CN116904823A - 一种WC/CoVTiB高熵合金复合材料及其制备方法 - Google Patents

一种WC/CoVTiB高熵合金复合材料及其制备方法 Download PDF

Info

Publication number
CN116904823A
CN116904823A CN202310903235.0A CN202310903235A CN116904823A CN 116904823 A CN116904823 A CN 116904823A CN 202310903235 A CN202310903235 A CN 202310903235A CN 116904823 A CN116904823 A CN 116904823A
Authority
CN
China
Prior art keywords
composite material
entropy alloy
covtib
powder
alloy composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310903235.0A
Other languages
English (en)
Inventor
邱瑜铭
吕华伟
田蔚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Fengtai Tools Co ltd
Original Assignee
Jiangsu Fengtai Tools Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Fengtai Tools Co ltd filed Critical Jiangsu Fengtai Tools Co ltd
Priority to CN202310903235.0A priority Critical patent/CN116904823A/zh
Publication of CN116904823A publication Critical patent/CN116904823A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1035Liquid phase sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/057Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of phases other than hard compounds by solid state reaction sintering, e.g. metal phase formed by reduction reaction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明公开了一种WC/CoVTiB高熵合金复合材料及其制备方法,属于合金材料技术领域。该复合材料由WC增强相和CoVTiB高熵合金复合而成,WC增强相弥散分布于CoVTiB高熵合金基体中,复合材料中各组分为:WC 60‑70%,Co10‑15%,V 3‑5%,Ti 4‑7%,B 13‑17%。本发明复合材料中WC含量可达60‑70%,通过两次放电等离子烧结过程及参数控制,使WC中的部分W、C进入合金熔体中,使增强相WC与合金基体形成冶金结合,并大大提升材料的硬度、耐磨性等性能。

Description

一种WC/CoVTiB高熵合金复合材料及其制备方法
技术领域
本发明涉及合金材料技术领域,具体涉及一种WC/CoVTiB高熵合金复合材料及其制备方法。
背景技术
高熵合金作为材料领域的一个新的研究热点,相比于传统合金其力学性能、化学性能及物理性能都有较大提升,如具有高强度、高硬度、优异的耐磨损、耐腐蚀性等,成为粉末冶金领域的研究热点。高熵合金又称多主元合金,由四种以上元素构成,合金最终性能由多种主元共同作用来决定。虽然高熵合金组成元素较多,但在凝固后往往能够形成相对简单的相结构,随机互溶的固溶体是高熵合金典型组织,包括面心立方(FCC)结构、体心立方(BCC)结构或密排六方(HCP),如图1所示。由于加入的原子尺寸不同,在晶格中产生严重畸变,固溶强化效应强烈,由此带来了高强度、优异的耐磨性等性能优势。但相比于耐磨钢、耐磨陶瓷等材料,在硬度和耐磨性等方面仍存在较大提升空间。
近年来,金属基复合材料被高度重视和发展,并与多主元高熵合金相结合,成为了新的研究方向。高熵合金基复合材料的晶体结构简单,组织中并未出现其他复杂相,综合了增强相以及高熵合金基体的优异性能,科研价值较高,广泛应用于刀具、磨具等领域。
目前报道的块状高熵合金复合材料主要应用电弧熔炼技术制备,但应用该技术制备的高熵合金通常为非平衡组织,并且其中存在缩孔、缩松和成分偏析等缺陷,需要进行长时间的均匀化退火和后续热机械处理,成本较高。此外,由于低熔点的Al元素在熔炼过程中容易被烧损,而使合金成分难以精确控制。
还有报道采用自蔓延高温合成法(SHS)制备块状高熵合金复合材料,其基本原理是将增强相的组分原料与金属粉末按一定比例充分混合、压坯成型,在真空或惰性气氛中,用钨丝预热引燃,使组分之间发生化学反应,放出的热量蔓延引起未反应的邻近部分继续燃烧反应,直到全部完成,即得到块体高熵合金复合材料。该法生产过程简单、反应迅速、耗热少,产品纯度高。但由于反应速度快,合成过程温度梯度大,反应难以控制,使得产品中孔隙率高、致密度低,极易出现缺陷集中和非平衡过渡相,使产品活性提高。
综上,亟需研发一种低成本、致密度高且具有优异硬度、耐磨性的高熵合金复合材料。
发明内容
本发明的目的在于提供一种WC/CoVTiB高熵合金复合材料及其制备方法,所制备的复合材料具有优异的硬度和耐磨损性能。
为实现上述目的,本发明所采用的技术方案如下:
一种WC/CoVTiB高熵合金复合材料,由WC增强相和CoVTiB高熵合金复合而成,WC增强相弥散分布于CoVTiB高熵合金基体中。
该复合材料中各组分按原子百分比计为:WC60-70%,Co10-15%,V3-5%,Ti4-7%,B13-17%。
该复合材料的CoVTiB高熵合金基体中,包括BCC相固溶体、Co3Ti相、TiC相和原位生成的TiB2相。
所述WC/CoVTiB高熵合金复合材料采用放电等离子烧结技术(SPS)制备,具体包括如下步骤:
(1)按照所述复合材料的成分组成称取各原料,原料为WC粉、Co粉、V粉、Ti粉和B粉;各原料混合后置于行星球磨机中进行球磨,得到混合反应物料;
(2)将混合反应物料投进石墨模具中预压制成块状坯体;
(3)将装有块状坯体的石墨模具放入放电等离子烧结炉的加热模腔内,再加入上、下加热冲头,给腔内坯体通入电流,进行等离子放电,电流流经烧结粉体在粉末颗粒接触部位产生瞬间高温,至坯体粉末达到半熔融状态(浆糊状)停止放电,取出后冷却(空冷)得到物料铸锭;
(4)将物料铸锭再次投入到放电等离子烧结炉的加热模腔中,通入电流进行等离子放电使之达到熔融状态,持续加热至温度为2850-2950℃时,停止放电,取出后冷却(空冷),得到所述WC/CoVTiB高熵合金复合材料的铸锭,取出;
(5)将步骤(4)所得样品经固溶处理后冷却(空冷),得到所述WC/CoVTiB高熵合金复合材料的铸锭;该WC/CoVTiB高熵合金复合材料的铸锭进行机械加工后,得到设计要求使用的复合材料产品。
上述步骤(1)球磨过程在行星球磨机中进行,球磨时间为10-12h,球磨中磨料为氧化铝陶瓷球;球料比(2-3):1,行星球磨机转速为50-65r/min。
上述步骤(3)放电等离子烧结中,施加的压强为35-50MPa,烧结气氛为氩气,升温速率为60~80℃/min。
上述步骤(4)放电等离子烧结中,施加的压强为15-25MPa,烧结气氛为氩气,升温速率为10~20℃/min。
上述步骤(5)中固溶处理的温度为2650-2700℃,处理时间45-50min。
本发明的优点和有益效果如下:
1、本发明在高熵合金基体中加入B元素,并优化各成分比例使B元素的加入后很好的提高合金的抗高温、抗腐蚀性能,特别是能够提高高熵合金的致密性。
2、本发明WC/CoVTiB高熵合金复合材料的合金基体主要有BCC相固溶体、Co3Ti相和原位生成的TiB2相。这种相组成提升了复合材料的抗氧化性、抗腐蚀性及显微硬度、耐磨性。
3、本发明WC/CoVTiB高熵合金复合材料中,随着WC含量的增多,基体中BCC相固溶体含量增多,组织被细化,复合材料平均显微硬度增大,耐磨性提升。
4、本发明WC/CoVTiB高熵合金复合材料采用常规电弧熔炼、激光熔敷等工艺制备时,WC含量增加到15%后即出现裂纹和开裂倾向,进而影响材料整体硬度提升;而本发明中WC含量可达60-70%,通过两次放电等离子烧结过程及参数控制,使WC中的部分W、C进入合金熔体中,使增强相WC与合金基体形成冶金结合,并大大提升材料的硬度、耐磨性等性能。
附图说明
图1为高熵合金的相结构。
图2为实施例1制备的块状复合材料XRD谱图。
图3为实施例1制备的块状复合材料金相照片。
图4为实施例1制备的块状复合材料干滑动磨损表面形貌。
具体实施方式
为了进一步理解本发明,以下结合实例对本发明进行描述,但实例仅为对本发明的特点和优点做进一步阐述,而不是对本发明权利要求的限制。
实施例1:
本实施例制备WC/CoVTiB高熵合金复合材料的过程具体如下:
1、设计该复合材料中各组分按原子百分比计为:WC65%,Co12%,V4%,Ti5%,B15%。
2、采用放电等离子烧结技术(SPS)制备,按照所述复合材料的成分组成称取各原料,原料为WC粉、Co粉、V粉、Ti粉和B粉;各原料混合后置于行星球磨机中进行球磨,得到混合反应物料;球磨过程在行星球磨机中进行,球磨时间为12h,球磨中磨料为氧化铝陶瓷球;球料比2.5:1,行星球磨机转速为60r/min。
3、将混合反应物料投进石墨模具中预压制成块状坯体;
4、将装有块状坯体的石墨模具放入放电等离子烧结炉的加热模腔内,再加入上、下加热冲头,给腔内坯体通入电流,进行等离子放电;放电等离子烧结中,施加的压强为40MPa,烧结气氛为氩气,升温速率为75℃/min。电流流经烧结粉体在粉末颗粒接触部位产生瞬间高温,至坯体粉末达到浆糊状的半熔融状态时停止放电,取出后空冷得到物料铸锭;
5、将物料铸锭再次投入到放电等离子烧结炉的加热模腔中,通入电流进行等离子放电使之达到熔融状态,再持续加热至温度为2900℃时,停止放电,取出后空冷;放电等离子烧结中,施加的压强为20MPa,烧结气氛为氩气,升温速率为15℃/min。取出冷却后得到所述WC/CoVTiB高熵合金复合材料的铸锭,取出;
6、所得样品进行固溶处理,固溶处理的温度为2680℃,处理时间45-50min,空冷后,得到所述WC/CoVTiB高熵合金复合材料的铸锭。
本实施例制备的块状复合材料样品经过电火花切割后表面打磨抛光,应用X射线衍射仪(XRD)分析其物相组成,样品表面经过王水腐蚀后应用配备有能量分散谱仪(EDS)的扫描电子显微镜(SEM)分析其显微组织。
本实施例块状复合材料制备过程中,首先将块状坯体采用放电等离子烧结达到半熔融状态,此时各原料粉体之间呈润湿状态,且在对块状坯体施压的状态下,使各粉体间空隙缩小,增加其致密度。
在第二次采用放电等离子烧结到熔化状态时,WC颗粒在合金熔体中发生部分熔解,一部分碳元素和钨元素进入合金溶液中,在凝固后形成WC颗粒增强的合金复合材料,同时部分进入熔体中的碳和钨元素与合金中其他元素结合。图2为复合材料样品XRD谱图,由图2可以看出,样品中除β-Ti(BCC)、WC的衍射峰之外,还出现TiC、Co3Ti相(FCC)和原位生成的TiB2相等。FCC相、BCC相的组成,其为典型的平衡态稳定的相组成,而应用常规电弧熔炼技术制备的高熵合金复合材料一般为亚稳相,并且存在成分偏析。另外,常规电弧熔炼技术制备本实施例复合材料成分时,由于WC添加量大,所制备材料开裂。
Co3Ti相具有较高的抗氧化性和抗腐蚀性,且具有较好的韧性。B的加入细化了枝晶组织且合金基体中原位生成了弥散分布的TiB2,同时适量B的加入,使BCC相、TiB2相逐渐增多,复合材料的显微硬度及耐磨性能也有所提高。应用HV-1000型维氏硬度计测试合金的维氏硬度,测试时载荷300N,保压时间15s,测试5次取平均值。测试结果表明,本实施例复合材料的平均显微硬度达到950HV。
图3为本实施例复合材料的微观结构,可以看出,WC、TiB2各相均匀分布于基体中。
经测试该复合材料在室温到800℃范围内其磨损率均低于10-6mm3/N.m。对其磨损机理研究,图4给出了该复合材料在600℃摩擦测试后磨痕形貌照片,可以看出其磨损表面相对平整,没有明显的沟痕。这是由于WC硬质颗粒阻挡了对基体的磨损,同时由于WC颗粒与基体牢固结合为一体,高接触应力下基体将载体转移到耐磨WC颗粒上而避免了磨损,有效避免了脆性脱落。对200、400、800℃摩擦测试后磨痕观察发现温度对磨损的影响并不大。即,高硬度WC颗粒及韧性基体间的牢固结合为提高抗切削抗粘着磨损起到了关键性作用。
另外,该复合材料中FCC相使合金具有良好的塑性和韧性,而大量BCC相赋予了该材料优异的强度、FCC相和BCC相的综合作用使该复合材料表现出良好的综合力学性能。

Claims (8)

1.一种WC/CoVTiB高熵合金复合材料,其特征在于:该复合材料由WC增强相和CoVTiB高熵合金复合而成,WC增强相弥散分布于CoVTiB高熵合金基体中。
2.根据权利要求1所述的WC/CoVTiB高熵合金复合材料,其特征在于:按原子百分比计,该复合材料中各组分为:WC60-70%,Co10-15%,V3-5%,Ti4-7%,B13-17%。
3.根据权利要求1所述的WC/CoVTiB高熵合金复合材料,其特征在于:该复合材料的CoVTiB高熵合金基体中,包括BCC相固溶体、Co3Ti相和原位生成的TiB2相。
4.根据权利要求1所述的WC/CoVTiB高熵合金复合材料的制备方法,其特征在于:该方法为采用放电等离子烧结技术(SPS)制备所述WC/CoVTiB高熵合金复合材料,该方法包括如下步骤:
(1)按照所述复合材料的成分组成称取各原料,原料为WC粉、Co粉、V粉、Ti粉和B粉;各原料混合后置于行星球磨机中进行球磨,得到混合反应物料;
(2)将混合反应物料投进石墨模具中预压制成块状坯体;
(3)将装有块状坯体的石墨模具放入放电等离子烧结炉的加热模腔内,再加入上、下加热冲头,给腔内坯体通入电流,进行等离子放电,电流流经烧结粉体在粉末颗粒接触部位产生瞬间高温,至坯体粉末达到半熔融状态(浆糊状)停止放电,取出后冷却(空冷)得到物料铸锭;
(4)将物料铸锭再次投入到放电等离子烧结炉的加热模腔中,通入电流进行等离子放电使之达到熔融状态,持续加热至温度为2850-2950℃时,停止放电,取出后,取出;
(5)将步骤(4)所得样品经固溶处理后冷却(空冷),得到所述WC/CoVTiB高熵合金复合材料的铸锭;该WC/CoVTiB高熵合金复合材料的铸锭进行机械加工后,得到设计要求使用的复合材料产品。
5.根据权利要求4所述的WC/CoVTiB高熵合金复合材料的制备方法,其特征在于:步骤(1)球磨过程在行星球磨机中进行,球磨时间为10-12h,球磨中磨料为氧化铝陶瓷球珠;球珠料比(2-3):1,行星球磨机转速为50-65r/min。
6.根据权利要求4所述的WC/CoVTiB高熵合金复合材料的制备方法,其特征在于:步骤(3)放电等离子烧结中,施加的压强为35-50MPa,烧结气氛为氩气,升温速率为60~80℃/min。
7.根据权利要求4所述的WC/CoVTiB高熵合金复合材料的制备方法,其特征在于:步骤(4)放电等离子烧结中,施加的压强为15-25MPa,烧结气氛为氩气,升温速率为10~20℃/min。
8.根据权利要求4所述的WC/CoVTiB高熵合金复合材料的制备方法,其特征在于:步骤(5)中固溶处理的温度为2650-2700℃,处理时间45-50min。
CN202310903235.0A 2023-07-21 2023-07-21 一种WC/CoVTiB高熵合金复合材料及其制备方法 Pending CN116904823A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310903235.0A CN116904823A (zh) 2023-07-21 2023-07-21 一种WC/CoVTiB高熵合金复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310903235.0A CN116904823A (zh) 2023-07-21 2023-07-21 一种WC/CoVTiB高熵合金复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN116904823A true CN116904823A (zh) 2023-10-20

Family

ID=88359946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310903235.0A Pending CN116904823A (zh) 2023-07-21 2023-07-21 一种WC/CoVTiB高熵合金复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116904823A (zh)

Similar Documents

Publication Publication Date Title
CN108060322B (zh) 硬质高熵合金复合材料的制备方法
Fang et al. High-temperature oxidation resistance, mechanical and wear resistance properties of Ti (C, N)-based cermets with Al0. 3CoCrFeNi high-entropy alloy as a metal binder
Wang et al. Microstructure and formation mechanism of in-situ TiC-TiB2/Fe composite coating
CN109161774A (zh) 由高熵合金作为粘结剂的硬质碳化钨合金及其制备方法
CN109371307A (zh) 一种以高熵合金粉末为粘结剂的wc基硬质合金的制备方法
US7459408B2 (en) Al2O3 dispersion-strengthened Ti2AlN composites and a method for producing the same
Shi et al. Enhancing copper infiltration into alumina using spark plasma sintering to achieve high performance Al2O3/Cu composites
CN100465309C (zh) 一种利用放电等离子烧结制备高铌钛铝合金材料的方法
CN113337746B (zh) 一种碳化物增强高熵合金复合材料的制备方法
CN109778050B (zh) 一种WVTaTiZr难熔高熵合金及其制备方法
Chu et al. Application of pre-alloyed powders for diamond tools by ultrahigh pressure water atomization
Chu et al. High-quality Ti (C, N)-based cermets via solid-state nitrogen-pressure sintering: influence of the sintering atmosphere
JP6259978B2 (ja) Ni基金属間化合物焼結体およびその製造方法
CN102021473B (zh) 一种Fe3Al-Al2O3复合材料的制备方法
Zhu et al. Effects of Al2O3@ Ni core-shell powders on the microstructure and mechanical properties of Ti (C, N) cermets via spark plasma sintering
CN112410634B (zh) 合金化粉末、钨基合金及其制备方法和搅拌工具
CN111057960B (zh) 一种电弧熔炼制备TiC增强铁基高熵合金复合材料的方法
CN116904823A (zh) 一种WC/CoVTiB高熵合金复合材料及其制备方法
CN116904790A (zh) 高硬度WC/CoVTiB高熵合金复合材料的制备方法
CN114318067B (zh) 一种多元碳化物颗粒增强铝基复合材料及其制备方法
CN113088909B (zh) 一种镍铬合金溅射靶材及其热压制备方法
Hou et al. Fabrication of FeCu matrixed diamond tool bits using microwave hot-press sintering
US10132416B2 (en) Cermet ball gate and method of producing
Novák et al. Effect of alloying elements on microstructure and properties of Fe-Al and Fe-Al-Si alloys produced by reactive sintering
CN116083769A (zh) 一种二硼化铬基金属陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination