CN116906055B - 控制隧道下穿铁路路基变形的施工方法及棚架支护结构 - Google Patents

控制隧道下穿铁路路基变形的施工方法及棚架支护结构 Download PDF

Info

Publication number
CN116906055B
CN116906055B CN202311166713.0A CN202311166713A CN116906055B CN 116906055 B CN116906055 B CN 116906055B CN 202311166713 A CN202311166713 A CN 202311166713A CN 116906055 B CN116906055 B CN 116906055B
Authority
CN
China
Prior art keywords
tunnel
supporting
supporting structure
construction method
shed frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311166713.0A
Other languages
English (en)
Other versions
CN116906055A (zh
Inventor
武朝光
陈治亚
张学民
王立川
刘进
王一鸣
王树英
雷明锋
李梓焜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202311166713.0A priority Critical patent/CN116906055B/zh
Publication of CN116906055A publication Critical patent/CN116906055A/zh
Application granted granted Critical
Publication of CN116906055B publication Critical patent/CN116906055B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/001Improving soil or rock, e.g. by freezing; Injections
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2/00General structure of permanent way
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structural Engineering (AREA)
  • Soil Sciences (AREA)
  • Civil Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

本发明提供了控制隧道下穿铁路路基变形的施工方法及棚架支护结构,该方法包括步骤S1、新建隧道拟下穿铁路路基,设定隧道的中心轴线与铁路路基的中心轴线的夹角为;在新建隧道之前,在铁路路基的下方安装棚架支护结构,并确定棚架支护结构的宽度长度和最大净距;步骤S2、确定棚架支护结构中每根支护管道对应的开挖路径;步骤S3、完成对每根支护管道的下管作业;步骤S4、形成棚架支护结构。该棚架支护结构采用该方法形成。本发明所形成的棚架支护结构为混合受力结构,能够共同支承铁路路基下方土体,解决隧道下穿铁路路基导致路基变形和沉降的问题。

Description

控制隧道下穿铁路路基变形的施工方法及棚架支护结构
技术领域
本发明涉及隧道施工技术领域,具体涉及控制隧道下穿铁路路基变形的施工方法及棚架支护结构。
背景技术
在下穿既有运营铁路路基进行隧道施工时,有以下难点问题:
1)地下水位过高,上层覆土较薄引发隧道线上浮,致使地表隆起,导致铁路路基变形。
2)在隧道施工过程中工程扰动过大,注浆浆液强度无法立即形成,易引发上方既有铁路路基过量沉降;在隧道施工过程中易发生超挖现象,也易引发上方既有铁路路基过量沉降,危害交通安全。
3)在隧道施工完成后,上层覆土与铁路运营期荷载会对隧道结构产生横向力,致使隧道横向变形。
针对问题1),现今多在隧道内采用向下安装抗拔桩的方法,使其锚住下方地基,提供抗浮反力,但此方式对控制铁路路基变形并无作用。针对问题2),可使用军便梁加固铁路路基,但军便梁施工必将影响既有铁路运营。针对问题3),单一加强隧道承载能力必将引起成本浪费,且无法同时解决问题1)、2)。
因此,需要提供控制隧道下穿铁路路基变形的施工方法及棚架支护结构,用于解决隧道下穿铁路路基导致路基变形和沉降的问题。
发明内容
本发明目的在于提供控制隧道下穿铁路路基变形的施工方法及棚架支护结构,具体技术方案如下:
控制隧道下穿铁路路基变形的施工方法,包括以下步骤:
步骤S1、新建隧道拟下穿铁路路基,设定隧道的中心轴线与铁路路基的中心轴线的夹角为;在新建隧道之前,在铁路路基的下方安装棚架支护结构,且棚架支护结构位于新建隧道的上方;
采用式(G1)确定棚架支护结构的宽度
(G1);
采用式(G2)确定棚架支护结构的长度
(G2);
采用式(G3)确定棚架支护结构至地表的最大净距
(G3);
在式(G1)-(G3)中,为铁路路基的宽度;/>为隧道的直径;/>为冗余系数,根据工程经验取1~3m;/>为系数,取值范围为开区间(0.4,1)中的任一实数;/>中的两个/>分别为棚架支护结构在铁路路基两侧延伸的长度;/>表示棚架支护结构所在土层的土的摩擦角;
步骤S2、在棚架支护结构沿其长度上的两端分别确定为起始端和接收端;所述棚架支护结构包括依次并列设置的多根支护管道,每根支护管道的一端穿过起始端,而另一端穿过接收端;所述支护管道均与宽度/>方向垂直;根据起始端、接收端和最大净距确定每根支护管道对应的开挖路径;
步骤S3、先采用钻机设备分别在起始端和接收端开挖出对应的工作空室;再采用钻机设备沿开挖路径挖孔、扩孔及完成对每根支护管道的下管作业;
步骤S4、在所有支护管道的下方连接支撑件;采用混凝土注浆设备完成对所有支护管道及工作空室的注浆作业,从而形成棚架支护结构。
可选的,相邻两根支护管道之间设置间隙。
可选的,在每根支护管道上均至少包括一个接头;在步骤S3中进行下管作业时,需要控制所有支护管道在同一横断面的接头数不超过50%;
每根支护管道的直径为108-159mm。若直径超过160mm的支护管道,则对控制铁路路基沉降的作用很小。
可选的,在步骤S3中,在对应起始端开挖的工作空室的深度和面积均大于在起始端的所述棚架支护结构的高度和横断面积;在对应接收端开挖的工作空室的深度和面积均大于在接收端的所述棚架支护结构的高度和横断面积。
可选的,在步骤S4中采用的支撑件为工字钢;所述工字钢的高度大于所述支护管道的直径。
可选的,在步骤S3中,所述钻机设备在挖孔时,根据支护管道的直径和地质条件选择对应的偏心钻头,在偏心钻头上安装定位导向装置,偏心钻头连接钻杆由钻机中伸出,按照开挖路径挖孔。
可选的,在步骤S3中,所述钻机设备在挖孔时,每钻进4-6m测定一次钻孔的偏斜度,并进行清孔;若向下偏斜,则在偏斜部分填充水泥砂浆,待其凝固后再行钻进;若向上偏斜,则根据偏心钻头再次钻进。
可选的,在步骤S3中,所述钻机设备在扩孔时,待偏心钻头携钻杆穿出地面后,卸除偏心钻头,于接收端更换扩孔工具;
首先,将扩孔工具与钻杆安装固定;然后,在起始端加压回拖扩孔工具进行扩孔,将开挖形成的孔洞扩至目标洞径;所述目标洞径为支护管道直径的1.2~1.5倍。
可选的,在步骤S3中,所述钻机设备在进行下管作业时,若开挖的土质情况为松散破碎岩体或粘聚力不高于.0.2MPa的土体,则采用的下管方式为;将支护管道固定安装在扩管工具作业方向上的后端使二者连为一体,确保扩孔与下管同步完成;
若开挖的土质情况为坚硬岩体或粘聚力高于0.5MPa的土体,则采用的下管方式为;所述钻机设备在扩孔结束后,先卸除扩孔工具,并完成清孔作业,再使用所述钻机设备完成下管作业。
在第二方面,本发明提供了一种棚架支护结构,采用所述控制隧道下穿铁路路基变形的施工方法形成的棚架支护结构。
应用本发明的技术方案,至少具有以下有益效果:
(1)采用本发明中的所述控制隧道下穿铁路路基变形的施工方法,施工工序简便,且实际单位宽度工作面仅需2~3m,显著缩小了施工作业面,具有较强的实用性和施工稳定性;同时,所形成的棚架支护结构为混合受力结构,能够共同支承铁路路基下方土体,解决隧道下穿铁路路基导致路基变形和沉降的问题。
(2)所述棚架支护结构采用工字钢将所有支护管道焊接成支护网架,然后经注浆形成混合受力结构,能够共同支承铁路路基下方土体,解决隧道下穿铁路路基导致路基变形和沉降的问题。另外,本发明可对棚架支护结构先行施工,再进行掘进作业,避免了采用常规防护机构行进与隧道掘进交替施工而延误工期的情况出现。
(3)本发明从“被扰动方”铁路路基为主研对象,借鉴peck公式推导过程(即式(G3)),结合路基宽度和隧道开挖半径等多维度参数得出地层某一深度的扰动范围,这区别于设计保守的地表沉降槽宽度,让沉降量在空间上优先得到控制,且减少工程耗材。若直接引用经典peck公式,低估了埋深对大断面浅埋隧道地表沉降的影响;本发明借鉴peck沉降线性拟合线中的角度关系得出沉降影响范围,避开此不足。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明实施例1中的一种控制隧道下穿铁路路基变形的施工方法的结构示意图;
图2是图1中A区域的放大图;
图3是图2中多根支护管道与支撑件连接后的右视图;
图4是步骤S1中在铁路路基的下方安装棚架支护结构后的示意图;
图5是铁路路基所在的地势存在“上高下低”地势时对应的施工示意图;
其中,1、支护管道,2、支撑件,Y1、隧道,Y2、铁路路基,Y3、钻机设备,Y4、工作空室。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
参见图1-4,控制隧道下穿铁路路基变形的施工方法,包括以下步骤:
步骤S1、新建隧道Y1拟下穿铁路路基Y2,设定隧道Y1的中心轴线与铁路路基Y2的中心轴线的夹角为;在新建隧道Y1之前,在铁路路基Y2的下方安装棚架支护结构,且棚架支护结构位于新建隧道Y1的上方;
采用式(G1)确定棚架支护结构的宽度
(G1);
采用式(G2)确定棚架支护结构的长度
(G2);
采用式(G3)确定棚架支护结构至地表的最大净距
(G3);
在式(G1)-(G3)中,为铁路路基Y2的宽度;/>为隧道Y1的直径;/>为冗余系数,根据工程经验取1~3m;/>为系数,取值为0.5;/>中的两个/>分别为棚架支护结构在铁路路基Y2两侧延伸的长度;/>表示棚架支护结构所在土层的土的摩擦角;
步骤S2、在棚架支护结构沿其长度上的两端分别确定为起始端和接收端;所述棚架支护结构包括依次并列设置的多根支护管道1(每根支护管道1的直径为108mm),每根支护管道1的一端穿过起始端,而另一端穿过接收端;所述支护管道1均与宽度/>方向垂直;根据起始端、接收端和最大净距/>确定每根支护管道1对应的开挖路径;
由于每根支护管道1均有对应的开挖路径,因此,在步骤S3中,需要采用钻机设备Y3完成每根支护管道1对应的开挖路径的挖孔、扩孔作业,及完成该根支护管道1的下管作业;以此类推,直至完成对每根支护管道1的下管作业,避免安装棚架支护结构的施工造成铁路路基变形和沉降;
步骤S3、先采用钻机设备Y3分别在起始端和接收端开挖出对应的工作空室Y4;再采用钻机设备Y3沿开挖路径挖孔、扩孔及完成对每根支护管道1的下管作业;
若铁路路基Y2所在的地势存在“上高下低”(如图5所示),或“上低下高”等类地势,即不具备两端联合施工条件,可单向施工,即仅设置起始端,在起始端施工;
步骤S4、在所有支护管道1的下方焊接支撑件2,具体的,所有支护管道1两端的下方均焊接支撑件2;采用混凝土注浆设备完成对所有支护管道1及工作空室Y4的注浆作业,从而形成棚架支护结构。
相邻两根支护管道1之间设置间隙,便于采用钻机设备Y3沿开挖路径挖孔、扩孔及下管作业时,确保土层结构稳定,避免安装棚架支护结构的施工造成铁路路基变形和沉降。
根据间隙的宽度和支护管道1的直径,由棚架支护结构的宽度能够计算确定所有支护管道1的数量。
在步骤S3中,在对应起始端开挖的工作空室Y4的深度和面积均大于在起始端的所述棚架支护结构的高度和横断面积,便于钻机设备Y3沿开挖路径挖孔、扩孔及下管作业;在对应接收端开挖的工作空室Y4的深度和面积均大于在接收端的所述棚架支护结构的高度和横断面积,便于钻机设备Y3沿开挖路径挖孔、扩孔及下管作业。
在步骤S4中采用的支撑件2为工字钢;所述工字钢的高度大于所述支护管道1的直径,便于稳固支撑所述支护管道1。
在步骤S3中,所述钻机设备Y3在挖孔时,根据支护管道1的直径和地质条件选择对应的偏心钻头,在偏心钻头上安装定位导向装置(为常规装置),偏心钻头连接钻杆由钻机中伸出,按照开挖路径挖孔。所述定位导向装置用于实时更新偏心钻头的坐标、纠正偏向,使得开挖形成的孔洞始终保持在开挖路径上。
在步骤S3中,所述钻机设备Y3在挖孔时,每钻进5m测定一次钻孔的偏斜度,并进行清孔;若向下偏斜,则在偏斜部分填充水泥砂浆,待其凝固后再行钻进;若向上偏斜,则根据偏心钻头再次钻进。
在步骤S3中,所述钻机设备Y3在扩孔时,待偏心钻头携钻杆穿出地面后,卸除偏心钻头,于接收端更换扩孔工具;
首先,将扩孔工具与钻杆安装固定;然后,在起始端加压回拖扩孔工具进行扩孔,将开挖形成的孔洞扩至目标洞径;所述目标洞径为支护管道1直径的1.2~1.5倍。
在扩孔时,可采用高压泵送钻井液,以切割、去除孔洞周围的固体,确保扩孔作业顺利进行。
在步骤S3中,所述钻机设备Y3在进行下管作业时,若开挖的土质情况为松散破碎岩体或粘聚力不高于0.2Mpa(具体的,岩质围岩的粘聚力不高于0.2Mpa,土质围岩的粘聚力不高于0.02Mpa)的土体,则采用的下管方式为;将支护管道1固定安装在扩管工具作业方向上的后端使二者连为一体,确保扩孔与下管同步完成;
若开挖的土质情况为坚硬岩体或粘聚力高于0.5Mpa的土体,则采用的下管方式为;所述钻机设备Y3在扩孔结束后,先卸除扩孔工具,并完成清孔作业,再使用所述钻机设备Y3完成下管作业,具体的,前期依靠人工送管,当阻力增大时接住钻机设备Y3顶进,必要时,可增设液压千斤顶辅助下管。在清孔作业时,利用地质岩芯钻杆配合偏心钻头来回扫孔,清除浮渣至孔洞底,确保孔洞洞径、孔洞洞深符合要求,防止堵孔。
在每根支护管道1上均至少包括一个接头;在步骤S3中进行下管作业时,需要控制所有支护管道1在同一横断面的接头数不超过50%,便于保证棚架支护结构的抗剪切能力。
采用实施例1中的所述控制隧道下穿铁路路基变形的施工方法,施工工序简便,且实际单位宽度工作面仅需2~3m,显著缩小了施工作业面,具有较强的实用性和施工稳定性;同时,所形成的棚架支护结构为混合受力结构,能够共同支承铁路路基Y2下方土体,解决隧道Y1下穿铁路路基Y2导致路基变形和沉降的问题。
实施例2:
棚架支护结构,采用实施例1中的所述控制隧道下穿铁路路基变形的施工方法形成的棚架支护结构。
所述棚架支护结构采用工字钢将所有支护管道1焊接成支护网架,然后经注浆形成混合受力结构,能够共同支承铁路路基Y2下方土体,解决隧道Y1下穿铁路路基Y2导致路基变形和沉降的问题。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.控制隧道下穿铁路路基变形的施工方法,其特征在于,包括以下步骤:
步骤S1、新建隧道(Y1)拟下穿铁路路基(Y2),设定隧道(Y1)的中心轴线与铁路路基(Y2)的中心轴线的夹角为;在新建隧道(Y1)之前,在铁路路基(Y2)的下方安装棚架支护结构,且棚架支护结构位于新建隧道(Y1)的上方;
采用式(G1)确定棚架支护结构的宽度
(G1);
采用式(G2)确定棚架支护结构的长度
(G2);
采用式(G3)确定棚架支护结构至地表的最大净距
(G3);
在式(G1)-(G3)中,为铁路路基(Y2)的宽度;/>为隧道(Y1)的直径;/>为冗余系数,根据工程经验取1~3m;/>为系数,取值范围为开区间(0.4,1)中的任一实数;/>中的两个/>分别为棚架支护结构在铁路路基(Y2)两侧延伸的长度;/>表示棚架支护结构所在土层的土的摩擦角;
步骤S2、在棚架支护结构沿其长度上的两端分别确定为起始端和接收端;所述棚架支护结构包括依次并列设置的多根支护管道(1),每根支护管道(1)的一端穿过起始端,而另一端穿过接收端;所述支护管道(1)均与宽度/>方向垂直;根据起始端、接收端和最大净距/>确定每根支护管道(1)对应的开挖路径;
步骤S3、先采用钻机设备(Y3)分别在起始端和接收端开挖出对应的工作空室(Y4);再采用钻机设备(Y3)沿开挖路径挖孔、扩孔及完成对每根支护管道(1)的下管作业;
步骤S4、在所有支护管道(1)的下方连接支撑件(2);采用混凝土注浆设备完成对所有支护管道(1)及工作空室(Y4)的注浆作业,从而形成棚架支护结构。
2.根据权利要求1所述的控制隧道下穿铁路路基变形的施工方法,其特征在于,相邻两根支护管道(1)之间设置间隙。
3.根据权利要求1所述的控制隧道下穿铁路路基变形的施工方法,其特征在于,在每根支护管道(1)上均至少包括一个接头;在步骤S3中进行下管作业时,需要控制所有支护管道(1)在同一横断面的接头数不超过50%;
每根支护管道(1)的直径为108-159mm。
4.根据权利要求1所述的控制隧道下穿铁路路基变形的施工方法,其特征在于,在步骤S3中,在对应起始端开挖的工作空室(Y4)的深度和面积均大于在起始端的所述棚架支护结构的高度和横断面积;在对应接收端开挖的工作空室(Y4)的深度和面积均大于在接收端的所述棚架支护结构的高度和横断面积。
5.根据权利要求1所述的控制隧道下穿铁路路基变形的施工方法,其特征在于,在步骤S4中采用的支撑件(2)为工字钢;所述工字钢的高度大于所述支护管道(1)的直径。
6.根据权利要求1所述的控制隧道下穿铁路路基变形的施工方法,其特征在于,在步骤S3中,所述钻机设备(Y3)在挖孔时,根据支护管道(1)的直径和地质条件选择对应的偏心钻头,在偏心钻头上安装定位导向装置,偏心钻头连接钻杆由钻机中伸出,按照开挖路径挖孔。
7.根据权利要求6所述的控制隧道下穿铁路路基变形的施工方法,其特征在于,在步骤S3中,所述钻机设备(Y3)在挖孔时,每钻进4-6m测定一次钻孔的偏斜度,并进行清孔;若向下偏斜,则在偏斜部分填充水泥砂浆,待其凝固后再行钻进;若向上偏斜,则根据偏心钻头再次钻进。
8.根据权利要求6所述的控制隧道下穿铁路路基变形的施工方法,其特征在于,在步骤S3中,所述钻机设备(Y3)在扩孔时,待偏心钻头携钻杆穿出地面后,卸除偏心钻头,于接收端更换扩孔工具;
首先,将扩孔工具与钻杆安装固定;然后,在起始端加压回拖扩孔工具进行扩孔,将开挖形成的孔洞扩至目标洞径;所述目标洞径为支护管道(1)直径的1.2~1.5倍。
9.根据权利要求6所述的控制隧道下穿铁路路基变形的施工方法,其特征在于,在步骤S3中,所述钻机设备(Y3)在进行下管作业时,若开挖的土质情况为松散破碎岩体或粘聚力不高于0.2MPa的土体,则采用的下管方式为;将支护管道(1)固定安装在扩管工具作业方向上的后端使二者连为一体,确保扩孔与下管同步完成;
若开挖的土质情况为坚硬岩体或粘聚力高于0.5MPa的土体,则采用的下管方式为;所述钻机设备(Y3)在扩孔结束后,先卸除扩孔工具,并完成清孔作业,再使用所述钻机设备(Y3)完成下管作业。
10.棚架支护结构,其特征在于,采用如权利要求1-9任一项所述的控制隧道下穿铁路路基变形的施工方法形成的棚架支护结构。
CN202311166713.0A 2023-09-12 2023-09-12 控制隧道下穿铁路路基变形的施工方法及棚架支护结构 Active CN116906055B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311166713.0A CN116906055B (zh) 2023-09-12 2023-09-12 控制隧道下穿铁路路基变形的施工方法及棚架支护结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311166713.0A CN116906055B (zh) 2023-09-12 2023-09-12 控制隧道下穿铁路路基变形的施工方法及棚架支护结构

Publications (2)

Publication Number Publication Date
CN116906055A CN116906055A (zh) 2023-10-20
CN116906055B true CN116906055B (zh) 2023-11-21

Family

ID=88356852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311166713.0A Active CN116906055B (zh) 2023-09-12 2023-09-12 控制隧道下穿铁路路基变形的施工方法及棚架支护结构

Country Status (1)

Country Link
CN (1) CN116906055B (zh)

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009579A (en) * 1975-12-08 1977-03-01 Patzner Delbert M Method for constructing a tunnel or underpass
FR2527679A1 (fr) * 1982-05-27 1983-12-02 Delbarre Jean Procede et dispositif pour le forage du sol
EP0690942A1 (de) * 1993-04-28 1996-01-10 Flowtex Technologie Import Von Verfahren zur abdichtung von bodenkörpern und vorrichtung zur durchführung dieses verfahrens
JP2006118318A (ja) * 2004-10-25 2006-05-11 Taisei Corp 扁平断面トンネルおよびその構築方法
JP2006249735A (ja) * 2005-03-09 2006-09-21 Nishimatsu Constr Co Ltd 横断地下構造物の構築方法および横断地下構造物
CN105089698A (zh) * 2014-05-13 2015-11-25 中国铁道科学研究院城市轨道交通中心 一种地铁隧道下穿既有铁路的沉降控制方法
JP2016128633A (ja) * 2015-01-09 2016-07-14 前田建設工業株式会社 トンネルの施工方法、インバートの施工方法、および型枠装置
CN106049195A (zh) * 2016-05-27 2016-10-26 中铁三局集团有限公司 一种高速铁路既有线路基基底加固方法
CN107818200A (zh) * 2017-09-28 2018-03-20 中南大学 超前小导管‑钢拱架‑锁脚锚杆一体化力学模型设计方法及其模型
CN110107303A (zh) * 2019-04-19 2019-08-09 同济大学 浅覆土盾构下穿高速铁路的变形控制方法
CN110528594A (zh) * 2019-07-31 2019-12-03 浙江杭海城际铁路有限公司 一种隧道盾构引起近邻高铁桩基变形的保护方法
CN110578536A (zh) * 2019-10-15 2019-12-17 中铁十二局集团有限公司 地铁暗挖区间下穿既有过街通道开挖支护加固方法
CN112031801A (zh) * 2020-07-27 2020-12-04 北京中煤矿山工程有限公司 一种地铁隧道下穿既有运营线路的沉降控制方法
CN112112654A (zh) * 2020-07-30 2020-12-22 中建五局土木工程有限公司 上软下硬地层中的隔离板结构及其施工方法
CN112343626A (zh) * 2020-10-19 2021-02-09 中铁十八局集团有限公司 上软下硬地层下穿既有隧道的盾构隧道施工及加固方法
CN113279692A (zh) * 2021-05-09 2021-08-20 苏州中车建设工程有限公司 软土体区管棚支护结构及其施工方法
KR102288770B1 (ko) * 2021-05-13 2021-08-26 (주)한길앤지니어링 추진력을 강화한 지향식 수평굴착 방법
CN113565514A (zh) * 2021-07-20 2021-10-29 贵州大学 山区城市浅埋地铁区间隧道下穿运营铁路施工方法
CN113565525A (zh) * 2021-08-28 2021-10-29 中铁上海工程局集团有限公司 一种新建盾构隧道超临近超浅埋上跨既有隧道的施工防护体系及施工方法
CN113605902A (zh) * 2021-08-26 2021-11-05 山东省交通规划设计院集团有限公司 一种下穿铁路路基隧道施工方法
CN113832947A (zh) * 2021-11-05 2021-12-24 中铁第六勘察设计院集团有限公司 对盾构隧道下穿小间距多股道铁路的加固装置及方法
CN114032720A (zh) * 2021-11-08 2022-02-11 湖南大学 一种消除铁道路基隆起变形的弧形装置及其安装方法
CN114060036A (zh) * 2021-10-05 2022-02-18 上海申通地铁集团有限公司 一种适用于市政施工淤泥质软土地层的水平定位注浆加固施工工艺
CN114657817A (zh) * 2022-03-11 2022-06-24 中交第二公路勘察设计研究院有限公司 控制盾构近距离下穿铁路路基变形的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655541B (zh) * 2021-08-11 2022-04-29 中国矿业大学 基于定向钻-探-测一体化的水下盾构隧道安全保障方法

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009579A (en) * 1975-12-08 1977-03-01 Patzner Delbert M Method for constructing a tunnel or underpass
FR2527679A1 (fr) * 1982-05-27 1983-12-02 Delbarre Jean Procede et dispositif pour le forage du sol
EP0690942A1 (de) * 1993-04-28 1996-01-10 Flowtex Technologie Import Von Verfahren zur abdichtung von bodenkörpern und vorrichtung zur durchführung dieses verfahrens
JP2006118318A (ja) * 2004-10-25 2006-05-11 Taisei Corp 扁平断面トンネルおよびその構築方法
JP2006249735A (ja) * 2005-03-09 2006-09-21 Nishimatsu Constr Co Ltd 横断地下構造物の構築方法および横断地下構造物
CN105089698A (zh) * 2014-05-13 2015-11-25 中国铁道科学研究院城市轨道交通中心 一种地铁隧道下穿既有铁路的沉降控制方法
JP2016128633A (ja) * 2015-01-09 2016-07-14 前田建設工業株式会社 トンネルの施工方法、インバートの施工方法、および型枠装置
CN106049195A (zh) * 2016-05-27 2016-10-26 中铁三局集团有限公司 一种高速铁路既有线路基基底加固方法
CN107818200A (zh) * 2017-09-28 2018-03-20 中南大学 超前小导管‑钢拱架‑锁脚锚杆一体化力学模型设计方法及其模型
CN110107303A (zh) * 2019-04-19 2019-08-09 同济大学 浅覆土盾构下穿高速铁路的变形控制方法
CN110528594A (zh) * 2019-07-31 2019-12-03 浙江杭海城际铁路有限公司 一种隧道盾构引起近邻高铁桩基变形的保护方法
CN110578536A (zh) * 2019-10-15 2019-12-17 中铁十二局集团有限公司 地铁暗挖区间下穿既有过街通道开挖支护加固方法
CN112031801A (zh) * 2020-07-27 2020-12-04 北京中煤矿山工程有限公司 一种地铁隧道下穿既有运营线路的沉降控制方法
CN112112654A (zh) * 2020-07-30 2020-12-22 中建五局土木工程有限公司 上软下硬地层中的隔离板结构及其施工方法
CN112343626A (zh) * 2020-10-19 2021-02-09 中铁十八局集团有限公司 上软下硬地层下穿既有隧道的盾构隧道施工及加固方法
CN113279692A (zh) * 2021-05-09 2021-08-20 苏州中车建设工程有限公司 软土体区管棚支护结构及其施工方法
KR102288770B1 (ko) * 2021-05-13 2021-08-26 (주)한길앤지니어링 추진력을 강화한 지향식 수평굴착 방법
CN113565514A (zh) * 2021-07-20 2021-10-29 贵州大学 山区城市浅埋地铁区间隧道下穿运营铁路施工方法
CN113605902A (zh) * 2021-08-26 2021-11-05 山东省交通规划设计院集团有限公司 一种下穿铁路路基隧道施工方法
CN113565525A (zh) * 2021-08-28 2021-10-29 中铁上海工程局集团有限公司 一种新建盾构隧道超临近超浅埋上跨既有隧道的施工防护体系及施工方法
CN114060036A (zh) * 2021-10-05 2022-02-18 上海申通地铁集团有限公司 一种适用于市政施工淤泥质软土地层的水平定位注浆加固施工工艺
CN113832947A (zh) * 2021-11-05 2021-12-24 中铁第六勘察设计院集团有限公司 对盾构隧道下穿小间距多股道铁路的加固装置及方法
CN114032720A (zh) * 2021-11-08 2022-02-11 湖南大学 一种消除铁道路基隆起变形的弧形装置及其安装方法
CN114657817A (zh) * 2022-03-11 2022-06-24 中交第二公路勘察设计研究院有限公司 控制盾构近距离下穿铁路路基变形的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
复杂条件下地铁隧道马头门施工技术与监测分析;蒋青青;黄晓阳;周恺;陈占锋;;岩石力学与工程学报(第S1期);第2858-2865页 *
新建地铁隧道上穿既有隧道引起的结构隆起变形;许有俊;陶连金;文中坤;刘忻梅;张;;中国铁道科学(第06期);第48-54页 *

Also Published As

Publication number Publication date
CN116906055A (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
CN109723065B (zh) 加固装置及富水砂砾地层中深基坑局部冷冻加固施工方法
Bruce et al. Soil nailing: application and practice-part 1
CN106759473B (zh) 地下综合管廊和道路的施工结构及其施工方法
JP6762800B2 (ja) 既設杭基礎の補強工法及び補強構造
CN101748741B (zh) 一种混凝土支护结构的施工方法
CN106930321B (zh) 一种大直径顶管结合洞桩修建地下结构的施工方法
CN106369223A (zh) 一种粉砂土地层顶管施工方法
CN108412519A (zh) 高原地区软岩轻微大变形单线隧道支护装置及施工方法
CN107503755A (zh) 一种用免扣拱平顶洞桩法建造地铁车站的施工方法
KR100960603B1 (ko) 피에이치씨파일로 구성된 흙막이벽을 이용한 지하합벽 시공방법
CN110847929B (zh) 基于分区爆破的隧道洞口段预加固及开挖施工方法
CN107514266A (zh) 盾构进出洞锚杆加固土体施工方法
CN105909262B (zh) 一种暗挖隧道掘进方法
CN102587385A (zh) 一种换填淤泥质软土的基坑支护方法
CN116906055B (zh) 控制隧道下穿铁路路基变形的施工方法及棚架支护结构
KR100963880B1 (ko) 강재 케이싱 토류벽을 이용한 지하광장 굴착공법
CN103015435A (zh) 长螺旋潜孔锤振动旋喷水泥土型钢桩基坑止水支护方法
KR100948060B1 (ko) 강재 케이싱 토류벽을 이용한 하천제방 정비공법
CN114382498A (zh) 一种用于有限空间的大口径顶管施工工艺
CN111042144B (zh) 一种寒冷地区河道不断流情况下地系梁基坑开挖方法
CN210370668U (zh) 一种位于下穿既有公路下方隧道扩建的地表加固结构
CN110284506A (zh) 一种深基坑向浅基坑的扩展施工的基坑围护方法
CN113006010B (zh) 混凝土导墙基础加固的方法
CN116220701B (zh) 一种新建隧道与既有隧道改扩建并线施工方法
CN102704473A (zh) 人工挖孔桩流沙层植筋施工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant