication number
CN116936088A
CN116936088A CN202210368145.1A CN202210368145A CN116936088A CN 116936088 A CN116936088 A CN 116936088A CN 202210368145 A CN202210368145 A CN 202210368145A CN 116936088 A CN116936088 A CN 116936088A
Authority
CN
China
Prior art keywords
fracture risk
osteoporosis
lumbar vertebra
finite element
element model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210368145.1A
Other languages
English (en)
Inventor
白雪岭
姚治东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN202210368145.1A priority Critical patent/CN116936088A/zh
Priority to PCT/CN2022/137713 priority patent/WO2023193462A1/zh
Publication of CN116936088A publication Critical patent/CN116936088A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4504Bones
    • A61B5/4509Bone density determination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computer Graphics (AREA)
  • Algebra (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)

Abstract

本发明公开了一种骨质疏松患者骨折风险的预测方法及预测装置。该预测方法包括:对批量骨质疏松患者的个性化因素数据和骨密度数据进行多元回归分析,建立多元回归方程;建立各个骨质疏松患者的腰椎有限元模型;仿真分析各个腰椎有限元模型在若干日常场景下受力时的生物力学变化,获得各个腰椎有限元模型中椎体松质骨单元微应变超过阈值的比例;根据椎体松质骨单元微应变超过阈值的比例、各个腰椎有限元模型对应的骨密度进行相关性分析,获得骨质疏松骨折风险预测方程;根据待预测对象的个性化因素数据、多元回归方程和骨质疏松骨折风险预测方程得到骨折风险评估结果。该方法考虑了个性化因素对骨密度的影响,有利于精确地进行骨折风险的预测。

Description

骨质疏松患者骨折风险的预测方法及预测装置
技术领域
本发明属于电子信息技术领域,具体地讲,涉及一种骨质疏松患者骨折风险的预测方法及预测装置。
背景技术
骨质疏松症导致的最严重的并发症是骨折,为低能量或非暴力骨折,也称为脆性骨折,指在生活中受到不超过站立或是走平路跌倒造成的最低限度的外伤即可导致脊柱椎体、髋骨、肱骨近端或桡骨远端等部位的骨折。骨质疏松性骨折可造成疼痛和重度伤残,一般而言骨折在骨质疏松患者中的发生率约为20%,其中以脊椎和髋部发生骨折造成的死亡率与病残率最高,且发病率会随年龄增加而提升。
骨强度是发现和评价骨质疏松重要的参考指标,但限于该指标只能由破坏性的检测方式获得,故临床上难以对骨质疏松患者的骨力学性能做出直接评估。而骨密度(Bonemineral density,BMD)与骨强度密切相关,具有诊断骨质疏松症及预测骨折风险的能力。目前临床上诊断骨质疏松的检查方法主要依靠双能X 线吸收测量仪(Dual-energy X-rayabsorptiometry,DEXA)和定量CT(Quantitative computed tomography,QCT)来测量骨密度。
通过DEXA及QCT等技术检测骨密度的方法诊断骨质疏松已广泛应用, DEXA经济、简便、病人放射线吸收剂量低,以往被认为是诊断骨质疏松的“金标准”。但DEXA应用二维影像技术,测量精确度不高,其投射性扫描的方式不能分析骨质的三维空间结构和区分在骨皮质与骨小梁之间矿物质密度变化,只能提供二维的面积骨密度信息。QCT提供了骨质结构的三维影像及骨矿物质的空间分布情况,相比其他方法对骨量的变化更为敏感和准确。
然而,很多因素可能导致骨折风险评估产生一定误差,测量骨密度时需考虑体重、性别、年龄、激素等因素可能带来的影响,以便更精确地评判骨骼状况。目前,对于骨质疏松症引起的远期骨折风险预测并无行之有效的临床手段。
发明内容
(一)本发明所要解决的技术问题
本发明解决的技术问题是:如何更加精准地预测骨质疏松患者的骨折风险。
(二)本发明所采用的技术方案
一种骨质疏松患者骨折风险的预测方法,所述预测方法包括:
对批量骨质疏松患者的个性化因素数据和骨密度数据进行多元回归分析,建立骨密度变化与个性化因素之间的多元回归方程;
建立各个骨质疏松患者的腰椎有限元模型,所述腰椎有限元模型的材料特性根据骨质疏松患者的骨密度进行设置;
仿真分析各个腰椎有限元模型在若干日常场景下受力时的生物力学变化,获得各个腰椎有限元模型中椎体松质骨单元微应变超过阈值的比例;
根据椎体松质骨单元微应变超过阈值的比例、各个腰椎有限元模型对应的骨密度进行相关性分析,获得骨质疏松骨折风险预测方程;
根据待预测对象的个性化因素数据、所述多元回归方程和所述骨质疏松骨折风险预测方程得到待预测骨质疏松患者的骨折风险预测结果。
优选地,所述个性化因素数据至少包括性别、年龄、体重、身高、运动数据和吸烟数据。
优选地,建立骨质疏松患者的腰椎有限元模型的方法为:
采集骨质疏松患者第一腰椎和第二腰椎的骨密度,构建第一腰椎至第二腰椎的三维网格模型;
将所述第一腰椎和第二腰椎的骨密度的平均值、所述三维网格模型输入到有限元仿真分析软件,构建得到腰椎有限元模型。
优选地,所述阈值为5000με,椎体松质骨单元微应变超过阈值的比例为:微应变超过阈值的松质骨单元的数量与椎体的松质骨单元总量的比值。
优选地,根据待预测对象的个性化数据、所述多元回归方程和所述骨质疏松骨折风险预测方程得到待预测骨质疏松患者的骨折风险预测结果的方法包括:
将待预测对象的个性化因素数据代入到已构建的所述多元回归方程中,得到骨密度预测值;
将所述骨密度预测值代入到已构建的所述骨质疏松骨折风险预测方程中,得到待预测对象的骨折风险预测结果。
优选地,所述骨折风险预测结果为骨折风险等级。
本申请还公开了一种骨质疏松患者骨折风险的预测装置,所述预测装置包括:
骨密度分析单元,用于对批量骨质疏松患者的个性化因素数据和骨密度数据进行多元回归分析,得到骨密度与个性化因素之间的多元回归方程;
模型构建单元,用于建立各个骨质疏松患者的腰椎有限元模型,所述腰椎有限元模型的材料特性根据骨质疏松患者的骨密度进行设置;
仿真模拟单元,用于仿真分析各个腰椎有限元模型在若干日常场景下受力时的生物力学变化,获得各个腰椎有限元模型中椎体松质骨单元微应变超过阈值的比例;
风险分析单元,用于根据椎体松质骨单元微应变超过阈值的比例、各个腰椎有限元模型对应的骨密度进行相关性分析,构建骨质疏松骨折风险预测方程;
风险预测单元,用于根据待预测对象的个性化因素数据、所述多元回归方程和所述骨质疏松骨折风险预测方程得到待预测骨质疏松患者的骨折风险预测结果。
本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有骨质疏松患者骨折风险的预测程序,所述骨质疏松患者骨折风险的预测程序被处理器执行时实现上述的骨质疏松患者骨折风险的预测方法。
本申请还提供了一种计算机设备,所述计算机设备包括计算机可读存储介质、处理器和存储在所述计算机可读存储介质中的骨质疏松患者骨折风险的预测程序,所述骨质疏松患者骨折风险的预测程序被处理器执行时实现上述的骨质疏松患者骨折风险的预测方法。
(三)有益效果
本发明公开了一种骨质疏松患者骨折风险的预测方法、预测装置、存储介质和设备,相对于现有技术,具有如下技术效果:
该方法综合考虑了个性化因素对骨密度的影响,有利于精确地进行当前骨折风险的评估,同时在实际应用时无需采用仪器测量即可进行预测,因此也有利于进行远期的风险评估。
附图说明
图1为本发明的实施例一的骨质疏松患者骨折风险的预测方法的流程图;
图2为本发明的实施例二的骨质疏松患者骨折风险的预测装置的原理框图;
图3为本发明的实施例四的计算机设备示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在详细描述本申请的各个实施例之前,首先简单描述本申请的发明构思:现有技术通常通过直接测量来获得骨质疏松患者的骨密度,进而预测骨折风险大小,并没有考虑其他个性化因素对骨密度的影响,因此也无法精确地进行骨质疏松患者骨折风险评估。本申请公开了一种骨质疏松患者骨折风险的预测方法,主要包括两部分,一是通过大数据分析方法建立骨密度与个性化因素之间的多元回归方程,二是通过仿真分析建立与骨密度关联的骨折风险预测方程,在实际应用时首先结合待测对象的个性化因素和多元回归方程来预测待测对象的骨密度,接着再结合预测到的骨密度和骨折风险预测方程来预测骨折风险。该方法综合考虑了个性化因素对骨密度的影响,有利于精确地进行骨折风险的评估,同时在实际应用时无需采用仪器测量即可进行预测,因此也有利于进行远期的风险评估。
具体地,如图1所示,本实施例一的骨质疏松患者骨折风险的预测方法包括如下步骤:
步骤S10:对批量骨质疏松患者的个性化因素数据和骨密度数据进行多元回归分析,建立骨密度与个性化因素之间的多元回归方程;
步骤S20:建立各个骨质疏松患者的腰椎有限元模型,腰椎有限元模型的材料特性根据骨质疏松患者的骨密度进行设置;
步骤S30:仿真分析各个腰椎有限元模型在若干日常场景下受力时的生物力学变化,获得各个腰椎有限元模型中椎体松质骨单元微应变超过阈值的比例;
步骤S40:根据椎体松质骨单元微应变超过阈值的比例、各个腰椎有限元模型对应的骨密度进行相关性分析,获得骨质疏松骨折风险预测方程;
步骤S50:根据待预测对象的个性化因素数据、多元回归方程和骨质疏松骨折风险预测方程得到待预测骨质疏松患者的骨折风险预测结果。
具体地,在步骤S10中,个性化因素数据至少包括性别、年龄、体重、身高、运动数据和吸烟数据,通过对批量骨质疏松患者的个性化因素数据和骨密度数据进行多元回归分析,建立骨密度变化与个性化因素之间的多元回归方程,基于该多元回归方程,可以实现待预测对象的骨密度在各个个性化因素数据下的随时间(年龄)变化的趋势。
进一步地,在步骤S20中,选取一批临床骨质疏松患者并采用QCT设备采集骨密度。采集部位为第一腰椎至第二腰椎,根据QCT设备采集到的各个像素的骨密度,计算第一腰椎和第二腰椎的松质骨骨密度平均值。构建骨质疏松患者的第一腰椎至第二腰椎的三维网格模型,三维网格模型包括皮质骨、松质骨、韧带等模型。将三维网格模型输入到有限元仿真分析软件,基于松质骨骨密度平均值对设置模型的材料特性,得到腰椎有限元模型。
进一步地,在步骤S30中,设置腰椎有限元模型的力边界条件,即在模型上模拟人在日常场景的受力,仿真分析各个腰椎有限元模型在若干日常场景下受力时的生物力学变化,获得各个腰椎有限元模型中椎体松质骨单元微应变超过阈值的比例。示例性地,阈值为5000με,椎体松质骨单元微应变超过阈值的比例为:微应变超过阈值的松质骨单元的数量与椎体的松质骨单元总量的比值,其中椎体松质骨单元微应变超过阈值的比例越大,意味着骨折风险越大。
进一步地,根据椎体松质骨单元微应变超过阈值的比例、各个腰椎有限元模型对应的骨密度进行相关性分析,获得骨质疏松骨折风险预测方程,该骨质疏松骨折风险预测方程反映了骨密度与骨折风险之间的关系。
在构建好多元回归方程和骨质疏松骨折风险预测方程之后,将待预测对象的个性化因素数据代入到多元回归方程中,得到骨密度预测值,接着将骨密度预测值代入到骨质疏松骨折风险预测方程中,得到待预测对象的骨折风险预测结果。需要说明的是,这里得到的骨折风险预测结果可以是当前状态的预测结果,也可以是未来的预测结果。例如待预测对象当前的年龄为45岁,在其他个性化因素确定的情况下,可以预测45岁时的骨密度,进而预测当前的骨折风险。还可以将待预测对象的年龄改为46岁,在保持其他因素不变的情况下,可以预测46岁时的骨密度,进而预测一年以后(46岁时)的骨折风险。类似地,还可以使得个性化因素数据中的任一种因素改变而保持其他因素不变,动态地预测骨密度变化,从而预测骨折风险的变化趋势。
本实施例二还公开了一种骨质疏松患者骨折风险的预测装置,如图2所示,该预测装置包括骨密度分析单元100、模型构建单元200、仿真模拟单元300、风险分析单元400和风险预测单元500。骨密度分析单元100用于对批量骨质疏松患者的个性化因素数据和骨密度数据进行多元回归分析,得到骨密度与个性化因素之间的多元回归方程;模型构建单元200用于建立各个骨质疏松患者的腰椎有限元模型,所述腰椎有限元模型的材料特性根据骨质疏松患者的骨密度进行设置;仿真模拟单元300用于仿真分析各个腰椎有限元模型在若干日常场景下受力时的生物力学变化,获得各个腰椎有限元模型中椎体松质骨单元微应变超过阈值的比例;风险分析单元400用于根据椎体松质骨单元微应变超过阈值的比例、各个腰椎有限元模型对应的骨密度进行相关性分析,构建骨质疏松骨折风险预测方程;风险预测单元500用于根据待预测对象的个性化因素数据、所述多元回归方程和所述骨质疏松骨折风险预测方程得到待预测骨质疏松患者的骨折风险预测结果。其中,骨密度分析单元100、模型构建单元200、仿真模拟单元300、风险分析单元400和风险预测单元500的具体工作过程参见实施例一的相关描述,在此不进行赘述。
实施例三还公开了一种计算机可读存储介质,计算机可读存储介质存储有骨质疏松患者骨折风险的预测程序,骨质疏松患者骨折风险的预测程序被处理器执行时实现上述的骨质疏松患者骨折风险的预测方法。
进一步地,实施例四还公开了一种计算机设备,在硬件层面,如图3所示,该计算机设备包括处理器12、内部总线13、网络接口14、计算机可读存储介质 11。处理器12从计算机可读存储介质中读取对应的计算机程序然后运行,在逻辑层面上形成请求处理装置。当然,除了软件实现方式之外,本说明书一个或多个实施例并不排除其他实现方式,比如逻辑器件抑或软硬件结合的方式等等,也就是说以下处理流程的执行主体并不限定于各个逻辑单元,也可以是硬件或逻辑器件。计算机可读存储介质11上存储有骨质疏松患者骨折风险的预测程序,骨质疏松患者骨折风险的预测程序被处理器执行时实现上述的骨质疏松患者骨折风险的预测方法。
计算机可读存储介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机可读存储介质的例子包括,但不限于相变内存 (PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器 (CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带、磁盘存储、量子存储器、基于石墨烯的存储介质或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
上面对本发明的具体实施方式进行了详细描述,虽然已表示和描述了一些实施例,但本领域技术人员应该理解,在不脱离由权利要求及其等同物限定其范围的本发明的原理和精神的情况下,可以对这些实施例进行修改和完善,这些修改和完善也应在本发明的保护范围内。

Claims (9)

1.一种骨质疏松患者骨折风险的预测方法,其特征在于,所述预测方法包括:
对批量骨质疏松患者的个性化因素数据和骨密度数据进行多元回归分析,建立骨密度变化与个性化因素之间的多元回归方程;
建立各个骨质疏松患者的腰椎有限元模型,所述腰椎有限元模型的材料特性根据骨质疏松患者的骨密度进行设置;
仿真分析各个腰椎有限元模型在若干日常场景下受力时的生物力学变化,获得各个腰椎有限元模型中椎体松质骨单元微应变超过阈值的比例;
根据椎体松质骨单元微应变超过阈值的比例、各个腰椎有限元模型对应的骨密度进行相关性分析,获得骨质疏松骨折风险预测方程;
根据待预测对象的个性化因素数据、所述多元回归方程和所述骨质疏松骨折风险预测方程得到待预测骨质疏松患者的骨折风险预测结果。
2.根据权利要求1所述的骨质疏松患者骨折风险的预测方法,其特征在于,所述个性化因素数据至少包括性别、年龄、体重、身高、运动数据和吸烟数据。
3.根据权利要求2所述的骨质疏松患者骨折风险的预测方法,其特征在于,建立骨质疏松患者的腰椎有限元模型的方法为:
采集骨质疏松患者第一腰椎和第二腰椎的骨密度,构建第一腰椎至第二腰椎的三维网格模型;
将所述第一腰椎和第二腰椎的骨密度的平均值、所述三维网格模型输入到有限元仿真分析软件,构建得到腰椎有限元模型。
4.根据权利要求3所述的骨质疏松患者骨折风险的预测方法,其特征在于,所述阈值为5000με,椎体松质骨单元微应变超过阈值的比例为:微应变超过阈值的松质骨单元的数量与椎体的松质骨单元总量的比值。
5.根据权利要求1所述的骨质疏松患者骨折风险的预测方法,其特征在于,根据待预测对象的个性化数据、所述多元回归方程和所述骨质疏松骨折风险预测方程得到待预测骨质疏松患者的骨折风险预测结果的方法包括:
将待预测对象的个性化因素数据代入到已构建的所述多元回归方程中,得到骨密度预测值;
将所述骨密度预测值代入到已构建的所述骨质疏松骨折风险预测方程中,得到待预测对象的骨折风险预测结果。
6.根据权利要求5所述的骨质疏松患者骨折风险的预测方法,其特征在于,所述骨折风险预测结果为骨折风险等级。
7.一种骨质疏松患者骨折风险的预测装置,其特征在于,所述预测装置包括:
骨密度分析单元,用于对批量骨质疏松患者的个性化因素数据和骨密度数据进行多元回归分析,得到骨密度与个性化因素之间的多元回归方程;
模型构建单元,用于建立各个骨质疏松患者的腰椎有限元模型,所述腰椎有限元模型的材料特性根据骨质疏松患者的骨密度进行设置;
仿真模拟单元,用于仿真分析各个腰椎有限元模型在若干日常场景下受力时的生物力学变化,获得各个腰椎有限元模型中椎体松质骨单元微应变超过阈值的比例;
风险分析单元,用于根据椎体松质骨单元微应变超过阈值的比例、各个腰椎有限元模型对应的骨密度进行相关性分析,构建骨质疏松骨折风险预测方程;
风险预测单元,用于根据待预测对象的个性化因素数据、所述多元回归方程和所述骨质疏松骨折风险预测方程得到待预测骨质疏松患者的骨折风险预测结果。
8.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有骨质疏松患者骨折风险的预测程序,所述骨质疏松患者骨折风险的预测程序被处理器执行时实现权利要求1至6任一项所述的骨质疏松患者骨折风险的预测方法。
9.一种计算机设备,其特征在于,所述计算机设备包括计算机可读存储介质、处理器和存储在所述计算机可读存储介质中的骨质疏松患者骨折风险的预测程序,所述骨质疏松患者骨折风险的预测程序被处理器执行时实现权利要求1至6任一项所述的骨质疏松患者骨折风险的预测方法。
CN202210368145.1A 2022-04-08 2022-04-08 骨质疏松患者骨折风险的预测方法及预测装置 Pending CN116936088A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210368145.1A CN116936088A (zh) 2022-04-08 2022-04-08 骨质疏松患者骨折风险的预测方法及预测装置
PCT/CN2022/137713 WO2023193462A1 (zh) 2022-04-08 2022-12-08 骨质疏松患者骨折风险的预测方法及预测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210368145.1A CN116936088A (zh) 2022-04-08 2022-04-08 骨质疏松患者骨折风险的预测方法及预测装置

Publications (1)

Publication Number Publication Date
CN116936088A true CN116936088A (zh) 2023-10-24

Family

ID=88243918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210368145.1A Pending CN116936088A (zh) 2022-04-08 2022-04-08 骨质疏松患者骨折风险的预测方法及预测装置

Country Status (2)

Country Link
CN (1) CN116936088A (zh)
WO (1) WO2023193462A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118153406A (zh) * 2024-05-13 2024-06-07 中国人民解放军总医院第四医学中心 一种基于有限元的骨科内植物松动预测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172695A (en) * 1990-09-10 1992-12-22 Cann Christopher E Method for improved prediction of bone fracture risk using bone mineral density in structural analysis
CN108305687A (zh) * 2017-12-21 2018-07-20 南京航空航天大学 一种快速诊断骨质疏松患者椎体承载能力的系统和方法
CN109256212A (zh) * 2018-08-17 2019-01-22 上海米因医疗器械科技有限公司 骨健康评估模型构建方法、装置、设备、介质及评估方法
CN113921140A (zh) * 2021-11-19 2022-01-11 中国中医科学院西苑医院 一种绝经后女性骨质疏松风险列线图预测系统及预测方法
CN114240848A (zh) * 2021-11-24 2022-03-25 慧影医疗科技(北京)股份有限公司 一种骨密度测量方法、系统、存储介质及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118153406A (zh) * 2024-05-13 2024-06-07 中国人民解放军总医院第四医学中心 一种基于有限元的骨科内植物松动预测方法

Also Published As

Publication number Publication date
WO2023193462A1 (zh) 2023-10-12

Similar Documents

Publication Publication Date Title
Johannesdottir et al. Comparison of non-invasive assessments of strength of the proximal femur
Giambini et al. The effect of quantitative computed tomography acquisition protocols on bone mineral density estimation
NL1024869C2 (nl) Werkwijze en systeem voor het meten van voor ziekte relevante weefselveranderingen.
Ahlowalia et al. Accuracy of CBCT for volumetric measurement of simulated periapical lesions
Manske et al. Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction
Nishiyama et al. Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis
Hussein et al. The effect of intravertebral heterogeneity in microstructure on vertebral strength and failure patterns
Packard et al. Effect of slice thickness on detectability in breast CT using a prewhitened matched filter and simulated mass lesions
EP3629902B1 (en) Systems and methods for patient specific modeling of the mechanical properties of bone
CA3141427A1 (en) Approximating bone mineral density and fracture risk using single energy x-rays
Komeili et al. Correlation between a novel surface topography asymmetry analysis and radiographic data in scoliosis
Kroker et al. Distal skeletal tibia assessed by HR-pQCT is highly correlated with femoral and lumbar vertebra failure loads
Anitha et al. Effects of dose reduction on bone strength prediction using finite element analysis
Klintström et al. Photon-counting detector CT and energy-integrating detector CT for trabecular bone microstructure analysis of cubic specimens from human radius
US7387439B2 (en) X-ray beam calibration for bone mineral density assessment using mammography system
Guha et al. Finite element analysis of trabecular bone microstructure using CT imaging and continuum mechanical modeling
Barkaoui et al. Review on the use of medical imaging in orthopedic biomechanics: finite element studies
JP2023087677A (ja) 被曝線量管理装置、被曝線量管理方法及び記憶媒体
CN116936088A (zh) 骨质疏松患者骨折风险的预测方法及预测装置
Czyz et al. The computed tomography-based fractal analysis of trabecular bone structure may help in detecting decreased quality of bone before urgent spinal procedures
CN113658706B (zh) 一种骨强度模拟计算方法、装置及存储介质
Piccinini et al. Factors affecting subject-specific finite element models of implant-fitted rat bone specimens: critical analysis of a technical protocol
Ikuta et al. Quantitative analysis using the star volume method applied to skeleton patterns extracted with a morphological filter
Yi et al. Comparison of trabecular bone anisotropies based on fractal dimensions and mean intercept length determined by principal axes of inertia
Dhandapany et al. Artificial neural network as a predictive tool for gender determination using volumetric and linear measurements of maxillary sinus CBCT: An observational study on South Indian population

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination