CN116924330A - 一种纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用 - Google Patents

一种纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用 Download PDF

Info

Publication number
CN116924330A
CN116924330A CN202310859099.XA CN202310859099A CN116924330A CN 116924330 A CN116924330 A CN 116924330A CN 202310859099 A CN202310859099 A CN 202310859099A CN 116924330 A CN116924330 A CN 116924330A
Authority
CN
China
Prior art keywords
hydrocarbon fuel
aqueous emulsion
catalytic reforming
catalyst
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310859099.XA
Other languages
English (en)
Inventor
糜基
邵崇坤
方文军
王培伦
郭永胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202310859099.XA priority Critical patent/CN116924330A/zh
Publication of CN116924330A publication Critical patent/CN116924330A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用,向碳氢燃料中加入纳米催化剂和表面活性剂,混合形成稳定的单相含水乳状碳氢燃料,加热发生原位催化重整反应,所述纳米催化剂为金属氧化物负载贵金属催化剂。本发明可以降低催化重整的应用难度、简化换热系统、提高反应效率和燃料热沉以及提升催化重整的效果。

Description

一种纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用
技术领域
本发明涉及燃油催化重整、催化裂解技术领域,具体涉及一种纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用。
背景技术
碳氢燃料可作为冷却剂,流经飞行器表面的换热通道,参与高超声速飞行器的主动冷却过程,降低飞行器因空气高速摩擦而导致的过热风险。学界通常使用热沉(单位质量碳氢燃料从室温基准态升至指定温度吸收的能量,MJ/kg)定量评估燃料的冷却能力。吸热冷却过程中,碳氢燃料会升温发生裂解,裂解反应会产生结焦并堵塞管路。受结焦的限制,现有碳氢燃料的热沉通常不足以冷却高温部件。
催化重整反应是指在水存在的情况下,焦炭及碳氢化合物在催化剂表面发生化学反应并生成H2、CO、CO2和CH4等小分子产物的过程。该反应是强吸热的化学反应,在将焦炭和芳香烃等不利于换热和燃烧的物质转化为热值更高小分子化合物的同时,可大幅提升燃料的热沉。
如申请号为CN201210010298.5公开了一种液态碳氢燃料催化重整冷却高温部件的方法,但其重整使用的催化剂涂布在换热器内表面。但高超声速飞行器中燃料流速极快,非均相催化剂空速较低,难以与燃料充分反应,效果大幅受限。此外,催化剂材料和金属部件基底间存在热膨胀率差异,在高温、高压、高流速碳氢燃料的冲刷下,存在高温剥落失效的问题。另外,该专利公开的重整技术方案须将互不相容的水和碳氢燃料以两相的形式输送入换热器中,需要使用专用的掺混、预热装置。
以及申请号为CN202010628155.5和CN202021266529.5分别公开了一种涡轮叶片蒸汽重整反应冷却系统及采用其的燃气轮机和一类利用蒸汽重整反应的燃气轮机涡轮叶片冷却系统和方法及燃气轮机。上述专利将催化剂涂布在换热器内表面,利用碳氢燃料和水在涡轮叶片的冷却通道内进行反应吸热,提升涡轮叶片的冷却效果。同样存在燃料由于流速较快难以充分反应、催化剂容易高温剥落失效以及需要使用预混装置的问题。
因此,如何简化碳氢燃料的重整工艺,提升重整吸热冷却飞行器的效果是目前本领域的研究热点。
发明内容
本发明的目的是提供一种纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用,可以降低催化重整的应用难度、简化换热系统、提高反应效率和燃料热沉以及提升催化重整的效果。
本发明目的通过如下技术方案实现:
一种纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用,将纳米催化剂和表面活性剂分散在水中后,与碳氢燃料直接混合,形成稳定的单相含水乳状碳氢燃料,加热发生原位催化重整反应,所述纳米催化剂为金属氧化物负载贵金属催化剂。
在本发明提供的应用中,纳米催化剂以拟均相形式均匀分散在含水乳状碳氢燃料中,含水乳状碳氢燃料随着受热在催化剂的作用下发生强吸热的催化重整反应,冷却换热系统:
CxHy+xH2O→xCO+(y/2+x)H2
其中,CxHy代表碳氢燃料中的烃分子,x和y的取值范围分别是1-20和4-44。
所述纳米催化剂以TiO2、SiO2或CeO2金属氧化物为基底,负载Pt、Rh、Pd、Cr、Fe或Ni中的一种或多种纳米颗粒的复合材料。
所述纳米催化剂的制备方法为:
(1)利用金属盐水解或酯化物热解制备纳米金属氧化物载体:将5-20%硝酸钛、硅酸乙酯或硝酸铈、10-30%乙醇和50-85%水的混合溶液加热至70-150℃连续搅拌回流,滴加过氧化氢并反应3-5小时,得到纳米金属氧化物载体溶液;
(2)利用浸渍-还原法制备负载催化活性金属的纳米复合材料:向纳米金属氧化物载体溶液中加入0.5-1%的氯铂酸钾、或氯铑酸钾、氯钯酸钾、硝酸镍、氯化铬、氯化亚铁的水溶液,混合后滴加5-10%的硼氢化钠水溶液,加热反应后蒸干得到纳米催化剂。
所述表面活性剂选自司班80、吐温80、十六烷基三甲基溴化铵、十二烷基硫酸钠或十二烷基苯磺酸钠中的一种或多种。
所述单相含水乳状碳氢燃料中含水乳状碳氢燃料中纳米催化剂的质量百分比为0.01-0.1%、水的质量百分比为5-30%、表面活性剂的质量百分比为0.05-0.3%(依含水量的1%使用以实现充分乳化)、碳氢燃料余量。
所述的乳状碳氢燃料为使用表面活性剂乳化的含水航空煤油。
作为优选,所述的纳米催化剂为负载Pt、Ni、Rh或Pd的CeO2催化剂;表面活性剂为司班80;含水乳状碳氢燃料中纳米催化剂的质量百分比为0.01-0.03%,表面活性剂的质量百分比为0.1-0.2%,含水乳状碳氢燃料中水的质量百分比为10-20%;所述的碳氢燃料为航空煤油。通过限定上述工艺条件,可以进一步提高反应效率和燃料热沉。
进一步地,作为优选,所述的纳米催化剂为负载Pt的CeO2催化剂;表面活性剂为司班80;含水乳状碳氢燃料中纳米催化剂的质量百分比为0.01-0.03%,表面活性剂的质量百分比为0.1-0.2%,含水乳状碳氢燃料中水的质量百分比为10%;所述的碳氢燃料为航空煤油。通过限定上述工艺条件,可以进一步提高反应效率和燃料热沉。
进一步地,作为优选,所述的纳米催化剂为负载Pt的CeO2催化剂,含水乳状碳氢燃料中纳米催化剂的质量百分比为0.01%,表面活性剂的质量百分比为0.1%,含水乳状碳氢燃料中水的质量百分比为10%;所述的碳氢燃料为航空煤油。
与现有技术相比,本发明提供的应用,或称之为应用方法,具有以下优点和突出性效果:①催化剂以拟均相形式均匀分散在含水乳状碳氢燃料中,使用时以添加剂形式加入搅拌即可,不需要在管壁涂布催化剂,大幅降低应用难度;②含有催化剂的含水乳状碳氢燃料使用表面活性剂稳定为一相,可直接输送入换热器中进行重整,不需要在线乳化机和掺混预热装置,可简化换热系统;③催化剂以拟均相形式均匀分散在含水乳状碳氢燃料中,催化反应不局限于反应器表面,可在含水的乳状碳氢燃料内部发生,大幅提高反应效率和燃料热沉;④拟均相纳米催化剂随燃料流动,理论上不受催化剂空速(处理量)的限制,可显著提升催化重整的效果。
附图说明
图1为实施例1制备的纳米氧化物载体的透射电子显微镜图;
图2为实施例2制备的纳米催化剂的透射电子显微镜图;
图3为实施例3制备的纳米催化剂的透射电子显微镜图;
图4为使用本发明方案与传统催化重整冷却工艺的对比示意图。
具体实施方式
以下应用例可以使本专业人员更全面理解本发明,但不以任何方式限制本发明。
实施例1CeO2纳米催化剂载体的制备
将5%硝酸铈、10%乙醇和85%水的混合溶液加热至70℃连续搅拌回流30分钟后,滴加30%的过氧化氢溶液并反应3小时,得到纳米氧化物载体,使用去离子水多次洗涤后得到纳米复合材料。纳米复合材料的透射电子显微镜图像如图1所示。
实施例2负载Pt的CeO2纳米催化剂的制备
将5%硝酸铈、10%乙醇和85%水的混合溶液加热至70℃连续搅拌回流30分钟后,滴加30%的过氧化氢溶液并反应3小时,得到纳米氧化物载体。向上一步骤得到的溶液中加入0.5%的氯铂酸钾水溶液均匀混合后,逐滴滴加10%的硼氢化钠水溶液,将混合液加热至100℃连续搅拌回流3小时后蒸干,使用去离子水多次洗涤后得到纳米复合材料。纳米复合材料的透射电子显微镜图像如图2所示。
实施例3负载Ni的CeO2纳米催化剂的制备
将5%的硝酸铈、10%乙醇和85%水的混合溶液加热至150℃连续搅拌回流30分钟后,滴加30%的过氧化氢溶液并反应3小时,得到纳米氧化物载体。向上一步骤得到的溶液中加入0.5%的氯化镍水溶液均匀混合后,逐滴滴加10%的硼氢化钠水溶液,将混合液加热至100℃连续搅拌回流5小时后蒸干,使用去离子水多次洗涤后得到纳米复合材料。纳米复合材料的透射电子显微镜图像如图3所示。
实施例4负载Ni的SiO2纳米催化剂的制备
将10%的硅酸乙酯、30%乙醇和60%水的混合溶液加热至150℃连续搅拌回流30分钟后,滴加30%的过氧化氢溶液并反应3小时,得到纳米氧化物载体。向上一步骤得到的溶液中加入0.5%的氯化镍水溶液均匀混合后,逐滴滴加10%的硼氢化钠水溶液,将混合液加热至100℃连续搅拌回流5小时后蒸干,使用去离子水多次洗涤后得到纳米复合材料。
实施例5含有催化剂的含水乳状碳氢燃料的制备及其在冷却换热器中的应用
如图4所示,向含水量为5-30%的航空煤油中加入0.05-0.3%的司班80和0.01-0.1%的纳米催化剂,使用机械搅拌装置充分搅拌,形成含有催化剂的含水乳状碳氢燃料。将含水乳状碳氢燃料使用高压恒流泵,泵入高温换热器内。换热器材质为GH3128高温合金钢。在400-800℃(温度区间),压力为0-10.0MPa,流速为1m/s的条件下,乳化燃料在催化剂的作用下发生吸热的重整反应,降低换热器表面温度。
与现有技术中传统方案的重整反应相比:不需要在管壁涂布催化剂,大幅降低应用难度;含有催化剂的含水乳状碳氢燃料使用表面活性剂稳定为一相,可直接输送入换热器中进行重整,不需要在线乳化机和掺混预热装置,可简化换热系统;催化剂随流体流动,反应不限于壁面,重整效果更好。
应用例1
将含有负载Ni的SiO2纳米催化剂的乳状碳氢燃料(航空煤油90%,含水量10%,催化剂0.01%,表面活性剂0.1%),在3.5MPa,1m/s的流速下进行流动换热实验,600℃下其热沉达到1.84MJ/kg,650℃下热沉达到2.05MJ/kg,675℃下热沉达到2.56MJ/kg,700℃下热沉达到2.64MJ/kg,750℃下热沉达到3.18MJ/kg,775℃下热沉达到3.42MJ/kg。
应用例2
将含有负载Ni的CeO2纳米催化剂的乳状碳氢燃料(航空煤油90%,含水量10%,催化剂0.01%,表面活性剂0.1%),在3.5MPa,1m/s的流速下进行流动换热实验,600℃下其热沉达到1.91MJ/kg,650℃下热沉达到2.19MJ/kg,700℃下热沉达到2.80MJ/kg,725℃下热沉达到2.99MJ/kg。
应用例3
将含有负载Pt的CeO2纳米催化剂的乳状碳氢燃料(航空煤油90%,含水量10%,催化剂0.01%,表面活性剂0.2%),在3.5MPa,1m/s的流速下进行流动换热实验,600℃下其热沉达到1.90MJ/kg,650℃下热沉达到2.20MJ/kg,700℃下热沉达到2.88MJ/kg,750℃下热沉达到3.37MJ/kg,775℃下热沉达到3.51MJ/kg。
应用例4
将含有负载Pt的CeO2纳米催化剂的乳状碳氢燃料(航空煤油90%,含水量10%,催化剂0.03%,表面活性剂0.1%),在3.5MPa,1m/s的流速下进行流动换热实验,600℃下其热沉达到1.90MJ/kg,650℃下热沉达到2.28MJ/kg,700℃下热沉达到2.97MJ/kg,750℃下热沉达到3.53MJ/kg,775℃下热沉达到3.71MJ/kg。
应用例5
将含有负载Rh的TiO2纳米催化剂的乳状碳氢燃料(航空煤油80%,含水量20%,催化剂0.01%,表面活性剂0.2%),在3.0MPa,1m/s的流速下进行流动换热实验,600℃下其热沉达到1.98MJ/kg,650℃下热沉达到2.32MJ/kg,700℃下热沉达到2.89MJ/kg,725℃下热沉达到3.06MJ/kg。
应用例6
将含有负载Pd的CeO2纳米催化剂的乳状碳氢燃料(航空煤油85%,含水量15%,催化剂0.01%,表面活性剂0.15%),在3.0MPa,1m/s的流速下进行流动换热实验,600℃下其热沉达到1.91MJ/kg,650℃下热沉达到2.25MJ/kg,700℃下热沉达到2.84MJ/kg,725℃下热沉达到3.02MJ/kg。
对比例1
将不含催化剂的乳状碳氢燃料(航空煤油90%,含水量10%,表面活性剂0.1%),在3.5MPa,1m/s的流速下进行流动换热实验,600℃下其热沉达到1.80MJ/kg,650℃下热沉达到2.07MJ/kg,675℃下热沉达到2.53MJ/kg,更高温度下换热管路会发生堵塞,无法完成换热。与对比例1相比,应用例1-4中相同含水量和运行条件下的乳状碳氢燃料可以在675℃以上进行换热,且对应温度下的热沉均高于对比例,表明原位催化重整技术可以提升燃料的换热能力和换热安全性。
对比例2
将不含催化剂和水的碳氢燃料(航空煤油100%),在3.5MPa,1m/s的流速下进行流动换热实验,600℃下其热沉达到1.66MJ/kg,650℃下热沉达到2.03MJ/kg,700℃下热沉达到2.70MJ/kg,更高温度下换热管路会发生堵塞,无法完成换热。与对比例2相比,对比例1中的乳状碳氢燃料无法在675℃以上进行换热,表明不使用催化剂,只向碳氢燃料中加入水不会提升燃料的换热能力和换热安全性。
对比例3
将乳状碳氢燃料(航空煤油90%,含水量10%,表面活性剂0.1%),在3.5MPa,1m/s的流速下进行流动换热实验,催化剂为负载Ni的CeO2催化剂(Ni负载量为0.01%),催化剂使用壁面浸渍-煅烧-还原的方法固定在壁面。600℃下其热沉达到1.90MJ/kg,650℃下其热沉达到2.05MJ/kg,700℃下热沉达到2.75MJ/kg。与对比例3相比,应用例2中的乳状碳氢燃料相同温度下的热沉更高,表明将催化剂制备成纳米颗粒均匀分散在碳氢燃料中的原位催化重整技术较壁面催化剂涂布技术,可以更好地提升燃料的换热能力。
以上对本发明做了示例性的描述,值得说明的是,在不脱离本发明核心的情况下,任何简单的变形、修改(包括催化剂的添加量、乳化使用的表面活性剂种类、乳状燃料的含水量、换热试验的压力、流速、温度等)或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (7)

1.一种纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用,其特征在于,向碳氢燃料中加入纳米催化剂和表面活性剂,混合形成稳定的单相含水乳状碳氢燃料,加热发生原位催化重整反应,所述纳米催化剂为金属氧化物负载贵金属催化剂。
2.根据权利要求1所述的纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用,其特征在于,所述纳米催化剂以TiO2、SiO2或CeO2金属氧化物为基底,负载Pt、Rh、Pd、Cr、Fe或Ni中的一种或多种纳米颗粒的复合材料。
3.根据权利要求1所述的纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用,其特征在于,所述纳米催化剂的制备方法为:
(1)利用金属盐水解或酯化物热解制备纳米金属氧化物载体:将5-20%硝酸钛、硅酸乙酯或硝酸铈、10-30%乙醇和50-85%水的混合溶液加热至70-150℃连续搅拌回流,滴加过氧化氢并反应3-5小时,得到纳米金属氧化物载体溶液;
(2)利用浸渍-还原法制备负载催化活性金属的纳米复合材料:向纳米金属氧化物载体溶液中加入0.5-1%的氯铂酸钾、氯铑酸钾、氯钯酸钾、硝酸镍、氯化铬或氯化亚铁的水溶液,混合后滴加5-10%的硼氢化钠水溶液,加热反应后蒸干得到纳米催化剂。
4.根据权利要求1所述的纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用,其特征在于,所述表面活性剂选自司班80、吐温80、十六烷基三甲基溴化铵、十二烷基硫酸钠或十二烷基苯磺酸钠中的一种或多种。
5.根据权利要求1所述的纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用,其特征在于,所述单相含水乳状碳氢燃料中含水乳状碳氢燃料中纳米催化剂的质量百分比为0.01-0.1%、表面活性剂的质量百分比为0.05-0.3%、水的质量百分比为5-30%。
6.根据权利要求1所述的纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用,其特征在于,所述的碳氢燃料为航空煤油。
7.根据权利要求1所述的纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用,其特征在于,所述催化重整的温度条件为400-800℃,压力为0.1-10MPa,流速为0.1-10m/s。
CN202310859099.XA 2023-07-13 2023-07-13 一种纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用 Pending CN116924330A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310859099.XA CN116924330A (zh) 2023-07-13 2023-07-13 一种纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310859099.XA CN116924330A (zh) 2023-07-13 2023-07-13 一种纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用

Publications (1)

Publication Number Publication Date
CN116924330A true CN116924330A (zh) 2023-10-24

Family

ID=88388874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310859099.XA Pending CN116924330A (zh) 2023-07-13 2023-07-13 一种纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用

Country Status (1)

Country Link
CN (1) CN116924330A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011020194A1 (en) * 2009-08-21 2011-02-24 Universite De Sherbrooke Steam reforming of hydrocarbonaceous fuels over a ni-alumina spinel catalyst
CN102556965A (zh) * 2012-01-13 2012-07-11 清华大学 一种液态碳氢燃料催化重整冷却高温部件的方法
CN105854878A (zh) * 2016-03-25 2016-08-17 北京化工大学 复合金属氧化物负载的Pt基纳米金属催化剂及制备方法
CN112206780A (zh) * 2020-09-29 2021-01-12 四川大学 SiO2气凝胶负载镍单质催化剂及其制备方法和应用
CN114733520A (zh) * 2022-04-02 2022-07-12 烟台大学 负载型纳米金催化剂的制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011020194A1 (en) * 2009-08-21 2011-02-24 Universite De Sherbrooke Steam reforming of hydrocarbonaceous fuels over a ni-alumina spinel catalyst
CN102556965A (zh) * 2012-01-13 2012-07-11 清华大学 一种液态碳氢燃料催化重整冷却高温部件的方法
CN105854878A (zh) * 2016-03-25 2016-08-17 北京化工大学 复合金属氧化物负载的Pt基纳米金属催化剂及制备方法
CN112206780A (zh) * 2020-09-29 2021-01-12 四川大学 SiO2气凝胶负载镍单质催化剂及其制备方法和应用
CN114733520A (zh) * 2022-04-02 2022-07-12 烟台大学 负载型纳米金催化剂的制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高毅等: "纳米流体燃料性能调控研究进展", 实验流体力学, 20 April 2023 (2023-04-20), pages 1 - 16 *

Similar Documents

Publication Publication Date Title
CN101437751B (zh) 液态烃的制备方法
Dudfield et al. A compact CO selective oxidation reactor for solid polymer fuel cell powered vehicle application
CA2494603A1 (en) Catalytic treatment of fuel to impart coking resistance
Shoynkhorova et al. Composite Rh/Zr0. 25Ce0. 75O2-δ-ƞ-Al2O3/Fecralloy wire mesh honeycomb module for natural gas, LPG and diesel catalytic conversion to syngas
US10267230B2 (en) Apparatus and method for conditioning a fluid
Venkataraman et al. Millisecond catalytic wall reactors: dehydrogenation of ethane
CN105622305A (zh) 一种合成气直接转化制芳烃联产甲烷的方法
JPS61247601A (ja) 炭化水素燃料処理装置
Chen et al. Retracted Article: Computational fluid dynamics modeling of the millisecond methane steam reforming in microchannel reactors for hydrogen production
US20040005268A1 (en) Method and multi-stage shift reactor for reducing the carbon monoxide content in a hydrogen-containing gas stream, and reformer installation
Palma et al. Methane auto-thermal reforming on honeycomb and foam structured catalysts: The role of the support on system performances
Feng et al. A coke deposition self‐removal TBCC thermal management with multi‐catalyst coating
CN116924330A (zh) 一种纳米催化剂在含水乳状碳氢燃料中原位催化重整的应用
CN102556965A (zh) 一种液态碳氢燃料催化重整冷却高温部件的方法
MX2009005959A (es) Metodo para formar una tableta que comprende el premezclado de ibuprofeno y silice.
US8430556B2 (en) Internal heat exchanger/mixer for process heaters
Pasel et al. Hydrogen production via autothermal reforming of diesel fuel
Mehri et al. Performance assessment of a spiral methanol to hydrogen fuel processor for fuel cell applications
Feng et al. The mechanism of ethanol blending on the variation of chemical heat sink in n-decane thermal cracking process
CN110016365A (zh) 一种生物质焦油重整制合成气的装置及方法
Hirotani et al. Optimum catalytic reactor design for methanol synthesis with TEC MRF-Z® reactor
Guoliang et al. Enhanced heat sink by ethanol assisted endothermic catalytic cracking of hydrocarbon fuels
RU2675014C1 (ru) Способ интерактивной сушки теплоизолированной печи каталитического окисления природного газа
Guo et al. Experimental Study on the Ethanol-Assisted Catalytic Steam Reforming of Endothermic Hydrocarbon Fuel
Zhang et al. Numerical investigations on the development of plate reformers: Comparison of different assignments of the chambers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination