CN116915630A - Network jam prediction methods, devices, electronic equipment, media and program products - Google Patents

Network jam prediction methods, devices, electronic equipment, media and program products Download PDF

Info

Publication number
CN116915630A
CN116915630A CN202211537477.4A CN202211537477A CN116915630A CN 116915630 A CN116915630 A CN 116915630A CN 202211537477 A CN202211537477 A CN 202211537477A CN 116915630 A CN116915630 A CN 116915630A
Authority
CN
China
Prior art keywords
network
historical
time period
preset time
key
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211537477.4A
Other languages
Chinese (zh)
Inventor
李绍庆
唐蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Mobile Communications Group Co Ltd
China Mobile Group Hebei Co Ltd
Original Assignee
China Mobile Communications Group Co Ltd
China Mobile Group Hebei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Mobile Communications Group Co Ltd, China Mobile Group Hebei Co Ltd filed Critical China Mobile Communications Group Co Ltd
Priority to CN202211537477.4A priority Critical patent/CN116915630A/en
Publication of CN116915630A publication Critical patent/CN116915630A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/147Network analysis or design for predicting network behaviour
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • H04L43/028Capturing of monitoring data by filtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

The application discloses a network katon prediction method, a network katon prediction device, electronic equipment, a medium and a program product. The network jamming prediction method comprises the following steps: acquiring historical internet surfing record data corresponding to each historical preset time period of a user; for each history preset time period, determining whether a history label of network blocking occurs in the history preset time period and network quality index data in the history preset time period based on the history internet log data corresponding to the history preset time period; taking each history label and network quality index data corresponding to each history label as training samples, and training a network katon prediction model to obtain a trained network katon prediction model; and obtaining a target label of the occurrence of the jamming in the network in the time period to be predicted based on the trained network jamming prediction model and the network quality index data in the time period to be predicted. The method can realize the effect of accurately predicting the user's stuck behavior in any time period to be predicted.

Description

网络卡顿预测方法、装置、电子设备、介质和程序产品Network jam prediction methods, devices, electronic equipment, media and program products

技术领域Technical field

本申请涉及数据处理技术领域,具体涉及一种网络卡顿预测方法、装置、电子设备、介质和程序产品。This application relates to the field of data processing technology, and specifically relates to a network jam prediction method, device, electronic equipment, media and program products.

背景技术Background technique

为了保障视频业务的发展及用户视频业务访问感知,检测与评估视频业务的网络质量也是视频业务发展过程中不可或缺的一步,为了监测用户访问视频业务的质量情况,目前的方案有两种:一种是采用拨测技术,另一种是基于深度报文检测(Deep PacketInspection,DPI)技术进行检测。In order to ensure the development of video services and user perception of video service access, detecting and evaluating the network quality of video services is also an indispensable step in the development process of video services. In order to monitor the quality of user access to video services, there are currently two solutions: One is to use dial detection technology, and the other is to detect based on deep packet inspection (Deep Packet Inspection, DPI) technology.

发明人发现,拨测技术所获取到的指标虽可以从用户侧角度评估用户访问视频业务的感知,但是拨测始终是在特定条件下进行的,终究不能全面的、真实的评估用户感知。另外,DPI技术不能提前处理、调整相关的网络链路,避免可能发生的卡顿行为,影响用户上网体验感。The inventor found that although the indicators obtained by the dial test technology can evaluate the user's perception of accessing the video service from the user side, the dial test is always conducted under specific conditions and cannot comprehensively and truly evaluate the user's perception. In addition, DPI technology cannot process and adjust related network links in advance to avoid possible lags and affect the user's online experience.

发明内容Contents of the invention

本申请实施例的目的是提供一种网络卡顿预测方法、装置、电子设备、介质和程序产品,以实现全面的预测网络是否卡顿的效果。The purpose of the embodiments of the present application is to provide a network jam prediction method, device, electronic equipment, media and program products to achieve a comprehensive prediction effect of whether the network is stuck.

本申请的技术方案如下:The technical solution of this application is as follows:

第一方面,提供了一种网络卡顿预测方法,该方法包括:The first aspect provides a network jam prediction method, which includes:

获取用户各历史预设时间段对应的历史上网记录数据;Obtain the user's historical Internet access record data corresponding to each historical preset time period;

针对每个历史预设时间段,基于历史预设时间段对应的历史上网记录数据,确定历史预设时间段内是否发生网络卡顿的历史标签,以及历史预设时间段内的网络质量指标数据;For each historical preset time period, based on the historical Internet access record data corresponding to the historical preset time period, determine the historical tag of whether network lag occurred during the historical preset time period, and the network quality indicator data within the historical preset time period. ;

将各历史标签,以及各历史标签对应的网络质量指标数据作为训练样本,训练网络卡顿预测模型,得到训练好的网络卡顿预测模型;Use each historical tag and the network quality index data corresponding to each historical tag as training samples to train the network stuck prediction model and obtain the trained network stuck prediction model;

基于训练好的网络卡顿预测模型,以及待预测时间段内的网络质量指标数据,得到待预测时间段内网络出现卡顿的目标标签。Based on the trained network lag prediction model and the network quality indicator data in the period to be predicted, the target label of network lag in the period to be predicted is obtained.

第二方面,提供了一种网络卡顿预测装置,该装置包括:In a second aspect, a network jam prediction device is provided, which device includes:

第一获取模块,用于获取用户各历史预设时间段对应的历史上网记录数据;The first acquisition module is used to acquire the user's historical Internet access record data corresponding to each historical preset time period;

第一确定模块,用于针对每个历史预设时间段,基于历史预设时间段对应的历史上网记录数据,确定历史预设时间段内是否发生网络卡顿的历史标签,以及历史预设时间段内的网络质量指标数据;The first determination module is used for each historical preset time period, based on the historical Internet access record data corresponding to the historical preset time period, to determine whether the historical tag of network lag occurs within the historical preset time period, and the historical preset time Network quality indicator data within the segment;

第二确定模块,用于将各历史标签,以及各历史标签对应的网络质量指标数据作为训练样本,训练网络卡顿预测模型,得到训练好的网络卡顿预测模型;The second determination module is used to use each historical label and the network quality indicator data corresponding to each historical label as training samples to train the network stuck prediction model and obtain the trained network stuck prediction model;

第三确定模块,用于基于训练好的网络卡顿预测模型,以及待预测时间段内的网络质量指标数据,得到待预测时间段内网络出现卡顿的目标标签。The third determination module is used to obtain the target label of network lag in the time period to be predicted based on the trained network lag prediction model and the network quality indicator data in the time period to be predicted.

第三方面,本申请实施例提供了一种电子设备,该电子设备包括处理器、存储器及存储在存储器上并可在处理器上运行的程序或指令,程序或指令被处理器执行时实现本申请实施例任一的网络卡顿预测方法的步骤。In a third aspect, embodiments of the present application provide an electronic device. The electronic device includes a processor, a memory, and a program or instruction stored in the memory and executable on the processor. When the program or instruction is executed by the processor, the present invention is implemented. Apply the steps of the network jam prediction method in any embodiment.

第四方面,本申请实施例提供了一种可读存储介质,可读存储介质上存储程序或指令,程序或指令被处理器执行时实现本申请实施例任一的网络卡顿预测方法的步骤。In the fourth aspect, embodiments of the present application provide a readable storage medium. The readable storage medium stores programs or instructions. When the program or instructions are executed by a processor, the steps of implementing any of the network jam prediction methods in the embodiments of the present application are implemented. .

第五方面,本申请实施例提供了一种计算机程序产品,计算机程序产品中的指令由电子设备的处理器执行时,使得电子设备能够执行本申请实施例任一的网络卡顿预测方法的步骤。In a fifth aspect, embodiments of the present application provide a computer program product. When the instructions in the computer program product are executed by a processor of an electronic device, the electronic device can perform any of the steps of the network jam prediction method in the embodiments of the present application. .

本申请的实施例提供的技术方案至少带来以下有益效果:The technical solutions provided by the embodiments of the present application at least bring the following beneficial effects:

本申请实施例中,通过获取用户各历史预设时间段对应的历史上网记录数据,针对每个历史预设时间段,基于历史预设时间段对应的历史上网记录数据,确定历史预设时间段内是否发生网络卡顿的历史标签,以及历史预设时间段内的网络质量指标数据,然后将各历史标签,以及各历史标签对应的网络质量指标数据作为训练样本,训练网络卡顿预测模型,得到训练好的网络卡顿预测模型,如此可基于训练好的网络卡顿预测模型,以及待预测时间段内的网络质量指标数据,得到待预测时间段内网络出现卡顿的目标标签,如此通过将用户卡顿特征和网络质量指标数据相关联,建立特征方程,训练网络卡顿预测模型,基于训练好的网络卡顿预测模型精确预测网络是否卡顿,如此实现了在任何待预测时间段内均可对用户卡顿行为进行精准预测。In the embodiment of this application, by obtaining the historical Internet access record data corresponding to each historical preset time period of the user, for each historical preset time period, the historical preset time period is determined based on the historical Internet access record data corresponding to the historical preset time period. The historical labels of whether network lag occurs within the period, and the network quality indicator data within the historical preset time period, and then use each historical label and the network quality indicator data corresponding to each historical label as training samples to train the network lag prediction model. Obtain the trained network lag prediction model, so that based on the trained network lag prediction model and the network quality indicator data in the time period to be predicted, the target label of network lag in the time period to be predicted can be obtained, so through Correlate user stuck characteristics and network quality indicator data, establish characteristic equations, train network stuck prediction models, and accurately predict whether the network is stuck based on the trained network stuck prediction model. This way, it is possible to predict whether the network is stuck in any time period to be predicted. Both can accurately predict user freezing behavior.

应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。It should be understood that the above general description and the following detailed description are only exemplary and explanatory, and do not limit the present application.

附图说明Description of the drawings

此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理,并不构成对本申请的不当限定。The drawings herein are incorporated into the specification and constitute a part of the specification, illustrate embodiments consistent with the present application, and are used together with the description to explain the principles of the present application, and do not constitute undue limitations on the present application.

图1是本申请实施例提供的一种网络卡顿预测方法的流程示意图;Figure 1 is a schematic flowchart of a network jam prediction method provided by an embodiment of the present application;

图2是本申请实施例提供的一种网络卡顿预测方法的系统架构图;Figure 2 is a system architecture diagram of a network jam prediction method provided by an embodiment of the present application;

图3是本申请实施例提供的网络卡顿预测方法的另一种可实现方式;Figure 3 is another implementable manner of the network jam prediction method provided by the embodiment of the present application;

图4是本申请第二方面实施例提供的一种网络卡顿预测装置的结构示意图;Figure 4 is a schematic structural diagram of a network jam prediction device provided by the second embodiment of the present application;

图5是本申请第三方面实施例提供的一种电子设备的结构示意图。FIG. 5 is a schematic structural diagram of an electronic device provided by the third embodiment of the present application.

具体实施方式Detailed ways

为了使本领域普通人员更好地理解本申请的技术方案,下面将结合附图,对本申请实施例中的技术方案进行清楚、完整地描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。In order to enable ordinary people in the art to better understand the technical solutions of the present application, the technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the accompanying drawings. It should be understood that the specific embodiments described here are only intended to explain the application, but not to limit the application. It will be apparent to one skilled in the art that the present application may be practiced without some of these specific details. The following description of embodiments is merely intended to provide a better understanding of the present application by illustrating examples thereof.

需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的例子。It should be noted that the terms "first", "second", etc. in the description and claims of this application and the above-mentioned drawings are used to distinguish similar objects and are not necessarily used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the application described herein can be practiced in sequences other than those illustrated or described herein. The implementations described in the following exemplary embodiments do not represent all implementations consistent with this application. Rather, they are merely examples consistent with aspects of the application as detailed in the appended claims.

如背景技术部分,为了保障视频业务的发展及用户视频业务访问感知,检测与评估视频业务的网络质量也是视频业务发展过程中不可或缺的一步,为了监测用户访问视频业务的质量情况,目前的方案有两种:一种是采用拨测技术,另一种是基于深度报文检测(Deep Packet Inspection,DPI)技术进行检测。As shown in the background technology section, in order to ensure the development of video services and user perception of video service access, detecting and evaluating the network quality of video services is also an indispensable step in the development process of video services. In order to monitor the quality of user access to video services, the current There are two solutions: one is to use dial detection technology, and the other is to detect based on deep packet inspection (Deep Packet Inspection, DPI) technology.

发明人发现,拨测技术所获取到的指标虽可以从用户侧角度评估用户访问视频业务的感知,但是拨测始终是在特定条件下进行的,终究不能全面的、真实的评估用户感知。另外,DPI技术不能提前处理、调整相关的网络链路,避免可能发生的卡顿行为,影响用户上网体验感。The inventor found that although the indicators obtained by the dial test technology can evaluate the user's perception of accessing the video service from the user side, the dial test is always conducted under specific conditions and cannot comprehensively and truly evaluate the user's perception. In addition, DPI technology cannot process and adjust related network links in advance to avoid possible lags and affect the user's online experience.

为了解决上述问题,本申请实施例提供了一种网络卡顿预测方法、装置、设备、介质和计算机程序产品,通过获取用户各历史预设时间段对应的历史上网记录数据,针对每个历史预设时间段,基于历史预设时间段对应的历史上网记录数据,确定历史预设时间段内是否发生网络卡顿的历史标签,以及历史预设时间段内的网络质量指标数据,然后将各历史标签,以及各历史标签对应的网络质量指标数据作为训练样本,训练网络卡顿预测模型,得到训练好的网络卡顿预测模型,如此可基于训练好的网络卡顿预测模型,以及待预测时间段内的网络质量指标数据,得到待预测时间段内网络出现卡顿的目标标签,如此通过将用户卡顿特征和网络质量指标数据相关联,建立特征方程,训练网络卡顿预测模型,基于训练好的网络卡顿预测模型精确预测网络是否卡顿,如此实现了在任何待预测时间段内均可对用户卡顿行为进行精准预测。In order to solve the above problems, embodiments of the present application provide a network jam prediction method, device, equipment, media and computer program products. By obtaining the user's historical Internet access record data corresponding to each historical preset time period, for each historical prediction Set a time period, based on the historical Internet access record data corresponding to the historical preset time period, determine the historical tag of whether network lag occurs within the historical preset time period, and the network quality indicator data within the historical preset time period, and then combine each historical tags, and the network quality index data corresponding to each historical tag are used as training samples to train the network jam prediction model and obtain the trained network jam prediction model. This can be based on the trained network jam prediction model and the time period to be predicted. Based on the network quality index data within the time period to be predicted, the target label of network lag in the period to be predicted is obtained. In this way, by correlating the user lag characteristics with the network quality index data, a characteristic equation is established to train the network lag prediction model. Based on the well-trained The network stuck prediction model accurately predicts whether the network is stuck, so that user stuck behavior can be accurately predicted in any time period to be predicted.

本申请实施例提供了一种网络卡顿预测方法、装置、设备、存储介质及产品。下面首先对本申请实施例所提供的网络卡顿预测方法进行介绍。Embodiments of the present application provide a network jam prediction method, device, equipment, storage medium and product. The following first introduces the network jam prediction method provided by the embodiment of the present application.

图1是本申请实施例提供的一种网络卡顿预测方法的流程示意图。如图1所示,该方法包括:Figure 1 is a schematic flowchart of a network jam prediction method provided by an embodiment of the present application. As shown in Figure 1, the method includes:

S110、获取用户各历史预设时间段对应的历史上网记录数据。S110. Obtain the user's historical Internet access record data corresponding to each historical preset time period.

历史预设时间段可以是用户进行资源访问的时间段,例如可以是用户观看视频的时间段等。The historical preset time period may be a time period during which the user accesses resources, for example, it may be a time period during which the user watches a video.

历史上网记录数据可以是包含用户访问资源时的用户互联网协议(InternetProtocol,IP)、资源IP、域名信息或统一资源定位符(Universal Resource Locator,URL)信息等数据中的任意一种或多种信息。Historical Internet access record data can include any one or more of the user's Internet Protocol (IP), resource IP, domain name information or Universal Resource Locator (URL) information when the user accesses resources. .

获取用户各历史预设时间段对应的历史上网记录数据,具体可以是利用深度包检测技术(Deep Packet Inspection,DPI)探针将采集到的报文输送给服务器,也可以采用其他方式获取上述数据,此处不做限定。Obtain the user's historical Internet access record data corresponding to each historical preset time period. Specifically, you can use Deep Packet Inspection (DPI) probes to send the collected packets to the server, or you can use other methods to obtain the above data. , no limitation is made here.

作为一个示例,采用DPI探针深度报文解析能力和终端检测与响应(ExtendedDetection and Response,XDR)话单的合成功能,利用网络嗅探抓包工具(wireshark)工具对用浏览器端观看某视频网站时所产生的报文进行抓包,可得到观看某视频网站时所产生相应的历史上网记录数据。As an example, use the deep packet parsing capability of the DPI probe and the synthesis function of the terminal detection and response (Extended Detection and Response, By capturing the packets generated when watching a website, the corresponding historical Internet record data generated when watching a certain video website can be obtained.

S120、针对每个历史预设时间段,基于历史预设时间段对应的历史上网记录数据,确定历史预设时间段内是否发生网络卡顿的历史标签,以及历史预设时间段内的网络质量指标数据。S120. For each historical preset time period, based on the historical Internet access record data corresponding to the historical preset time period, determine the historical tag of whether network lag occurs within the historical preset time period, and the network quality within the historical preset time period. indicator data.

历史标签可以是用于表征历史预设时间段内是否发生网络卡顿的标签,例如可以是“卡顿”或“非卡顿”。The historical label may be a label used to indicate whether network lag occurs within a preset historical time period, for example, it may be "stuck" or "no lag".

在一些实施例中,为了更准确地确定历史预设时间段内是否发生网络卡顿的历史标签,网络质量指标数据至少可以包括:上行速率、下行速率、服务器时延、客户端时延、响应时延、上行重传率、下行重传率、访问成功率、客户端失败率、服务端失败率。In some embodiments, in order to more accurately determine the historical label of whether network lag occurs within the historical preset time period, the network quality indicator data may at least include: uplink rate, downlink rate, server delay, client delay, response Delay, uplink retransmission rate, downlink retransmission rate, access success rate, client failure rate, and server failure rate.

S130、将各历史标签,以及各历史标签对应的网络质量指标数据作为训练样本,训练网络卡顿预测模型,得到训练好的网络卡顿预测模型。S130. Use each historical label and the network quality index data corresponding to each historical label as a training sample to train the network stuck prediction model to obtain the trained network stuck prediction model.

网络卡顿预测模型可以是用于预测某段时间段内是否会出现卡顿的模型,具体可以是任意机器学习模型中的一种,也可以是根据实际情况预设的预测模型,在此不做限定。The network lag prediction model can be a model used to predict whether lag will occur within a certain period of time. Specifically, it can be one of any machine learning models, or it can be a prediction model preset based on the actual situation. This is not the case here. Make limitations.

S140、基于训练好的网络卡顿预测模型,以及待预测时间段内的网络质量指标数据,得到待预测时间段内网络出现卡顿的目标标签。S140. Based on the trained network jam prediction model and the network quality indicator data in the time period to be predicted, obtain the target label for network jams in the time period to be predicted.

目标标签可以是用于表征待预测时间段内网络是否出现卡顿的标签,例如可以是“卡顿”或“非卡顿”。得到该标签具体可以是将待预测时间段内的网络质量指标数据作为网络卡顿预测模型的输入,将目标标签作为输出,从而得到该标签。The target label may be a label used to characterize whether the network is stuck in the time period to be predicted, for example, it may be "stuck" or "non-stuck". Specifically, the label can be obtained by using the network quality index data in the time period to be predicted as the input of the network jam prediction model and using the target label as the output, thereby obtaining the label.

如此,通过获取用户各历史预设时间段对应的历史上网记录数据,针对每个历史预设时间段,基于历史预设时间段对应的历史上网记录数据,确定历史预设时间段内是否发生网络卡顿的历史标签,以及历史预设时间段内的网络质量指标数据,然后将各历史标签,以及各历史标签对应的网络质量指标数据作为训练样本,训练网络卡顿预测模型,得到训练好的网络卡顿预测模型,如此可基于训练好的网络卡顿预测模型,以及待预测时间段内的网络质量指标数据,得到待预测时间段内网络出现卡顿的目标标签,如此通过将用户卡顿特征和网络质量指标数据相关联,建立特征方程,训练网络卡顿预测模型,基于训练好的网络卡顿预测模型精确预测网络是否卡顿,如此实现了在任何待预测时间段内均可对用户卡顿行为进行精准预测。In this way, by obtaining the historical Internet access record data corresponding to each historical preset time period of the user, for each historical preset time period, based on the historical Internet access record data corresponding to the historical preset time period, it is determined whether a network incident occurred within the historical preset time period. The historical tags of lags and the network quality indicator data within the historical preset time period are then used as training samples to train the network lag prediction model and obtain the trained Network jam prediction model, so that based on the trained network jam prediction model and the network quality indicator data in the time period to be predicted, the target label of network jams in the time period to be predicted can be obtained, so as to prevent users from being stuck. Features are associated with network quality index data, feature equations are established, network stuck prediction models are trained, and network stuck prediction models are accurately predicted based on the trained network stuck prediction model. In this way, users can be predicted in any time period to be predicted. Accurate prediction of stuck behavior.

在一些实施例中,为了更准确地确定历史预设时间段内是否发生网络卡顿的历史标签,历史上网记录数据可以包括用户上网的统一资源标识符,上述S120具体可以包括:In some embodiments, in order to more accurately determine the historical tag of whether network lag occurs within the historical preset time period, the historical Internet access record data may include the unified resource identifier of the user's Internet access. The above S120 may specifically include:

对历史预设时间段对应的统一资源标识符中不包含预设信息的统一资源标识符删除,得到第一统一资源标识符;其中,预设信息至少包括文件、路径信息和查询参数;查询参数用于表征网络卡顿的特征信息;Delete the unified resource identifiers that do not contain preset information among the unified resource identifiers corresponding to the historical preset time period to obtain the first unified resource identifier; where the preset information at least includes files, path information and query parameters; query parameters Characteristic information used to characterize network lag;

将第一统一资源标识符,按照域名,以及查询参数对应的键值对进行分割,得到备选特征集合;Split the first unified resource identifier according to the domain name and the key-value pairs corresponding to the query parameters to obtain a set of alternative features;

基于备选特征集合,确定历史预设时间段内是否发生网络卡顿的历史标签。Based on the set of alternative features, determine the historical label of whether network stalling occurred within the historical preset time period.

在一些实施例中,统一资源标识符(Uniform Resource Identifier,URI)具体可以是一个用于标识某一互联网资源名称的字符串。该种标识允许用户对任何(包括本地和互联网)的资源通过特定的协议进行交互操作。URI是XDR话单中需要具备的重要字段之一。In some embodiments, the Uniform Resource Identifier (URI) may be a string used to identify a certain Internet resource name. This identification allows users to interact with any resource (including local and Internet) through specific protocols. URI is one of the important fields that needs to be included in the XDR bill.

第一统一资源标识符可以是对历史预设时间段对应的统一资源标识符中不包含预设信息的统一资源标识符删除后所得到的同一资源标识符。The first uniform resource identifier may be the same resource identifier obtained by deleting the uniform resource identifiers that do not contain preset information among the uniform resource identifiers corresponding to the historical preset time period.

路径信息可以是用户上网时所查看的网络资源的路径信息。The path information may be the path information of the network resources viewed by the user when surfing the Internet.

备选特征集合可以是将第一统一资源标识符,按照域名,以及查询参数对应的键值对进行分割后,所得到的分割后的键值对集合。The candidate feature set may be a set of split key-value pairs obtained by splitting the first uniform resource identifier according to the domain name and the key-value pairs corresponding to the query parameters.

在一些实施例中,查询参数例如可以是path和query参数,键值对可以是参数中的key和value值。In some embodiments, the query parameters may be, for example, path and query parameters, and the key-value pair may be the key and value in the parameters.

对历史预设时间段对应的统一资源标识符中不包含预设信息的统一资源标识符删除,得到第一统一资源标识符,具体可以是在得到多串URI后,将不包含预设信息的URI进行删除。Delete the uniform resource identifiers that do not contain preset information among the uniform resource identifiers corresponding to the historical preset time period to obtain the first uniform resource identifier. Specifically, after obtaining multiple strings of URIs, delete the uniform resource identifiers that do not contain preset information. URI to delete.

在一些实施例中,将第一统一资源标识符,按照域名,以及查询参数对应的键值对进行分割,得到备选特征集合,具体可以是使用特定符号对每串URI进行分割,提取域名、查询参数都相同的URI,得到备选特征集合。In some embodiments, the first uniform resource identifier is divided according to the domain name and the key-value pairs corresponding to the query parameters to obtain the candidate feature set. Specifically, specific symbols may be used to segment each string of URIs and extract the domain name, Query URIs with the same parameters to obtain a set of alternative features.

在一些实施例中,基于备选特征集合,确定历史预设时间段内是否发生网络卡顿的历史标签,可以是将集合中代表卡顿的键值作为历史标签。In some embodiments, based on the alternative feature set, determining the historical label of whether network lag occurs within the historical preset time period may be to use the key value representing the lag in the set as the historical label.

作为一个示例,基于以上对URI的描述,先将URI中不包含文件、路径、查询参数的URI过滤掉,再使用‘:’、‘/’、‘.’、‘-’、‘?’、‘&’等符号对其余URI进行分割,将URI的域名、path和query参数中的key和value值提取出来,如下表(1)所示:As an example, based on the above description of URIs, first filter out URIs that do not contain files, paths, or query parameters, and then use ‘:’, ‘/’, ‘.’, ‘-’, ‘? ', '&' and other symbols to split the remaining URIs, and extract the key and value values in the domain name, path and query parameters of the URI, as shown in the following table (1):

表1第一统一资源标识符示例表Table 1 Example table of first uniform resource identifiers

在一个示例中,可以通过人为限速等观看视频时制造卡顿的方法,观看视频并抓包分析,假设用户U观看视频剧集A和视频剧集B时均产生卡顿现象,共获得5个域名、5个带有query参数的URL,共拆分得到15个key和value,其中的域名、key和value有相同的情况也有不同的情况。选取域名、key和value值相同的组合作为备选特征集合。In one example, you can create lags when watching videos through methods such as artificial speed limits, watch videos and capture packets for analysis. Assume that user U experiences lags when watching video episode A and video episode B, and obtains a total of 5 A domain name and 5 URLs with query parameters were split into a total of 15 keys and values. The domain names, keys and values may be the same or different. Select the combination of domain name, key and value with the same value as the candidate feature set.

如此,通过获取用户历史预设时间段内的统一资源标识符,并对标识符进行过滤,将得到的统一资源标识符按照域名,以及查询参数对应的键值对进行分割,得到备选特征集合,这样得到的备选特征集合中包含了用于表征网络卡顿的特征信息,因此,可以基于该集合确定历史预设时间段内是否发生了网络卡顿,提升了准确性。In this way, by obtaining the uniform resource identifiers within the preset time period of the user's history, filtering the identifiers, and dividing the obtained uniform resource identifiers according to domain names and key-value pairs corresponding to the query parameters, an alternative feature set is obtained , the candidate feature set obtained in this way contains feature information used to characterize network jams. Therefore, it can be determined based on this set whether network jams have occurred within the historical preset time period, which improves accuracy.

在一些实施例中,为了进一步提升确定历史预设时间段内是否发生网络卡顿的历史标签的准确性,基于备选特征集合,确定历史预设时间段内是否发生网络卡顿的历史标签,具体可以包括:In some embodiments, in order to further improve the accuracy of historical tags for determining whether network stalling occurs within a historical preset time period, based on a set of alternative features, determine historical tags for whether network stalling occurs within a historical preset time period, Specifics may include:

分别获取在历史预设时间段内网络卡顿时的第一域名和查询参数的第一键值对,以及网络不卡顿时的第二域名和查询参数的第二键值对;Obtain respectively the first domain name and the first key-value pair of the query parameter when the network is stuck within the historical preset time period, and the second key-value pair of the second domain name and the query parameter when the network is not stuck;

将第一域名、第一键值对、第二域名和第二键值对与备选特征集合中的域名和键值对进行比对,选取出与备选特征集合中的域名相同,且与备选特征集合中的键值对中的键属性相同,且与备选特征集合中的键值对中的值属性不同的值属性,确定为目标值属性;Compare the first domain name, the first key-value pair, the second domain name and the second key-value pair with the domain names and key-value pairs in the alternative feature set, and select the domain name that is the same as the domain name in the alternative feature set and is the same as the domain name in the alternative feature set. The key attribute in the key-value pair in the candidate feature set is the same and the value attribute that is different from the value attribute in the key-value pair in the candidate feature set is determined as the target value attribute;

基于目标值属性,确定历史预设时间段内是否发生网络卡顿的历史标签。Based on the target value attribute, determine the historical tag of whether network lag occurs within the historical preset time period.

其中,第一域名可以是在历史预设时间段内网络卡顿时的域名。The first domain name may be the domain name when the network was stuck during a preset historical time period.

第一键值对可以是在历史预设时间段内网络卡顿时的查询参数的键值对。The first key-value pair may be a key-value pair of query parameters when the network is stuck within a historical preset time period.

第二域名可以是在历史预设时间段内网络不卡顿时的域名。The second domain name may be the domain name when the network is not stuck within a preset historical time period.

第二键值对可以是在历史预设时间段内网络不卡顿时的查询参数的键值对。The second key-value pair may be a key-value pair of query parameters when the network is not stuck within a historical preset time period.

目标值属性可以是选取出的与备选特征集合中的域名相同,且与备选特征集合中的键值对中的键属性相同,且与备选特征集合中的键值对中的值属性不同的值属性。The selected target value attribute can be the same as the domain name in the candidate feature set, the same as the key attribute in the key-value pair in the candidate feature set, and the same as the value attribute in the key-value pair in the candidate feature set. Different value attributes.

作为一个示例,在上述示例中,对于用户U,通过观察用户U观看视频剧集A,卡顿和不卡顿时候产生的域名、key和value值,以及观看视频剧集B时产生的域名、key和value值,比对上面说到的备选特征集合中的域名、key和value值,选取和备选特征集和中域名、key值相同,value值不同的组合作为目标值属性。As an example, in the above example, for user U, by observing the domain name, key, and value generated when user U watches video episode A, the domain name, key, and value generated when the user U is stuck and not stuck, and the domain name, key, and value generated when watching video episode B. Key and value values, compare the domain name, key and value value in the candidate feature set mentioned above, and select the combination of the domain name, key value and different value value in the candidate feature set as the target value attribute.

如此,通过获取在历史预设时间段内网络卡顿时的第一域名和查询参数的第一键值对,以及网络不卡顿时的第二域名和查询参数的第二键值对,与备选特征集合中的域名和键值对进行比对,选取出与备选特征集合中的域名相同,且与备选特征集合中的键值对中的键属性相同,且与备选特征集合中的键值对中的值属性不同的值属性,确定为目标值属性,这样可以将网络卡顿时属性值与备选特征集合中的值进行匹配,进一步确认为表征卡顿的属性值,缩小了范围,使得到的历史标签更加精确。In this way, by obtaining the first key-value pair of the first domain name and the query parameter when the network is stuck within the historical preset time period, and the second key-value pair of the second domain name and the query parameter when the network is not stuck, and the alternative Compare the domain names and key-value pairs in the feature set, and select the domain name that is the same as the domain name in the candidate feature set, the same key attribute as the key-value pair in the candidate feature set, and the same as the key-value pair in the candidate feature set. Value attributes with different value attributes in the key-value pair are determined as target value attributes. This way, the attribute value when the network is stuck can be matched with the value in the alternative feature set, and further confirmed as the attribute value characterizing the stuck, narrowing the scope. , making the obtained historical labels more accurate.

在一些实施例中,为了更准确地得到历史预设时间段内的网络质量指标数据,历史上网记录数据还可以包括:网络特征信息;上述S120可以包括:In some embodiments, in order to more accurately obtain the network quality index data within the historical preset time period, the historical Internet access record data may also include: network feature information; the above S120 may include:

基于历史预设时间段对应的网络特征信息,计算历史预设时间段内的网络质量指标数据。Based on the network characteristic information corresponding to the historical preset time period, the network quality indicator data within the historical preset time period is calculated.

在一些实施例中,网络特征信息具体可以是用于计算网络质量指标数据的特征,例如可以是下载流量、下载时长、上传流量、上传时长或客户端发起同步序列编号(SynchronizeSequenceNumbers,SYN)到服务器返回响应确认(SYN ACK)的时延等信息。In some embodiments, the network characteristic information may specifically be characteristics used to calculate network quality indicator data, such as download traffic, download duration, upload traffic, upload duration, or client-initiated synchronization sequence numbers (SynchronizeSequenceNumbers, SYN) to the server. Returns information such as the delay of response confirmation (SYN ACK).

作为一个示例,网络质量指标数据可以是反应用户上网感知的质量指标,具体可以包括上行速率、下行速率、服务器时延、客户端时延、响应时延、上行重传率、下行重传率、访问成功率、客户端失败率、服务端失败率。As an example, the network quality indicator data can be a quality indicator that reflects the user's perception of Internet access. Specifically, it can include uplink rate, downlink rate, server delay, client delay, response delay, uplink retransmission rate, downlink retransmission rate, Access success rate, client failure rate, server failure rate.

对于每一个网络质量指标的计算方式,可以如表2所示:The calculation method for each network quality indicator can be shown in Table 2:

表2网络质量指标计算方式示例Table 2 Example of calculation method for network quality indicators

如此,通过对历史预设时间段对应的网络特征信息计算历史预设时间段内的网络质量指标数据,由于网络特征信息包含了多种用于表征用户上网的指标信息,并通过预设公式的计算,得到的网络质量指标数据可以包含用户的卡顿信息,从而提升了历史预设时间段内的网络质量指标数据的准确性。In this way, the network quality index data within the historical preset time period is calculated by using the network feature information corresponding to the historical preset time period. Since the network feature information contains a variety of indicator information used to characterize the user's Internet access, and through the preset formula After calculation, the obtained network quality indicator data can include the user's lag information, thereby improving the accuracy of the network quality indicator data within the historical preset time period.

在一些实施例中,为了精确得到网络质量指标数据,所述基于历史预设时间段对应的网络特征信息,计算历史预设时间段内的网络质量指标数据,具体可以包括:In some embodiments, in order to accurately obtain network quality index data, the network quality index data within the historical preset time period is calculated based on the network feature information corresponding to the historical preset time period, which may specifically include:

对历史预设时间段对应的网络特征信息进行清洗,得到目标网络特征信息;Clean the network feature information corresponding to the historical preset time period to obtain the target network feature information;

基于目标网络特征信息,计算历史预设时间段内的网络质量指标数据。Based on the target network characteristic information, the network quality indicator data within the historical preset time period is calculated.

其中,目标网络特征信息可以是对历史预设时间段对应的网络特征信息进行清洗后所得到的网络特征信息。The target network feature information may be network feature information obtained by cleaning the network feature information corresponding to the historical preset time period.

在本申请的一些实施例中,对历史预设时间段对应的网络特征信息进行清洗可以但不限于包括对历史预设时间段对应的网络特征信息进行去重处理、特征编码处理等。In some embodiments of the present application, cleaning the network feature information corresponding to the historical preset time period may, but is not limited to, include deduplication processing, feature encoding processing, etc. on the network feature information corresponding to the historical preset time period.

在本申请的实施例中,通过对历史预设时间段对应的网络特征信息进行清洗,得到目标网络特征信息,然后基于目标网络特征信息,计算历史预设时间段内的网络质量指标数据,如此可得到质量较好的网络特征信息,如此可基于该质量较好的网络特征信息,得到精确的网络质量指标数据。In the embodiment of the present application, the target network characteristic information is obtained by cleaning the network characteristic information corresponding to the historical preset time period, and then based on the target network characteristic information, the network quality index data within the historical preset time period is calculated, so Better quality network feature information can be obtained, so that accurate network quality index data can be obtained based on the better quality network feature information.

在一些实施例中,为了更准确地得到待预测时间段内网络出现卡顿的目标标签,网络卡顿预测模型可以为逻辑回归模型。In some embodiments, in order to more accurately obtain the target label of network jamming in the time period to be predicted, the network jamming prediction model may be a logistic regression model.

作为一个示例,以逻辑回归模型作为网络卡顿预测模型,其训练过程可以是:从大数据平台分布式系统基础架构(Hadoop)获取近一月的用户真实上网记录U0,共包含m条历史上网记录数据。处理数据集U0得到用户上网是否卡顿的历史标签作为因变量y(发生卡顿:1;未发生卡顿:0),处理数据集U0获取用户上网时的网络质量指标数据作为自变量X(包含x1、x2…xn共n个变量:上下行速率,客户端/服务端/响应时延,重传率,成功/失败率),构成用于建模的数据集U1。将U1中m条X<x1、x2…xn>取出,构建线性回归函数,如公式(1)所示:As an example, using the logistic regression model as the network jam prediction model, the training process can be: obtaining the user's real online records U 0 in the past month from the big data platform distributed system infrastructure (Hadoop), including a total of m pieces of history Go online and record data. The data set U 0 is processed to obtain the historical label of whether the user is stuck on the Internet as the dependent variable y (stuck occurs: 1; lag does not occur: 0). The data set U 0 is processed to obtain the network quality index data of the user when surfing the Internet as the independent variable. X ( including x 1 , . Take out the m X<x 1 , x 2 ...

h(x)=w0+w1x1+w2x2+...+wnxn (1)h(x)=w 0 +w 1 x 1 +w 2 x 2 +...+w n x n (1)

其中,w为模型的参数,其中w0为截距(intercept),w1~wn为系数(coefficient)。Among them, w is a parameter of the model, w 0 is the intercept, and w 1 to w n are coefficients.

可以理解的是,该线性回归函数的任务,就是构造h(x)这个预测函数来映射输入的变量X和标签值y的线性关系,使h(x)=w0+w1x1+w2x2+...+wnxn=0作为是否发生卡顿的决策边界,则有当函数h(x)>=0时,y=1;当函数h(x)<0时,y=0。It can be understood that the task of the linear regression function is to construct the prediction function h (x) to map the linear relationship between the input variable X and the label value y, so that h (x) = w 0 +w 1 x 1 +w 2 x 2 +...+w n x n =0 is used as the decision boundary for whether stuck occurs, then when function h(x)>=0, y=1; when function h(x)<0, y=0.

由于{卡顿:1,未卡顿:0}是一个明显的二分类问题,而该模型的取值是连续的,引入联系函数(link function),将线性回归方程h(x)变换为g(h),并且令g(h)的值分布在(0,1)之间,且当g(z)接近0时样本的标签为类别0未卡顿,当g(z)接近1时样本的标签为类别1卡顿,这样就得到了一个分类模型。这个联系函数对于逻辑回归来说,就是Sigmoid函数,具体如公式(2)所示:Since {stuck: 1, not stuttered: 0} is an obvious two-classification problem, and the values of this model are continuous, a link function is introduced to transform the linear regression equation h(x) into g (h), and let the value of g(h) be distributed between (0, 1), and when g(z) is close to 0, the label of the sample is category 0 without freezing, and when g(z) is close to 1, the sample The label is Category 1 Caton, so a classification model is obtained. For logistic regression, this link function is the Sigmoid function, as shown in formula (2):

将线性回归函数即公式(1)带入Sigmoid函数中,得到最终的逻辑回归函数,具体如公式(3)所示:Put the linear regression function, that is, formula (1) into the Sigmoid function to get the final logistic regression function, as shown in formula (3):

其中,x1、x2…xn为模型的输入数据,即用户上网质量指标数据:上行速率、下行速率、客户端时延、服务端时延、响应时延、上行重传率、下行重传率、访问成功率、客户端失败率、服务器失败率。Y(x)为逻辑回归返回的标签值。Among them, x 1 , x 2 ... transmission rate, access success rate, client failure rate, and server failure rate. Y(x) is the label value returned by logistic regression.

可以理解的是,y(x)的取值都在[0,1]之间,判定当y(x)趋于1时,则用户为卡顿,当y(x)趋于0时,则用户未卡顿。It can be understood that the values of y(x) are all between [0,1]. When y(x) tends to 1, the user is stuck. When y(x) tends to 0, then The user is not stuck.

如此,通过引入回归模型作为网络卡顿预测模型,将各历史标签,以及各历史标签对应的网络质量指标数据作为训练样本,能够贴合实际网络卡顿的预测情况,可以更准确地得到待预测时间段内网络出现卡顿的目标标签。In this way, by introducing the regression model as the network jam prediction model, and using each historical label and the network quality index data corresponding to each historical label as training samples, it can fit the actual network jam prediction situation and obtain the prediction more accurately. Target tags where the network is stuck during a certain period of time.

为了更清楚地理解本申请的方案,本申请实施例还提供了一种网络卡顿预测方法的系统架构图,具体如图2所示。In order to understand the solution of the present application more clearly, the embodiment of the present application also provides a system architecture diagram of a network jam prediction method, as shown in Figure 2.

在本申请的一些实施例中,为了更加清晰的理解本申请的技术方案,下面以具体场景对本申请的技术方案进行介绍。In some embodiments of the present application, in order to understand the technical solutions of the present application more clearly, the technical solutions of the present application are introduced below using specific scenarios.

本申请实施例还提供了网络卡顿预测方法的另一种可实现方式,如图3所示,本申请实施例提供的网络预测卡顿方法可以包括如下步骤:The embodiment of the present application also provides another implementation method of the network jam prediction method. As shown in Figure 3, the network jam prediction method provided by the embodiment of the present application may include the following steps:

S310,抓包获取URI,分离URI的域名的和查询参数。S310: Capture the packet to obtain the URI, and separate the domain name and query parameters of the URI.

S320,获取用户历史上网数据中的网络特征信息。S320: Obtain network characteristic information from the user's historical Internet access data.

S330,过滤URI中的关键key与value值,确定目标属性值。S330: Filter the key key and value values in the URI and determine the target attribute value.

S340,过滤网络特征信息,计算网络质量指标数据。S340: Filter network feature information and calculate network quality index data.

S350,建立卡顿预测模型。S350: Establish a stuck prediction model.

S360,预测用户卡顿。S360, predicts user lag.

需要说明的是,本申请实施例提供的网络卡顿预测方法,执行主体可以为网络卡顿预测装置,或者该网络卡顿预测装置中的用于执行网络卡顿预测方法的控制模块。It should be noted that the execution subject of the network jam prediction method provided by the embodiments of the present application may be a network jam prediction device, or a control module in the network jam prediction device for executing the network jam prediction method.

基于与上述的网络卡顿预测方法相同的发明构思,本申请还提供了一种网络卡顿预测装置。下面结合图4对本申请实施例提供的网络卡顿预测进行详细说明。Based on the same inventive concept as the above-mentioned network jam prediction method, this application also provides a network jam prediction device. The network jam prediction provided by the embodiment of the present application will be described in detail below with reference to Figure 4 .

图4是根据一示例性实施例示出的一种网络卡顿预测装置的结构示意图。Figure 4 is a schematic structural diagram of a network jam prediction device according to an exemplary embodiment.

如图4所示,该网络卡顿预测装置400可以包括:As shown in Figure 4, the network jam prediction device 400 may include:

第一获取模块401,用于获取用户各历史预设时间段对应的历史上网记录数据;The first acquisition module 401 is used to acquire the user's historical Internet access record data corresponding to each historical preset time period;

第一确定模块402,用于针对每个历史预设时间段,基于历史预设时间段对应的历史上网记录数据,确定历史预设时间段内是否发生网络卡顿的历史标签,以及历史预设时间段内的网络质量指标数据;The first determination module 402 is used to determine, for each historical preset time period, based on the historical Internet access record data corresponding to the historical preset time period, a historical tag of whether network lag occurs within the historical preset time period, and the historical preset Network quality indicator data within a time period;

第二确定模块403,用于将各历史标签,以及各历史标签对应的网络质量指标数据作为训练样本,训练网络卡顿预测模型,得到训练好的网络卡顿预测模型;The second determination module 403 is used to use each historical tag and the network quality index data corresponding to each historical tag as training samples to train the network stuck prediction model and obtain the trained network stuck prediction model;

第三确定模块404,用于基于训练好的网络卡顿预测模型,以及待预测时间段内的网络质量指标数据,得到待预测时间段内网络出现卡顿的目标标签。The third determination module 404 is used to obtain the target label of network lag in the time period to be predicted based on the trained network lag prediction model and the network quality indicator data in the time period to be predicted.

如此,通过获取用户各历史预设时间段对应的历史上网记录数据,针对每个历史预设时间段,基于历史预设时间段对应的历史上网记录数据,确定历史预设时间段内是否发生网络卡顿的历史标签,以及历史预设时间段内的网络质量指标数据,然后将各历史标签,以及各历史标签对应的网络质量指标数据作为训练样本,训练网络卡顿预测模型,得到训练好的网络卡顿预测模型,如此可基于训练好的网络卡顿预测模型,以及待预测时间段内的网络质量指标数据,得到待预测时间段内网络出现卡顿的目标标签,如此通过将用户卡顿特征和网络质量指标数据相关联,建立特征方程,训练网络卡顿预测模型,基于训练好的网络卡顿预测模型精确预测网络是否卡顿,如此实现了在任何待预测时间段内均可对用户卡顿行为进行精准预测。In this way, by obtaining the historical Internet access record data corresponding to each historical preset time period of the user, for each historical preset time period, based on the historical Internet access record data corresponding to the historical preset time period, it is determined whether a network incident occurred within the historical preset time period. The historical tags of lags and the network quality indicator data within the historical preset time period are then used as training samples to train the network lag prediction model and obtain the trained Network jam prediction model, so that based on the trained network jam prediction model and the network quality indicator data in the time period to be predicted, the target label of network jams in the time period to be predicted can be obtained, so as to prevent users from being stuck. Features are associated with network quality index data, feature equations are established, network stuck prediction models are trained, and network stuck prediction models are accurately predicted based on the trained network stuck prediction model. In this way, users can be predicted in any time period to be predicted. Accurate prediction of stuck behavior.

在一些实施例中,为了更准确地确定历史预设时间段内是否发生网络卡顿的历史标签,历史上网记录数据可以包括用户上网的统一资源标识符,上述第一确定模块402具体可以包括以下单元:In some embodiments, in order to more accurately determine the historical tag of whether network lag occurs within the historical preset time period, the historical Internet access record data may include the unified resource identifier of the user's Internet access. The above-mentioned first determination module 402 may specifically include the following: unit:

删除单元,用于对历史预设时间段对应的统一资源标识符中不包含预设信息的统一资源标识符删除,得到第一统一资源标识符;其中,预设信息至少包括文件、路径信息和查询参数;查询参数用于表征网络卡顿的特征信息;The deletion unit is used to delete the uniform resource identifiers that do not contain preset information among the uniform resource identifiers corresponding to the historical preset time period to obtain the first uniform resource identifier; wherein the preset information at least includes files, path information and Query parameters; query parameters are used to characterize the characteristic information of network lag;

分割单元,用于将第一统一资源标识符,按照域名,以及查询参数对应的键值对进行分割,得到备选特征集合;A splitting unit used to split the first unified resource identifier according to the domain name and the key-value pairs corresponding to the query parameters to obtain a set of alternative features;

确定单元,用于基于备选特征集合,确定历史预设时间段内是否发生网络卡顿的历史标签。The determination unit is used to determine the historical label of whether network stalling occurs within the historical preset time period based on the candidate feature set.

在一些实施例中,为了进一步提升确定历史预设时间段内是否发生网络卡顿的历史标签的准确性,上述确定单元具体可以包括以下子单元:In some embodiments, in order to further improve the accuracy of historical tags for determining whether network lag occurs within a historical preset time period, the above-mentioned determination unit may specifically include the following sub-units:

获取子单元,用于分别获取在历史预设时间段内网络卡顿时的第一域名和查询参数的第一键值对,以及网络不卡顿时的第二域名和查询参数的第二键值对;The acquisition subunit is used to respectively obtain the first key-value pair of the first domain name and the query parameter when the network is stuck within the historical preset time period, and the second key-value pair of the second domain name and the query parameter when the network is not stuck. ;

比对子单元,用于将第一域名、第一键值对、第二域名和第二键值对与备选特征集合中的域名和键值对进行比对,选取出与备选特征集合中的域名相同,且与备选特征集合中的键值对中的键属性相同,且与备选特征集合中的键值对中的值属性不同的值属性,确定为目标值属性;The comparison subunit is used to compare the first domain name, the first key-value pair, the second domain name and the second key-value pair with the domain names and key-value pairs in the alternative feature set, and select the ones that match the alternative feature set. The domain name in is the same, and the key attribute is the same as the key-value pair in the candidate feature set, and the value attribute that is different from the value attribute in the key-value pair in the candidate feature set is determined as the target value attribute;

确定子单元,用于基于目标值属性,确定历史预设时间段内是否发生网络卡顿的历史标签。Determine the subunit, which is used to determine the historical label of whether network stalling occurs within the historical preset time period based on the target value attribute.

在一些实施例中,为了更准确地得到历史预设时间段内的网络质量指标数据,历史上网记录数据还可以包括网络特征信息,上述第一确定模块402具体可以包括以下单元:In some embodiments, in order to more accurately obtain the network quality index data within the historical preset time period, the historical Internet access record data may also include network feature information. The above-mentioned first determination module 402 may specifically include the following units:

计算单元,用于基于历史预设时间段对应的网络特征信息,计算历史预设时间段内的网络质量指标数据。The calculation unit is used to calculate the network quality index data within the historical preset time period based on the network characteristic information corresponding to the historical preset time period.

本申请实施例提供的网络卡顿预测装置,可以用于执行上述各方法实施例提供的网络卡顿预测方法,其实现原理和技术效果类似,为简介起见,在此不再赘述。The network jam prediction device provided by the embodiments of the present application can be used to execute the network jam prediction method provided by the above method embodiments. Its implementation principles and technical effects are similar, and for the sake of brief introduction, they will not be described again here.

基于同一发明构思,本申请实施例还提供了一种电子设备。Based on the same inventive concept, embodiments of the present application also provide an electronic device.

图5是本申请实施例提供的一种电子设备的结构示意图。如图5所示,电子设备可以包括处理器501以及存储有计算机程序或指令的存储器502。FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application. As shown in Figure 5, the electronic device may include a processor 501 and a memory 502 storing computer programs or instructions.

具体地,上述处理器501可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本发明实施例的一个或多个集成电路。Specifically, the above-mentioned processor 501 may include a central processing unit (CPU), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits according to embodiments of the present invention.

存储器502可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器502可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器502可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器502可在综合网关容灾设备的内部或外部。在特定实施例中,存储器502是非易失性固态存储器。存储器可包括只读存储器(Read Only Memory image,ROM)、随机存取存储器(Random-Access Memory,RAM)、磁盘存储介质设备、光存储介质设备、闪存设备、电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器包括一个或多个编码有包括计算机可执行指令的软件的有形(非暂态)计算机可读存储介质(例如,存储器设备),并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行上述实施例提供的网络卡顿预测方法所描述的操作。Memory 502 may include bulk storage for data or instructions. By way of example and not limitation, the memory 502 may include a hard disk drive (HDD), a floppy disk drive, flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (USB) drive or two or more A combination of many of the above. Memory 502 may include removable or non-removable (or fixed) media, where appropriate. Where appropriate, the memory 502 may be internal or external to the integrated gateway disaster recovery device. In certain embodiments, memory 502 is non-volatile solid-state memory. The memory may include read-only memory (Read Only Memory image, ROM), random access memory (Random-Access Memory, RAM), magnetic disk storage media device, optical storage media device, flash memory device, electrical, optical or other physical/tangible Memory storage device. Thus, generally, memory includes one or more tangible (non-transitory) computer-readable storage media (e.g., memory devices) encoded with software including computer-executable instructions, and when the software is executed (e.g., by one or multiple processors), it may be operable to perform the operations described in the network jam prediction method provided in the above embodiment.

处理器501通过读取并执行存储器502中存储的计算机程序指令,以实现上述实施例中的任意一种网络卡顿预测方法。The processor 501 reads and executes the computer program instructions stored in the memory 502 to implement any of the network jam prediction methods in the above embodiments.

在一个示例中,电子设备还可包括通信接口503和总线510。其中,如图5所示,处理器501、存储器502、通信接口503通过总线510连接并完成相互间的通信。In one example, the electronic device may also include communication interface 503 and bus 510 . Among them, as shown in Figure 5, the processor 501, the memory 502, and the communication interface 503 are connected through the bus 510 and complete communication with each other.

通信接口503,主要用于实现本发明实施例中各模块、设备、单元和/或设备之间的通信。The communication interface 503 is mainly used to implement communication between modules, devices, units and/or devices in the embodiment of the present invention.

总线510包括硬件、软件或两者,将电子设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线510可包括一个或多个总线。尽管本发明实施例描述和示出了特定的总线,但本发明考虑任何合适的总线或互连。Bus 510 includes hardware, software, or both, coupling the components of the electronic device to each other. By way of example, and not limitation, the bus may include Accelerated Graphics Port (AGP) or other graphics bus, Enhanced Industry Standard Architecture (EISA) bus, Front Side Bus (FSB), HyperTransport (HT) interconnect, Industry Standard Architecture (ISA) Bus, Infinite Bandwidth Interconnect, Low Pin Count (LPC) Bus, Memory Bus, Micro Channel Architecture (MCA) Bus, Peripheral Component Interconnect (PCI) Bus, PCI-Express (PCI-X) Bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or a combination of two or more of these. Where appropriate, bus 510 may include one or more buses. Although embodiments of the invention describe and illustrate a particular bus, the invention contemplates any suitable bus or interconnection.

该电子设备可以执行本发明实施例中的网络卡顿预测方法,从而实现图1-图3描述的网络卡顿预测方法。The electronic device can execute the network jam prediction method in the embodiment of the present invention, thereby realizing the network jam prediction method described in Figures 1-3.

另外,结合上述实施例中的网络卡顿预测方法,本发明实施例可提供一种可读存储介质来实现。该可读存储介质上存储有程序指令;该程序指令被处理器执行时实现上述实施例中的任意一种网络卡顿预测方法。In addition, combined with the network jam prediction method in the above embodiment, embodiments of the present invention can provide a readable storage medium for implementation. The readable storage medium stores program instructions; when the program instructions are executed by the processor, any one of the network jam prediction methods in the above embodiments is implemented.

需要明确的是,本发明并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本发明的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本发明的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。It is to be understood that this invention is not limited to the specific arrangements and processes described above and illustrated in the drawings. For the sake of brevity, detailed descriptions of known methods are omitted here. In the above embodiments, several specific steps are described and shown as examples. However, the method process of the present invention is not limited to the specific steps described and shown. Those skilled in the art can make various changes, modifications and additions, or change the order between steps after understanding the spirit of the present invention.

以上的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本发明的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。The functional blocks shown in the above structural block diagram can be implemented as hardware, software, firmware or a combination thereof. When implemented in hardware, it may be, for example, an electronic circuit, an application specific integrated circuit (ASIC), appropriate firmware, a plug-in, a function card, or the like. When implemented in software, elements of the invention are programs or code segments used to perform the required tasks. The program or code segments may be stored in a machine-readable medium or transmitted over a transmission medium or communications link via a data signal carried in a carrier wave. "Machine-readable medium" may include any medium capable of storing or transmitting information. Examples of machine-readable media include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like. Code segments may be downloaded via computer networks such as the Internet, intranets, and the like.

还需要说明的是,本发明中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本发明不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。It should also be noted that the exemplary embodiments mentioned in the present invention describe some methods or systems based on a series of steps or devices. However, the present invention is not limited to the order of the above steps. That is to say, the steps may be performed in the order mentioned in the embodiments, or may be different from the order in the embodiments, or several steps may be performed simultaneously.

上面参考根据本申请的实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本申请的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序指令实现。这些计算机程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。Aspects of the present application are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the application. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine such that execution of the instructions via the processor of the computer or other programmable data processing apparatus enables Implementation of the functions/actions specified in one or more blocks of a flowchart and/or block diagram. Such a processor may be, but is not limited to, a general-purpose processor, a special-purpose processor, a special application processor, or a field-programmable logic circuit. It will also be understood that each block in the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can also be implemented by special purpose hardware that performs the specified functions or actions, or can be implemented by special purpose hardware and A combination of computer instructions.

以上所述,仅为本发明的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。The above are only specific implementations of the present invention. Those skilled in the art can clearly understand that for the convenience and simplicity of description, the specific working processes of the above-described systems, modules and units can be referred to the foregoing method embodiments. The corresponding process will not be described again here. It should be understood that the protection scope of the present invention is not limited thereto. Any person familiar with the technical field can easily think of various equivalent modifications or substitutions within the technical scope disclosed in the present invention, and these modifications or substitutions should be covered. within the protection scope of the present invention.

Claims (10)

1.一种网络卡顿预测方法,其特征在于,所述方法包括:1. A network jam prediction method, characterized in that the method includes: 获取用户各历史预设时间段对应的历史上网记录数据;Obtain the user's historical Internet access record data corresponding to each historical preset time period; 针对每个历史预设时间段,基于所述历史预设时间段对应的历史上网记录数据,确定所述历史预设时间段内是否发生网络卡顿的历史标签,以及所述历史预设时间段内的网络质量指标数据;For each historical preset time period, based on the historical Internet access record data corresponding to the historical preset time period, determine the historical tag of whether network lag occurs within the historical preset time period, and the historical preset time period Network quality indicator data within; 将各所述历史标签,以及各历史标签对应的所述网络质量指标数据作为训练样本,训练网络卡顿预测模型,得到训练好的网络卡顿预测模型;Use each of the historical tags and the network quality indicator data corresponding to each historical tag as training samples to train a network jam prediction model to obtain a trained network jam prediction model; 基于训练好的网络卡顿预测模型,以及待预测时间段内的网络质量指标数据,得到所述待预测时间段内网络出现卡顿的目标标签。Based on the trained network lag prediction model and the network quality indicator data in the time period to be predicted, the target label of network lag in the time period to be predicted is obtained. 2.根据权利要求1所述的方法,其特征在于,所述历史上网记录数据包括用户上网的统一资源标识符;2. The method according to claim 1, characterized in that the historical Internet access record data includes a unified resource identifier for users to access the Internet; 所述基于所述历史预设时间段对应的历史上网记录数据,确定所述历史预设时间段内是否发生网络卡顿的历史标签,包括:The historical tag for determining whether network lag occurs within the historical preset time period based on the historical Internet access record data corresponding to the historical preset time period includes: 对所述历史预设时间段对应的统一资源标识符中不包含预设信息的统一资源标识符删除,得到第一统一资源标识符;其中,所述预设信息至少包括文件、路径信息和查询参数;所述查询参数用于表征网络卡顿的特征信息;Delete the unified resource identifiers that do not contain preset information among the unified resource identifiers corresponding to the historical preset time period to obtain the first unified resource identifier; wherein the preset information at least includes files, path information, and queries. Parameters; the query parameters are used to characterize the characteristic information of network lag; 将所述第一统一资源标识符,按照域名,以及所述查询参数对应的键值对进行分割,得到备选特征集合;Split the first unified resource identifier according to domain names and key-value pairs corresponding to the query parameters to obtain a set of alternative features; 基于所述备选特征集合,确定所述历史预设时间段内是否发生网络卡顿的历史标签。Based on the alternative feature set, determine a historical label of whether network stalling occurs within the historical preset time period. 3.根据权利要求2所述的方法,其特征在于,所述基于所述备选特征集合,确定所述历史预设时间段内是否发生网络卡顿的历史标签,包括:3. The method according to claim 2, characterized in that, based on the alternative feature set, determining the historical label of whether network lag occurs within the historical preset time period includes: 分别获取在所述历史预设时间段内网络卡顿时的第一域名和查询参数的第一键值对,以及网络不卡顿时的第二域名和查询参数的第二键值对;Obtain respectively the first key-value pair of the first domain name and the query parameter when the network is stuck within the historical preset time period, and the second key-value pair of the second domain name and the query parameter when the network is not stuck; 将所述第一域名、所述第一键值对、所述第二域名和所述第二键值对与所述备选特征集合中的域名和键值对进行比对,选取出与所述备选特征集合中的域名相同,且与所述备选特征集合中的键值对中的键属性相同,且与所述备选特征集合中的键值对中的值属性不同的值属性,确定为目标值属性;Compare the first domain name, the first key-value pair, the second domain name and the second key-value pair with the domain name and key-value pairs in the alternative feature set, and select the ones that match the The domain name in the alternative feature set is the same, the key attribute in the key-value pair in the alternative feature set is the same, and the value attribute is different from the value attribute in the key-value pair in the alternative feature set , determined as the target value attribute; 基于所述目标值属性,确定所述历史预设时间段内是否发生网络卡顿的历史标签。Based on the target value attribute, a historical tag of whether network stalling occurs within the historical preset time period is determined. 4.根据权利要求1所述的方法,其特征在于,所述历史上网记录数据还包括:网络特征信息;4. The method according to claim 1, characterized in that the historical Internet access record data further includes: network feature information; 基于所述历史预设时间段对应的历史上网记录数据,确定所述历史预设时间段内的网络质量指标数据,包括:Based on the historical Internet access record data corresponding to the historical preset time period, determine the network quality indicator data within the historical preset time period, including: 基于所述历史预设时间段对应的网络特征信息,计算所述历史预设时间段内的网络质量指标数据。Based on the network characteristic information corresponding to the historical preset time period, the network quality index data within the historical preset time period is calculated. 5.根据权利要求1或4所述的方法,其特征在于,所述网络质量指标数据至少包括:上行速率、下行速率、服务器时延、客户端时延、响应时延、上行重传率、下行重传率、访问成功率、客户端失败率、服务端失败率。5. The method according to claim 1 or 4, characterized in that the network quality indicator data at least includes: uplink rate, downlink rate, server delay, client delay, response delay, uplink retransmission rate, Downlink retransmission rate, access success rate, client failure rate, and server failure rate. 6.根据权利要求1所述的方法,其特征在于,所述网络卡顿预测模型为逻辑回归模型。6. The method of claim 1, wherein the network jam prediction model is a logistic regression model. 7.一种网络卡顿预测装置,其特征在于,所述装置包括:7. A network jam prediction device, characterized in that the device includes: 第一获取模块,用于获取用户各历史预设时间段对应的历史上网记录数据;The first acquisition module is used to acquire the user's historical Internet access record data corresponding to each historical preset time period; 第一确定模块,用于针对每个历史预设时间段,基于所述历史预设时间段对应的历史上网记录数据,确定所述历史预设时间段内是否发生网络卡顿的历史标签,以及所述历史预设时间段内的网络质量指标数据;The first determination module is configured to determine, for each historical preset time period, based on the historical Internet access record data corresponding to the historical preset time period, a historical tag of whether network lag occurs within the historical preset time period, and Network quality indicator data within the historical preset time period; 第二确定模块,用于将各所述历史标签,以及各历史标签对应的所述网络质量指标数据作为训练样本,训练网络卡顿预测模型,得到训练好的网络卡顿预测模型;The second determination module is used to use each of the historical tags and the network quality indicator data corresponding to each historical tag as training samples to train a network jam prediction model and obtain a trained network jam prediction model; 第三确定模块,用于基于训练好的网络卡顿预测模型,以及待预测时间段内的网络质量指标数据,得到所述待预测时间段内网络出现卡顿的目标标签。The third determination module is used to obtain the target label of network lag in the to-be-predicted time period based on the trained network jam prediction model and the network quality indicator data in the to-be-predicted time period. 8.一种电子设备,其特征在于,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-6任一所述的网络卡顿预测方法的步骤。8. An electronic device, characterized in that it includes a processor, a memory and a program or instructions stored on the memory and executable on the processor. The program or instructions are implemented when executed by the processor. The steps of the network jam prediction method according to any one of claims 1-6. 9.一种可读存储介质,其特征在于,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-6任一所述的网络卡顿预测方法的步骤。9. A readable storage medium, characterized in that the readable storage medium stores programs or instructions, and when the programs or instructions are executed by a processor, the network jam described in any one of claims 1-6 is achieved. Steps in the forecasting method. 10.一种计算机程序产品,其特征在于,所述计算机程序产品中的指令由电子设备的处理器执行时,使得所述电子设备执行如权利要求1-6任一所述的网络卡顿预测方法的步骤。10. A computer program product, characterized in that, when the instructions in the computer program product are executed by a processor of an electronic device, the electronic device causes the electronic device to perform the network jam prediction according to any one of claims 1-6. Method steps.
CN202211537477.4A 2022-12-02 2022-12-02 Network jam prediction methods, devices, electronic equipment, media and program products Pending CN116915630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211537477.4A CN116915630A (en) 2022-12-02 2022-12-02 Network jam prediction methods, devices, electronic equipment, media and program products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211537477.4A CN116915630A (en) 2022-12-02 2022-12-02 Network jam prediction methods, devices, electronic equipment, media and program products

Publications (1)

Publication Number Publication Date
CN116915630A true CN116915630A (en) 2023-10-20

Family

ID=88365461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211537477.4A Pending CN116915630A (en) 2022-12-02 2022-12-02 Network jam prediction methods, devices, electronic equipment, media and program products

Country Status (1)

Country Link
CN (1) CN116915630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117241071A (en) * 2023-11-15 2023-12-15 北京浩瀚深度信息技术股份有限公司 Method for sensing video katon quality difference based on machine learning algorithm

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117241071A (en) * 2023-11-15 2023-12-15 北京浩瀚深度信息技术股份有限公司 Method for sensing video katon quality difference based on machine learning algorithm
CN117241071B (en) * 2023-11-15 2024-02-06 北京浩瀚深度信息技术股份有限公司 Method for sensing video katon quality difference based on machine learning algorithm

Similar Documents

Publication Publication Date Title
CN107302547B (en) Web service anomaly detection method and device
CN106790105B (en) Crawler identification interception method and system based on business data
CN111327539B (en) Service scheduling method, device and equipment
CN111107423A (en) A kind of identification method and device for video service playback stuck
CN110225417A (en) Data processing method and server, the method and server that detect Caton
US20120317068A1 (en) Method For Generating Rules and Parameters for Assessing Relevance of Information Derived From Internet Traffic
CN105022801A (en) Hot video mining method and hot video mining device
EP3364601A1 (en) Testing method, device and system
CN109982068A (en) Synthetic video method for evaluating quality, device, equipment and medium
US10868873B2 (en) Communication session log analysis device, method and recording medium
CN116915630A (en) Network jam prediction methods, devices, electronic equipment, media and program products
CN109756358B (en) Sampling frequency recommendation method, device, equipment and storage medium
CN106535240A (en) Mobile APP centralized performance analysis method based on cloud platform
WO2018120853A1 (en) Bus signal protocol decoding method
CN109994128B (en) Voice quality problem location method, device, equipment and medium
CN113453076B (en) User video service quality evaluation method, device, computing device and storage medium
CN107517237B (en) A video recognition method and device
CN109728950B (en) Network quality optimization method, device, equipment and computer storage medium
CN117768193A (en) Safety monitoring method, device, equipment and medium for industrial control network
CN108268370A (en) Based on Referer and the matched Website quality analysis method of template library, device and system
CN116112209A (en) Vulnerability attack flow detection method and device
CN115225936B (en) Method, device, equipment and medium for determining definition index of video resources
CN112163783A (en) Method, device and equipment for evaluating service quality of cache resource
KR101560820B1 (en) Appratus and Method for Signature-Based Application Identification
CN119276747A (en) Network dialing test method, device, equipment, storage medium and program product

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination