CN116902917A - 一种催化干重整反应的电气化方法及应用该方法的系统 - Google Patents

一种催化干重整反应的电气化方法及应用该方法的系统 Download PDF

Info

Publication number
CN116902917A
CN116902917A CN202310627079.XA CN202310627079A CN116902917A CN 116902917 A CN116902917 A CN 116902917A CN 202310627079 A CN202310627079 A CN 202310627079A CN 116902917 A CN116902917 A CN 116902917A
Authority
CN
China
Prior art keywords
conductive
catalyst
reaction
catalytic
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310627079.XA
Other languages
English (en)
Inventor
张业新
张建
赵伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN202310627079.XA priority Critical patent/CN116902917A/zh
Publication of CN116902917A publication Critical patent/CN116902917A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/644Arsenic, antimony or bismuth
    • B01J23/6445Antimony
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/342Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents with the aid of electrical means, electromagnetic or mechanical vibrations, or particle radiations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本申请公开了一种催化干重整反应的电气化方法及应用该方法的系统,包括如下步骤:将通电的导电催化剂与含有CH4、CO2的混合气体接触,进行干重整反应;所述导电催化剂包括导电催化载体、催化活性组分、催化助剂;所述导电催化载体选自碳材料载体、金属氧化物半导体材料载体中的至少一种;所述催化活性组分选自镍、铁、钴、铑、钌、钯、铂中的至少一种;所述催化助剂选自氧化镧、氧化铈、氧化铯、氧化镁、氧化钙中的至少一种。利用界面电热效应和界面电子效应增强催化剂活性,从而促进需要高温条件的甲烷干重整反应进行。

Description

一种催化干重整反应的电气化方法及应用该方法的系统
技术领域
本申请涉及一种催化干重整反应的电气化方法及应用该方法的系统,属于能源环境技术领域。
背景技术
CH4、CO2等温室气体的排放随着人类活动的加剧逐年增加,近年来温室效应气体更是导致极端天气增加,使环境问题日趋加剧。当今,如何实现“双碳”目标已经成为制约各能源行业发展的难题。甲烷干重整反应能够同时转化CH4和CO2两大温室气体,在工业上具有较大的应用前景,但是该反应往往需要在较高的温度下才能进行有效的转化。传统加热反应温度一般在700℃以上(参见Nature,1991,352(6332):225-226.),而且在高温环境下会发生逆水煤气变换,甲烷裂解等副反应,所以往往需要探索合适的催化剂在高温条件下促进反应的进行,但是在高温环境中,催化剂容易发生烧结或在催化剂表面形成积碳而导致催化剂失活,同时高温吸热反应能耗高,带来了较大的工艺成本。
发明内容
根据本申请的一个方面,提供了一种催化干重整反应的电气化方法,通过选择使用导电催化剂,利用界面电热效应和界面电子效应增强催化剂活性,从而促进需要高温条件的甲烷干重整反应进行,克服现有技术中催化剂需要额外加热源,在高温环境中催化剂容易发生烧结或在催化剂表面形成积碳而导致催化剂失活、同时高温吸热反应能耗高带来了较大的工艺成本的问题。
本申请采用如下技术方案:
一种催化干重整反应的电气化方法,包括如下步骤:将通电的导电催化剂与含有CH4、CO2的混合气体接触,进行干重整反应;
所述导电催化剂包括导电催化载体、催化活性组分、催化助剂;
所述导电催化载体选自碳材料载体、金属氧化物半导体材料载体中的至少一种;
可选地,所述催化活性组分选自镍、铁、钴、铑、钌、钯、铂中的至少一种;
可选地,所述催化助剂选自氧化镧、氧化铈、氧化铯、氧化镁、氧化钙中的至少一种。
可选地,所述碳材料选自活性碳、石墨粉、碳纳米管、石墨烯中的至少一种。
可选地,所述金属氧化物半导体材料选自掺锑氧化锡、掺锡氧化铟、掺铝氧化锌、镧系钙钛矿中的至少一种。
可选地,所述导电催化剂中催化活性组分的重量分数为1~5wt%;
可选地,所述导电催化剂中催化活性组分的重量分数选自1wt%、2wt%、3wt%、4wt%、5wt%中的任意值,或任意两者间的范围值。
可选地,所述催化活性组分与催化助剂的摩尔比为1:0.5~5。
可选地,所述催化活性组分与催化助剂的摩尔比选自1:0.5、1:0.6、1:0.7、1:0.8、1:0.9、1:1、1:2、1:3、1:4、1:5中的任意值,或任意两者间的范围值。
可选地,所述混合气体中所述CH4、CO2的体积分数独立地为4~36%。
可选地,所述混合气体中还包括载气。
可选地,所述载气为非活性气体。
可选地,所述混合气体中所述CH4、CO2的体积分数独立地选自4%、8%、12%、16%、20%、25%、30%、36%中的任意值,或任意两者间的范围值。
可选地,所述CH4与CO2的体积比为1:0.1~10。
可选地,所述CH4与CO2的体积选自1:0.1、1:0.2、1:0.3、1:0.4、1:0.5、1:0.6、1:0.7、1:0.8、1:0.9、1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9、1:10中的任意值,或任意两者间的范围值。
可选地,所述接触的条件为:所述混合气体相对导电催化剂的质量空速为4.5~36L·g-1 cat·h-1
可选地,所述混合气体相对导电催化剂的质量空速选自4.5L·g-1 cat·h-1、9L·g-1 cat·h-1、12L·g-1 cat·h-1、16L·g-1 cat·h-1、24L·g-1 cat·h-1、30L·g-1 cat·h-1、36L·g-1 cat·h-1中的任意值,或任意两者间的范围值。
可选地,所述通电的条件为:向所述导电催化剂通入电流,单位质量导电催化剂上的功率为25~1500W/g。
可选地,所述单位质量导电催化剂上的功率选自25W/g、550W/g、100W/g、200W/g、400W/g、800W/g、1200W/g、1500W/g中的任意值,或任意两者间的范围值。
一种应用前述催化干重整反应的电气化方法的系统,所述系统包括反应室、导电催化剂、正极元件、负极元件;
所述导电催化剂设置在反应室内;
所述正极元件、负极元件分别与导电催化剂的两端通电连接;
所述反应室设置有至少1个进气口和至少1个出气口。
所述系统与催化干重整反应的电气化方法匹配使用。
可选地,所述系统还包括导电滤芯。
可选地,所述导电滤芯包括铜滤芯。
导电滤芯,其设置于所述导电催化剂的两端,至少用以对所述导电催化剂进行固定。
所述导电滤芯分别设置在所述导电催化剂两端并与正极元件、负极元件通电连接。
所述正极、负极分别与导电催化剂两端的导电滤芯接触,进而与导电催化剂实现电连接。
可选地,所述系统还包括用于测量导电滤芯与正极元件、负极元件接触点温度的温度测量元件。
可选地,所述温度测量元件包括热电偶
可选地,所述反应室包括反应管和设置在反应管外侧的保温层;
所述反应管的两端分别设置有与反应管端部紧密连接的套管;
所述反应管一端的套管上设置有与套管内腔连通的进气口,另一端的套管上设置有与套管内腔连通的出气口。
可选地,所述导电催化剂置于所述反应管内。
可选地,所述正极元件、负极元件设置在套管背离反应管的一侧;
所述正极元件与套管之间、负极元件与套管之间、套管与反应管之间独立地设置有密封圈。
反应管主要作为反应室,放置由导电滤芯固定的催化剂,另一端有与套管内腔连通的出气口,出气口连接在线气体检测设备进行成分分析。
可选地,所述反应管为石英管。
通过向所述导电催化剂内通入电流的方式使所述导电催化剂加热而产生电热效应,并通过控制电功率的输入,从而在低功率下实现CO2的转化率达到100%。
本申请的技术方案,设计和构筑了用于甲烷-二氧化碳干重整反应的高活性和高稳定性纳米电热催化剂,活性金属镍、铁、钴、铑、钌、钯、铂等是干重整反应的高效催化剂,而氧化镧、氧化铈、氧化铯、氧化镁、氧化钙等助剂已被证实可通过酸碱作用吸附CO2并协助积碳的氧化,从而增强其催化作用;导电载体选择具有高温耐受性和化学惰性的纳米材料,如氧化锡锑(ATO)、氧化铟锡(ITO)或碳纳米管等。通过设计和构筑电热催化剂体系,利用界面电热效应和界面电子效应增强催化剂活性,从而促进需要高温条件的甲烷干重整反应进行,进而提出了一种催化甲烷-二氧化碳干重整反应的电气化方法,在电驱动催化反应中,通过控制电功率的输入,可实现在低功率下CO2的完全转化。
本申请能产生的有益效果包括:
本申请提供的催化干重整反应的电气化方法及应用该方法的系统,向所述反应室内通入含甲烷和二氧化碳的反应气,在电驱动催化反应中,利用电流流经导电催化剂产生电热效应,通过控制电功率的输入,可在低功率下实现催化甲烷-二氧化碳干重整反应并实现二氧化碳的完全转化,无需外加热源,减少能源损耗。
附图说明
图1为本申请实施例2中的CH4、CO2转化率与功率关系图;
图2为本申请实施例2中的H2、CO产率与功率关系图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。
实施例1
用于催化干重整反应的电气化方法的系统,包括反应管、导电催化剂、正极元件、负极元件、导电滤芯、温度测量元件;
反应管作为反应室,放置由导电滤芯固定的导电催化剂,反应管两端分别设置有1个进气口和1个出气口;
导电滤芯为铜滤芯,分别设置在导电催化剂两端并与正极元件、负极元件通电连接,其中正极元件、负极元件均为铜材料;
温度测量元件为热电偶,用于测量导电滤芯与正极元件、负极元件接触点温度的;
反应管外侧设置有保温层,反应管的两端分别设置有与反应管端部紧密连接的套管,反应管一端的套管上设置有与套管内腔连通的进气口,另一端的套管上设置有与套管内腔连通的出气口,正极元件、负极元件设置在套管背离反应管的一侧,正极元件与套管之间、负极元件与套管之间、套管与反应管之间独立地设置有密封圈。出气口连接在线色谱分析仪进行成分分析。
实施例2
在实施例1中的系统中,采用的导电催化剂为:活性炭作为导电载体,负载2%的活性金属Ni,催化助剂为氧化镧,其中La/Ni=1:1(摩尔比)。取0.2g催导电化剂置于反应室,在He流吹扫40min后,通入载气与反应气(体积比CH4:CO2=1:1),质量空速9L·g-1 cat·h-1,反应气体甲烷、二氧化碳的体积分数分别为20%、20%,起始功率为5W,终点功率为22W,恒功率输出(5W,8W,10W,12W,14W,16W,18W,20W,22W),在每个功率下维持25min,反应后的气流进入在线色谱分析。结果为在功率为16W,温度为530.6℃时,CH4转化率为76.51%,CO2转化率100%。
实施例3
在实施例1中的系统中,采用的导电催化剂为:石墨烯作为导电载体,负载4%的活性金属Ni,催化助剂为氧化镧,其中La/Ni=2:1(摩尔比),取0.2g导电催化剂置于反应室,在He流吹扫40min后,通入载气与反应气(体积比CH4:CO2=6:1),质量空速21L·g-1 cat·h-1,反应气体甲烷、二氧化碳的体积分数分别为34.29%、5.71%。起始功率为5W,终点功率为16W,恒功率输出(5W,8W,10W,12W,14W,16W),在每个功率下维持25min,反应后的气流进入在线色谱分析,结果为在功率16W,温度540℃时,CH4转化率为33.89%,CO2转化率100%。
实施例4
在实施例1中的系统中,采用的导电催化剂为:掺铝氧化锌作为导电载体,负载3%的活性金属钯,催化助剂为氧化铈,其中Ce/Pd=3:1(摩尔比),取0.2g导电催化剂置于反应室,在He流吹扫40min后,通入载气与反应气(体积比CH4:CO2=2:1),质量空速4.5L·g-1 cat·h-1,反应气体甲烷、二氧化碳的体积分数分别为26.67%、13.33%。起始功率为5W,终点功率为16W,恒功率输出(5W,8W,10W,12W,14W,16W),在每个功率下维持25min,反应后的气流进入在线色谱分析,结果为在功率12W,温度475.0℃时,CH4转化率为32.05%,CO2转化率95.92%。
实施例5
在实施例1中的系统中,采用的导电催化剂为:掺锑氧化锡作为导电载体,负载1%的活性金属铑,催化助剂为氧化钙,其中Ca/Rh=5:1(摩尔比),取0.2g导电催化剂置于反应室,在He流吹扫40min后,通入载气与反应气(体积比CH4:CO2=8:1),质量空速36L·g-1 cat·h-1,反应气体甲烷、二氧化碳的体积分数分别为35.56%、4.44%。起始功率为5W,终点功率为16W,恒功率输出(5W,8W,10W,12W,14W,16W),在每个功率下维持25min,反应后的气流进入在线色谱分析,结果为在功率12W,温度517.20℃时,CH4转化率为15.36%,CO2转化率93.36%。
实施例6
在实施例1中的系统中,采用的导电催化剂为:碳纳米管作为导电载体,负载5%的活性金属钌,催化助剂为氧化镁,其中Mg/Rh=4:1(摩尔比),取0.2g导电催化剂置于反应室,在He流吹扫40min后,通入载气与反应气(体积比CH4:CO2=4:1),质量空速21L·g-1 cat·h-1,反应气体甲烷、二氧化碳的体积分数分别为32%、8%。起始功率为5W,终点功率为16W,恒功率输出(5W,8W,10W,12W,14W,16W),在每个功率下维持25min,反应后的气流进入在线色谱分析,结果为在功率16W,温度540℃时,CH4转化率为33.66%,CO2转化率100%。
实施例7
在实施例1中的系统中,采用的导电催化剂为:镧系钙钛矿镍酸镧作为催化剂,取0.2g导电催化剂置于反应室,在He流吹扫40min后,通入载气与反应气(体积比CH4:CO2=9:1),质量空速27L·g-1 cat·h-1,反应气体甲烷、二氧化碳的体积分数分别为36%、4%。起始功率为5W,终点功率为16W,恒功率输出(5W,8W,10W,12W,14W,16W)在每个功率下维持25min,反应后的气流进入在线色谱分析,结果为在功率16W,温度540℃时,CH4转化率为12.89%,CO2转化率100%。
实施例8
在实施例1中的系统中,采用的导电催化剂为:掺锡氧化铟作为导电载体,负载1%的活性金属Fe,催化助剂为氧化铈,取0.2g导电催化剂置于反应室,在He流吹扫40min后,通入载气与反应气(体积比CH4:CO2=1:2),质量空速9L·g-1 cat·h-1,反应气体甲烷、二氧化碳的体积分数分别为13.33%、26.67%。起始功率为5W,终点功率为16W,恒功率输出(5W,8W,10W,12W,14W,16W),在每个功率下维持25min,反应后的气流进入在线色谱分析,结果为在功率12W,温度481.3℃时,CH4转化率为60%,CO2转化率82.57%。
实施例9
在实施例1中的系统中,采用的导电催化剂为:碳纳米管作为导电载体,负载1%的活性金属Co,催化助剂为氧化铯,其中Cs/Fe=1:1(摩尔比),取0.2g导电催化剂置于反应室,在He流吹扫40min后,通入载气与反应气(体积比CH4:CO2=1:5),质量空速27L·g-1 cat·h-1,反应气体甲烷、二氧化碳的体积分数分别为6.67%、33.33%。起始功率为5W,终点功率为16W,恒功率输出(5W,8W,10W,12W,14W,16W),在每个功率下维持25min,反应后的气流进入在线色谱分析,结果为在功率10W,温度430.40℃时,CH4转化率为90.34%,CO2转化率40.66%。
实施例10
在实施例1中的系统中,采用的导电催化剂为:活性炭作为导电载体,负载4%的活性金属Ni,催化助剂为氧化镧,其中La/Ni=2:1(摩尔比),取0.2g导电催化剂置于反应室,在He流吹扫40min后,通入载气与反应气(体积比CH4:CO2=1:9),质量空速18L·g-1 cat·h-1,反应气体甲烷、二氧化碳的体积分数分别为4%、36%。起始功率为5W,终点功率为16W,恒功率输出(5W,8W,10W,12W,14W,16W),在每个功率下维持25min,反应后的气流进入在线色谱分析,结果为在功率10W,温度466.40℃时,CH4转化率92.43%,CO2转化率43.27%。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

1.一种催化干重整反应的电气化方法,其特征在于,包括如下步骤:将通电的导电催化剂与含有CH4、CO2的混合气体接触,进行干重整反应;
所述导电催化剂包括导电催化载体、催化活性组分、催化助剂;
所述导电催化载体选自碳材料载体、金属氧化物半导体材料载体中的至少一种。
2.根据权利要求1所述的催化干重整反应的电气化方法,其特征在于,所述催化活性组分选自镍、铁、钴、铑、钌、钯、铂中的至少一种;
优选地,所述催化助剂选自氧化镧、氧化铈、氧化铯、氧化镁、氧化钙中的至少一种;
优选地,所述碳材料选自活性碳、石墨粉、碳纳米管、石墨烯中的至少一种;
优选地,所述金属氧化物半导体材料选自掺锑氧化锡、掺锡氧化铟、掺铝氧化锌、镧系钙钛矿中的至少一种;
优选地,所述导电催化剂中催化活性组分的重量分数为1~5wt%;
优选地,所述催化活性组分与催化助剂的摩尔比为1:0.5~5。
3.根据权利要求1所述的催化干重整反应的电气化方法,其特征在于,所述混合气体中所述CH4、CO2的体积分数独立地为4~36%;
优选地,所述CH4与CO2的体积比为1:0.1~10。
4.根据权利要求1所述的催化干重整反应的电气化方法,其特征在于,所述接触的条件为:所述混合气体相对导电催化剂的质量空速为4.5~36L·g-1 cat·h-1
5.根据权利要求1所述的催化干重整反应的电气化方法,其特征在于,所述通电的条件为:向所述导电催化剂通入电流,单位质量导电催化剂上的功率为25~1500W/g。
6.一种应用权利要求1至5任一项所述催化干重整反应的电气化方法的系统,其特征在于,所述系统包括反应室、导电催化剂、正极元件、负极元件;
所述导电催化剂设置在反应室内;
所述正极元件、负极元件分别与导电催化剂的两端通电连接;
所述反应室设置有至少1个进气口和至少1个出气口。
7.根据权利要求6所述的系统,其特征在于,所述系统还包括导电滤芯;
所述导电滤芯分别设置在所述导电催化剂两端并与正极元件、负极元件通电连接。
8.根据权利要求7所述的系统,其特征在于,所述系统还包括用于测量导电滤芯与正极元件、负极元件接触点温度的温度测量元件;
9.根据权利要求6所述的系统,其特征在于,所述反应室包括反应管和设置在反应管外侧的保温层;
所述反应管的两端分别设置有与反应管端部紧密连接的套管;
所述反应管一端的套管上设置有与套管内腔连通的进气口,另一端的套管上设置有与套管内腔连通的出气口。
10.根据权利要求9所述的系统,其特征在于,所述正极元件、负极元件设置在套管背离反应管的一侧;
所述正极元件与套管之间、负极元件与套管之间、套管与反应管之间独立地设置有密封圈。
CN202310627079.XA 2023-05-30 2023-05-30 一种催化干重整反应的电气化方法及应用该方法的系统 Pending CN116902917A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310627079.XA CN116902917A (zh) 2023-05-30 2023-05-30 一种催化干重整反应的电气化方法及应用该方法的系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310627079.XA CN116902917A (zh) 2023-05-30 2023-05-30 一种催化干重整反应的电气化方法及应用该方法的系统

Publications (1)

Publication Number Publication Date
CN116902917A true CN116902917A (zh) 2023-10-20

Family

ID=88350024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310627079.XA Pending CN116902917A (zh) 2023-05-30 2023-05-30 一种催化干重整反应的电气化方法及应用该方法的系统

Country Status (1)

Country Link
CN (1) CN116902917A (zh)

Similar Documents

Publication Publication Date Title
Zalc et al. Are noble metal-based water–gas shift catalysts practical for automotive fuel processing?
Oshima et al. Low temperature catalytic reverse water gas shift reaction assisted by an electric field
Li et al. CO2 reforming of CH4 by atmospheric pressure glow discharge plasma: a high conversion ability
Laosiripojana et al. Catalytic steam reforming of ethanol over high surface area CeO2: The role of CeO2 as an internal pre-reforming catalyst
Li et al. Warm plasma catalytic reforming of biogas in a heat-insulated reactor: Dramatic energy efficiency and catalyst auto-reduction
US8828216B2 (en) Efficient production of fuels
US7618612B2 (en) Low-temperature hydrogen production from oxygenated hydrocarbons
Lyubovsky et al. Catalytic partial “oxidation of methane to syngas” at elevated pressures
Snytnikov et al. Preferential CO oxidation over a copper–cerium oxide catalyst in a microchannel reactor
Hu et al. Formic acid dehydrogenation over PtRuBiOx/C catalyst for generation of CO-free hydrogen in a continuous-flow reactor
Arminio-Ravelo et al. Strategies toward the sustainable electrochemical oxidation of methane to methanol
Takahashi et al. CO 2 reduction using hydrothermal method for the selective formation of organic compounds
Tanaka et al. Catalytic oxidative coupling of methane assisted by electric power over a semiconductor catalyst
JP2008239485A (ja) 酸化炭化水素からの低温水素生成
Araque et al. Hydrogen production by glycerol steam reforming over CeZrCo fluorite type oxides
Dias et al. Autothermal reforming of methane over Ni/γ-Al2O3 promoted with Pd: The effect of the Pd source in activity, temperature profile of reactor and in ignition
Chatzilias et al. Electrochemical promotion of CO2 hydrogenation in a monolithic electrochemically promoted reactor (MEPR)
Dias et al. Autoreduction of promoted Ni/γ-Al2O3 during autothermal reforming of methane
Chen et al. Effects of current upon hydrogen production from electrochemical catalytic reforming of acetic acid
Oshima et al. Catalytic oxidative coupling of methane with a dark current in an electric field at low external temperature
Tiwari et al. Activation of two highly stable molecules–nitrogen and methane to co-produce ammonia and ethylene
CN116902917A (zh) 一种催化干重整反应的电气化方法及应用该方法的系统
CN106006553A (zh) 甲醇氧化与水蒸汽重整分段结合在线产氢方法及设备
CN108579761A (zh) 一种Pt-Ir/FeOx多金属单原子催化剂的制备方法
RU2632701C1 (ru) Способ получения синтез-газа из CO2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination