CN116931299A - 基于亚波长光栅的非易失波导移相器 - Google Patents

基于亚波长光栅的非易失波导移相器 Download PDF

Info

Publication number
CN116931299A
CN116931299A CN202310765930.5A CN202310765930A CN116931299A CN 116931299 A CN116931299 A CN 116931299A CN 202310765930 A CN202310765930 A CN 202310765930A CN 116931299 A CN116931299 A CN 116931299A
Authority
CN
China
Prior art keywords
waveguide
silicon
phase
change material
volatile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310765930.5A
Other languages
English (en)
Inventor
周林杰
刘世昌
杨星
陆梁军
李�雨
陈建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202310765930.5A priority Critical patent/CN116931299A/zh
Publication of CN116931299A publication Critical patent/CN116931299A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • G02F1/0113Glass-based, e.g. silica-based, optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0338Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect structurally associated with a photoconductive layer or having photo-refractive properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12038Glass (SiO2 based materials)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12097Ridge, rib or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12152Mode converter

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种基于亚波长光栅的非易失波导移相器,包括基层,以及固定在该基层上的异质集成波导结构和硅波导模斑转换结构,异质集成波导结构的两端对称连接所述的硅波导模斑转换结构。本发明具有结构紧凑、插入损耗低、驱动电压小、相变功耗低、相位调节非易失等优点,通过将相变材料分块形成亚波长光栅结构获得更高的可重构次数,可以作为集成光电子芯片中的核心光路调控器件。

Description

基于亚波长光栅的非易失波导移相器
技术领域
本发明涉及移相器,特别是一种基于亚波长光栅的硅-相变材料异质集成波导结构的非易失波导移相器。
背景技术
通常情况下,硅基光电子集成器件通过热光效应或者载流子色散效应调节硅材料的折射率。但热光效应的响应速度比较慢,通常在微秒量级;载流子色散效应虽然响应时间快,但是其折射率的调节范围有限,通常在10-3量级,需要毫米量级的波导长度以达到传输光π相位的变化,导致硅基高速调制器和光开关的大尺寸和高功耗。虽然采用高Q值谐振腔结构可以减少器件尺寸,但其工作带宽窄,器件性能对环境的变化敏感。因此将折射率变化显著、响应速度快、具有非易失性且低损耗的相变材料与硅异质集成,可以进一步减小硅移相器尺寸和功耗。
低损耗相变材料(包括硒化锑、硫化锑、锗锑硒碲等)作为一类新兴的且具有良好的光学特性的材料,受到了广泛的关注与研究。相变材料具有非晶态-晶态可逆相变的特性,即随着温度的升高和降低,在相变温度附近发生非晶态和晶态之间的可逆转变,且在转变后具有非易失性的特点,同时相变材料的折射率等光学性质也随相变发生急剧的变化。可以通过光、电、热诱导相变材料在非晶态和晶态之间实现可逆转换,如在片外进行激光直写或者片上进行电加热。相变材料由晶态转变到非晶态的时间在几十到几百纳秒量级,而由非晶态到晶态的转化时间在微秒到几十微秒量级,可实现对折射率的快速调制。值得注意的是,相变材料在非晶态-晶态之间的转变在1550nm光通信波段具有较大的折射率变化。以硒化锑为例,其材料折射率变化在1550nm波长处高达~0.8。综上而言,相变材料作为新型材料在光通信领域已经引起了越来越多关注。
尽管相变材料具有上述优势且已在硅光集成领域得到了广泛的研究,但其较低的可重构次数限制了其在硅光集成领域中的进一步应用,因此如何提升相变材料的可重构次数就成为了接下来研究的重点。
在先专利文献CN116243423A公开了一种硅-相变材料异质集成波导结构及非易失波导移相器,通过采用低损耗相变材料与硅波导结合组成异质集成波导,利用相变材料在非晶态和晶态之间可逆转换的特性,实现了对波导有效折射率的高效调节,从而实现微米量级超小型移相器。但是采用一整块相变薄膜材料放置于波导上,由于相变时候材料有收缩,会导致出现形状上的变化,在相变薄膜中产生大量空洞以及相变材料和硅表面分离的现象,这会大大影响相变特性和相变的重复次数。
发明内容
本发明主要针对现有硅-相变材料异质集成器件可重构次数较低的问题,提出一种基于亚波长光栅的硅-相变材料异质集成波导结构的非易失波导移相器。
本发明的解决方案如下:
一种基于亚波长光栅的非易失波导移相器,包括基层以及固定在该基层上的异质集成波导结构和硅波导模斑转换结构,所述的异质集成波导结构的两端对称连接所述的硅波导模斑转换结构,所述的硅波导模斑转换结构由硅波导平板和脊形波导构成;所述的基层由硅衬底和附着在该硅衬底上的二氧化硅下包层构成,其特点在于,所述的异质集成波导结构包括在所述的二氧化硅下包层上固定的硅波导以及沉积在该硅波导上的相变材料,所述的相变材料采用周期性的亚波长光栅分块结构,周期为200~1200nm,占空比为50%~90%;氧化铝薄膜覆盖在每块亚波长光栅分块结构的上方,在所述的氧化铝薄膜上方是单层石墨烯,该单层石墨烯上方是金属层的二个金属电极。
所述的硅波导可以是条形波导、脊形波导或平板波导,所述的条形波导的厚度为220~340nm;所述的脊形波导的平板层厚度为70~150nm,其脊波导层厚度为150~70nm;所述的平板波导的厚度为40~150nm;所述的相变材料的厚度为20~80nm。
所述的硅波导若为条形波导,则有源区采用石墨烯微加热器,石墨烯微加热器利用电流通过所述的石墨烯时产生的焦耳热加热所述的相变材料;所述的硅波导若为脊形波导,则有源区除了可以采用石墨烯微加热器外,也可以采用PIN结构或掺杂硅结构,所述的PIN结构或掺杂硅结构是利用电流从重掺杂区流经硅波导区域时产生的焦耳热对相变材料实现加热;所述的硅波导若为平板波导,则有源区可以采用石墨烯微加热器、PIN结构或掺杂硅结构。
所述的相变材料为硒化锑、硫化锑或锗锑硒碲。
所述的相变材料的单元的结构可为矩形结构、圆形结构或椭圆形结构。
所述的硅波导平板和脊形波导的宽度是线性、双曲型或者其他缓变曲线形状,使传输光在硅波导中的模场分布与异质集成波导的模场分布逐渐匹配,从而实现两种结构间的高效耦合。
所述的硅波导平板的厚度为70~150nm,所述的脊形波导的厚度为70~150nm。
所述的单层石墨烯与金属电极形成欧姆接触,电流流过单层石墨烯产生热量,经下方的氧化铝薄膜进行传导,提供低损耗的相变材料相变所需的热量。
所述的氧化铝薄膜的厚度为40~120nm,所述的金属层的厚度为50~300nm。
所述金属电极的材料为金、铝、铜或铂。
与现有技术相比,本发明具有如下优点:
对相变材料进行分块处理,使硅-相变材料异质集成波导构成亚波长光栅,以较低的额外损耗获得了更高的可重构次数。相比传统的硅基-相变材料异质集成移相器,本发明移相器引入亚波长光栅的设计,把相变材料沿波导方向分为不连续的周期性结构,其周期为200~1200nm,相比材料占空比为50%~90%。由于相变材料分块后,每块都是很小的纳米尺度结构,被氧化铝薄膜分区紧紧包覆,相变过程不会出现相变材料和硅波导表面脱离的问题以及大面积空洞的问题。这样可以提高相变材料在相变过程中的稳定性和可重复性,增加相变循环能力,提升硅-相变材料异质集成移相器的可重构次数,可以作为集成光电子芯片中的核心光路调控器件。
附图说明
图1为本发明基于亚波长光栅的硅-低损耗相变材料异质集成的非易失波导移相器的平面俯视结构示意图,其中3(4)表示在氧化铝薄膜3上方的是单层石墨烯4。
图2为本发明基于亚波长光栅的硅-低损耗相变材料异质集成的非易失波导移相器的相位调制区域的AA'截面结构示意图。
图3为本发明基于亚波长光栅的硅-低损耗相变材料异质集成的非易失波导移相器的相变材料单元之间的BB'截面结构示意图。
图4为本发明基于亚波长光栅的硅-低损耗相变材料异质集成非易失波导移相器的两侧硅波导模斑转换结构区域的CC'(DD')截面结构示意图。
图5为在1550nm的工作波长下,实施例中硅和硒化锑异质集成波导内含相变材料区域的电场强度归一化分布图,其中(a)为硒化锑处于非晶态时波导截面的电场分布,(b)为硒化锑处于晶态时波导截面的电场分布,(c)为硒化锑处于非晶态时沿波导纵向中线电场分布,(d)为硒化锑处于晶态时沿波导纵向中线电场分布。
图6为在1550nm的工作波长下,实施例沿光传输方向平面上的电场强度归一化分布图,其中(a)为硒化锑处于非晶态,(b)为硒化锑处于晶态。
图7为在1500nm-1600nm的波长范围内,实施例的传输损耗扫描结果,其中(a)为硒化锑处于非晶态,(b)为硒化锑处于晶态。
图8为本发明采用周期性圆形结构相变材料单元的平面俯视结构示意图。
图9为本发明采用周期性椭圆形结构相变材料单元的平面俯视结构示意图。
图10为本发明采用PIN加热的平面俯视结构和截面结构示意图。
图11为本发明采用掺杂硅加热的平面俯视结构和截面结构示意图。
具体实施方式
下面结合附图和实施例对本发明作详细说明。本实施例以本发明的技术方案为前提进行实施,给出了详细的实施方式和操作过程,但本发明的保护范围不限于下述的实施例。
图1、图2和图3为本发明基于亚波长光栅的硅-低损耗相变材料异质集成非易失波导移相器的平面俯视结构示意图和截面结构示意图,图4为两侧硅波导模斑转换器的截面结构示意图。由图可见,本发明基于亚波长光栅的硅-相变材料异质集成的非易失波导移相器,包括基层以及固定在该基层上的异质集成波导结构和硅波导模斑转换结构,所述的异质集成波导结构的两端对称连接所述的硅波导模斑转换结构,所述的硅波导模斑转换结构由硅波导平板10和脊形波导9构成;所述的基层由硅衬底8和附着在该硅衬底8上的二氧化硅下包层7构成,所述的异质集成波导结构包括在所述的二氧化硅下包层7上固定的是硅波导1以及沉积在该硅波导1上的相变材料2,氧化铝薄膜3覆盖在所述的相变材料2的上方,在所述的氧化铝薄膜3上方是单层石墨烯4,该单层石墨烯4上方是金属层的二个金属电极5、6。
所述的硅波导1若为条形波导,则有源区的设计可以采用石墨烯微加热器,石墨烯微加热器利用电流通过石墨烯时产生的焦耳热加热相变材料;所述的硅波导1若为脊形波导,则有源区的设计除了可以采用石墨烯微加热器外,也可以采用PIN结构(参见图10),或者是掺杂硅结构(参见图11),PIN结构和掺杂硅结构利用电流从重掺杂区流经波导区域时产生的焦耳热对相变材料实现加热;所述的硅波导1若为平板波导,则有源区的设计除了可以采用石墨烯微加热器外,也可以采用PIN结构,或者是掺杂硅结构。
所述的相变材料2采用周期性的分块结构,其周期为200~1200nm,占空比为50%~90%,对于每个相变材料单元,其结构特征包括但不限于矩形结构,圆形结构(参见图8)或椭圆形结构(参见图9)。
所述的硅波导模斑转换结构,包括呈轴对称设置的两个由窄变宽的硅波导平板10,以及设置在该两个硅波导平板10上方的由宽变窄的脊形波导9;氧化铝薄膜3覆盖在相变材料2的上方,在所述的氧化铝薄膜3上方的是单层石墨烯4,该单层石墨烯4上方是金属层,所述的金属层包括二个金属电极。
所述的硅波导平板10和脊形波导9的宽度是线性、双曲型或者其他缓变曲线形状,使传输光在硅波导中的模场分布与异质集成波导的模场分布逐渐匹配,从而实现两种结构间的高效耦合。
所述的硅波导平板10的厚度为70~150nm,脊形波导9的厚度为70~150nm。
所述的单层石墨烯4与金属电极5、6形成欧姆接触,电流流过单层石墨烯4产生热量,经下方的氧化铝薄膜3进行传导,提供低损耗相变材料2相变所需的热量。
所述的氧化铝薄膜3的厚度为40~120nm,所述的金属层的厚度为50~300nm。
单模硅波导通过硅波导模斑转换结构与异质集成波导相连接(如图1)。当入射的横向电场TE模式经过宽度由宽变窄的硅脊形层时,其模场会逐渐向下方宽度由窄变宽的硅平板层扩散。平板层和脊波导层宽度变化可以是线性、双曲型或者其他缓变曲线类型,使传输光在硅波导中的模场分布与异质集成波导的模场分布逐渐匹配,从而实现两种结构间的高效耦合。异质集成波导中,光模场能量部分分布在低损耗相变材料中,从而利用异质波导有效折射率的变化实现对光场相位的调节。
所述的相变材料包括但不限于硒化锑、硫化锑、锗锑硒碲,金属电极的材料包括但不限于金、铝、铜、铂。
实施例
本基于亚波长光栅的硅-低损耗相变材料异质集成非易失波导移相器实施例,自下而上依次是硅衬底8,二氧化硅下包层7,硅平板层硅波导1,周期性分布的低损耗相变材料硒化锑2,氧化铝薄膜3,单层石墨烯4和金属层。所述的金属层包括二个金属电极5、6,所述的硅平板层硅波导1和低损耗硒化锑相变材料2构成异质集成波导。
实施例中,二氧化硅下包层7的厚度为2μm,硅平板层1的厚度为70nm,周期性分布的低损耗相变材料为硒化锑2,厚度为40nm,周期为300nm,占空比为60%,氧化铝薄膜3的厚度为80nm,采用的是单层石墨烯4以获得较低的光学损耗,所述的金属电极5、6的材料为金,厚度为100nm,对于与异质波导相连接的硅波导模斑转换结构,硅平板层10的厚度为70nm,硅脊形层9的厚度为150nm。
在外加电压作用下,硒化锑2发生非晶态到晶态的可逆相变,由于非晶态和晶态的折射率差值大,即便周期性分布的相变材料2的占空比为60%,也只需采用长度为~8.7μm的异质集成波导即可实现传输光π相移,获得高效相位调制。
实验表明,本发明具有结构紧凑、插入损耗低、驱动电压小、相变功耗低、相位调节非易失等优点,通过将相变材料分块形成亚波长光栅结构获得更高的可重构次数,可以作为集成光电子芯片中的核心光路调控器件。
上述实施例的制备可采用但不限于下述流程:首先,对绝缘体上硅基片进行清洗;之后进行电子束光刻,包括光刻胶的旋涂、电子束曝光以及显影定影等过程;在完成电子束光刻之后,需要进行电感耦合等离子体刻蚀以得到所需的硅波导结构;对于相变材料,也需要先进行电子束光刻,而后可采用多靶磁控溅射镀膜系统对相变材料进行溅射沉积操作,然后进行剥离工艺以完成图案化;此后对氧化铝薄膜层进行电子束光刻,并利用等离子体增强原子层沉积设备沉积氧化铝薄膜,沉积完成后进行剥离工艺完成图案化;石墨烯需要经过湿法转移到已完成氧化铝薄膜沉积的基片上,然后利用电子束光刻和氧等离子体刻蚀工艺完成图案化;最后,对金属层进行电子束光刻,通过电子束蒸发进行金属材料的沉积,并利用剥离工艺完成图案化。
图5为硒化锑在非晶态和晶态两种状态下时异质集成波导含相变材料区域内TE0模式在1550nm波长处的归一化电场强度分布图。图6为硒化锑在非晶态和晶态两种状态下,实施例沿光传输方向平面上的归一化电场强度分布图。硒化锑材料在从非晶态到晶态相变时折射率可从3.29+0i变化到4.05+0i,变化量比硅的载流子色散效应高2~3个数量级。相应的,可以得到异质集成波导的有效折射率的改变,仿真计算得到波导的有效折射率实部变化为0.155。
图7分别为硒化锑处于非晶态和晶态时器件在1500nm-1600nm波长范围内的传输损耗扫描结果。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种基于亚波长光栅的非易失波导移相器,包括基层以及固定在该基层上的异质集成波导结构和硅波导模斑转换结构,所述的异质集成波导结构的两端对称连接所述的硅波导模斑转换结构,所述的硅波导模斑转换结构由硅波导平板(10)和脊形波导(9)构成;所述的基层由硅衬底(8)和附着在该硅衬底(8)上的二氧化硅下包层(7)构成,其特征在于,所述的异质集成波导结构包括在所述的二氧化硅下包层(7)上固定的硅波导(1)以及沉积在该硅波导(1)上的相变材料(2),所述的相变材料(2)采用周期性的亚波长光栅分块结构,周期为200~1200nm,占空比为50%~90%;氧化铝薄膜(3)覆盖在每块亚波长光栅分块结构的上方,在所述的氧化铝薄膜(3)上方是单层石墨烯(4),该单层石墨烯(4)上方是金属层的二个金属电极(5、6)。
2.根据权利要求1所述的非易失波导移相器,其特征在于,所述的亚波长光栅分块结构为矩形结构、圆形结构或椭圆形结构。
3.根据权利要求1或2所述的非易失波导移相器,其特征在于,所述的相变材料(2)为硒化锑、硫化锑或锗锑硒碲。
4.根据权利要求1或2所述的非易失波导移相器,其特征在于,所述的硅波导(1)是条形波导、脊形波导或平板波导,所述的条形波导的厚度为220~340nm;所述的脊形波导的平板层厚度为70~150nm,其脊波导层厚度为150~70nm;所述的平板波导的厚度为40~150nm;所述的相变材料(2)的厚度为20~80nm。
5.根据权利要求4所述的非易失波导移相器,其特征在于,所述的硅波导(1)若为条形波导,则有源区采用石墨烯微加热器,石墨烯微加热器利用电流通过所述的石墨烯(4)时产生的焦耳热加热所述的相变材料(2);
所述的硅波导(1)若为脊形波导,则有源区采用石墨烯微加热器,或者,采用PIN结构或掺杂硅结构,所述的PIN结构或掺杂硅结构是利用电流从重掺杂区流经硅波导(1)区域时产生的焦耳热对相变材料实现加热;
所述的硅波导(1)若为平板波导,则有源区可以采用石墨烯微加热器、PIN结构或掺杂硅结构。
6.根据权利要求1或2所述的非易失波导移相器,其特征在于,所述的硅波导平板(10)和脊形波导(9)的宽度是线性、双曲型或者其他缓变曲线形状,使传输光在硅波导中的模场分布与异质集成波导的模场分布逐渐匹配,从而实现两种结构间的高效耦合。
7.根据权利要求1或2所述的非易失波导移相器,其特征在于,所述的硅波导平板(10)的厚度为70~150nm,所述的脊形波导(9)的厚度为70~150nm。
8.根据权利要求1或2所述的非易失波导移相器,其特征在于,所述的单层石墨烯(4)与金属电极(5、6)形成欧姆接触,电流流过单层石墨烯(4)产生热量,经下方的氧化铝薄膜(3)进行传导,提供低损耗的相变材料(2)相变所需的热量。
9.根据权利要求1或2所述的非易失波导移相器,其特征在于,所述的氧化铝薄膜(3)的厚度为40~120nm,所述的金属层的厚度为50~300nm。
10.根据权利要求1至9任一项所述的非易失波导移相器,其特征在于,所述金属电极(5、6)的材料为金、铝、铜或铂。
CN202310765930.5A 2023-06-27 2023-06-27 基于亚波长光栅的非易失波导移相器 Pending CN116931299A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310765930.5A CN116931299A (zh) 2023-06-27 2023-06-27 基于亚波长光栅的非易失波导移相器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310765930.5A CN116931299A (zh) 2023-06-27 2023-06-27 基于亚波长光栅的非易失波导移相器

Publications (1)

Publication Number Publication Date
CN116931299A true CN116931299A (zh) 2023-10-24

Family

ID=88391686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310765930.5A Pending CN116931299A (zh) 2023-06-27 2023-06-27 基于亚波长光栅的非易失波导移相器

Country Status (1)

Country Link
CN (1) CN116931299A (zh)

Similar Documents

Publication Publication Date Title
Fang et al. Non-volatile reconfigurable silicon photonics based on phase-change materials
Emboras et al. Electrically controlled plasmonic switches and modulators
KR100888297B1 (ko) 파장가변 필터
US20230221490A1 (en) Optical waveguide and devices
CN113376870B (zh) 一种基于相变材料的空间光型电光调制器件及其制造方法
JP2013200492A (ja) アサーマル・リング光変調器
Ríos et al. Reversible switching of optical phase change materials using graphene microheaters
CN113267907A (zh) 一种基于相变材料GemSbnTek的石墨烯辅助驱动微环光开关
JP6606631B6 (ja) 光変調器
CN111175894B (zh) 一种基于低折射率聚合物光子晶体微腔的电光调制器
CN113933931A (zh) 一种基于二氧化钒纳米线的环形腔光调制器
CN114371532A (zh) 一种基于相变材料的分支波导交互调控超快全光开关
CN102124395A (zh) 基于表面等离子体激元的光调制器
CN116931299A (zh) 基于亚波长光栅的非易失波导移相器
CN115421246B (zh) 一种基于soi上gst纳米点的强度调制器
Yan et al. Efficient thermal tuning employing metallic microheater with slow-light effect
CN115308847B (zh) 一种基于相变材料的双模干涉2×2光波导开关
CN116243423A (zh) 硅-相变材料异质集成波导结构、非易失波导移相器
Li et al. Low-crosstalk, low-power Mach-Zehnder interferometer optical switch based on III-V/Si hybrid MOS phase shifter
CN112820827A (zh) 一种相变器件及其制备方法、光激励调制方法、电激励调制方法
Shadmani et al. Design and simulation of dual polarization GST-on-silicon nitride optical modulator
CN116300242B (zh) 一种基于低损耗相变材料的微环光波导开关及其制备方法
Yin et al. Low power consumption polymer/silica hybrid thermo-optic switch based on racetrack resonator
Zhou et al. Non-volatile silicon photonic devices enabled by phase change material
CN118068599A (zh) 一种电场调控型硅基微环开关及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination