CN116891852A - 一种特异性核酸适配体及其修饰的靶向抗菌载药明胶微球和应用 - Google Patents

一种特异性核酸适配体及其修饰的靶向抗菌载药明胶微球和应用 Download PDF

Info

Publication number
CN116891852A
CN116891852A CN202310867193.XA CN202310867193A CN116891852A CN 116891852 A CN116891852 A CN 116891852A CN 202310867193 A CN202310867193 A CN 202310867193A CN 116891852 A CN116891852 A CN 116891852A
Authority
CN
China
Prior art keywords
gelatin
microsphere
modified
apt
carboxyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310867193.XA
Other languages
English (en)
Inventor
邹琴
张瑞
李玉宝
陈立
林明玥
王晨鑫
张桓硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202310867193.XA priority Critical patent/CN116891852A/zh
Publication of CN116891852A publication Critical patent/CN116891852A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/42Phosphorus; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/14Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • A61K9/1623Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1658Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Preparation (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Physics & Mathematics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Plant Pathology (AREA)
  • Rheumatology (AREA)
  • Microbiology (AREA)

Abstract

本发明涉及生物医学材料领域,具体涉及一种特异性核酸适配体及其修饰的靶向抗菌载药明胶微球和应用。所述该核酸适配体为羧基修饰的Apt,在5'端用羧基修饰,所述羧基修饰的Apt修饰的靶向抗菌载药明胶微球,其含有以下原料:明胶微球、羧基修饰的Apt、交联剂、特拉万星、含EDC和NHS的乙醇/水溶液(1:1)和核酸适配体Apt。与传统的骨髓炎治疗方法相比,本申请提供的用羧基修饰的Apt修饰的明胶微球系统能够实现细菌感染微环境的靶向治疗和感染性骨缺损的骨修复作用。

Description

一种特异性核酸适配体及其修饰的靶向抗菌载药明胶微球和 应用
技术领域
本发明属于生物医学材料领域,具体涉及一种特异性核酸适配体及其Apt修饰的靶向抗菌载药明胶微球及其制备方法和应用。
背景技术
1、骨组织中的细菌感染及治疗
骨组织中的细菌感染(称为“骨髓炎”)由微生物感染引起的急性或慢性炎症,会导致骨骼、关节的剧烈疼痛和骨质退行性变化。骨区域的感染和缺损互为因果:致病性微生物如细菌、杆菌、真菌等可通过诱导成骨细胞凋亡、激活破骨细胞形成和分泌毒素,在感染部位引起骨质破坏。感染后形成的死骨导致骨缺损,不利于局部感染控制,而缺损处血肿的形成可为细菌繁殖创造机会。
目前临床上骨髓炎的治疗最有效的方法主要有手术清创、死腔处理、组织重建和抗生素治疗。然而,彻底的手术清创很难达到完美。为了有效根除感染,需要注射高剂量的抗生素进入体内循环系统,这会对其他组织或器官造成负面影响。鉴于上述原因,针对骨髓炎患者的“新型靶向药物的选择”是现阶段临床治疗骨髓炎需要解决的问题。
2、微球给药系统-明胶微球
微球给药系统作为一种新型的制剂已经被广泛应用在骨髓炎治疗的研究中,通过设计新颖的多功能微球药物载体可提高感染部位的药物浓度,持续和靶向释放抗生素,从而改善预期治疗效果。
明胶/纳米羟基磷灰石微球的协同组合已被用于创建一个专门用于骨组织工程的药物递送平台,该协同组合可以持续释放抗生素,其中:明胶富含精氨酸-甘氨酸-天冬氨酸(RGD)序列,因此在促进细胞粘附和增殖方面非常有效。纳米羟基磷灰石的结构可以为调节细胞行为(例如,细胞附着、扩散、增殖或分化)以及为随后的骨再生过程提供生物物理信息。
关于明胶微球的制备,例如:200810235066.3(公开号为CN101401960A),先将明胶溶于水,加入纳米羟基磷灰石,得到混悬液,将混悬液滴加冷凝液中,形成球形颗粒,然后加入交联剂溶液中,用无水乙醇清洗,得到明胶羟基磷灰石复合球形颗粒,所述冷凝剂为二甲基硅油或植物油,交联剂为甲醛、戊二醛或乙二醛。已经开发出许多微球骨植入生物材料,用于装载抗生素如硫酸庆大霉素、布洛芬或溶菌酶,用于局部缺陷部位的给药,以防止细菌感染,同时实现骨修复。
现有技术也有公开了负载特拉万星的正电荷明胶微球,如202110654548.8(公开号为CN113304246A),制备方法是:将明胶用水油乳液法制备明胶微球,与香草醛/乙醇溶液交联后,浸泡于特拉万星溶液中,得到负载特拉万星的明胶微球(GM@Te),水油乳液是向加热的橄榄油中缓慢滴明胶水溶液搅拌。
3、核酸适配体
核酸适配体(Aptamer,简写为Apt)是单链寡核苷酸(DNA或RNA)分子,是利用体外筛选技术-指数富集的配体系统进化技术(Systematic evolution of ligands byexponential enrichment,SELEX),从核酸分子文库中得到的寡核苷酸片段,该分子具有与靶标物结合的高特异性和高亲和力。
关于核酸适配体的相关报道如下:
202211026585.5(公开号为CN115389585A)公开了金黄色葡萄球菌靶向核酸适配体,其为5’-GCA ATG GTA CGG TAC TTCCTC GGC ACG TTC TCAGTA GCGCTC GCT GGT CATCCCACAGCTACG TCAAAAGTG CAC GCTACT TTG CTAA-3’(简称Apt,);
202210040310.0(公开号为CN114371287A)公开了氨基修饰的金黄色葡萄球菌特异性核酸适配体,其为(5’NH2-GCA ATG GTA CGG TAC TTC CTC GGC ACG TTC TCA GTA GCGCTC GCT GGT CAT CCC ACA GCT ACG TCA AAA GTG CAC GCT ACT TTG CTAA-3′(简称氨基修饰Apt),用于免疫磁纳米探针的功能化。该文献提供的含有纳米探针的试剂盒,实现对金黄色葡萄球菌的快速特异性检测。
核酸适配体具有分子量小、免疫原性低、易于合成和修饰、批次间稳定性高等优点,这些优点使核酸适配体在细菌检测、生物传感、生物成像、药物传递和癌症治疗等方面具有广阔的应用前景。然而,由于核酸适配体一般分子量低、尺寸小,在用于临床诊断和治疗时更易被体内的代谢器官和免疫系统清除,无法到达作用部位。因此需要其与微载体相结合从而到达感染部位实现靶向释放。此外核酸适配体的一个关键点是其三级结构,完整的三级结构可以响应靶标结合诱导的空间构象变化,但是,核酸适配体在暴露于核酸酶时稳定性降低,构象缺乏稳定性,从而使核酸适配体失去相应的活性。
为了解决这些问题,提高核酸适配体稳定性的方法包括:磷酸盐骨架的功能装饰;核糖单位的修饰;核酸适配体与不同基团的化学连接,如(NH2、O-methyl(OCH3)或COOH);循环功能化;以及通过滚动循环扩增装配微载体等。
微球材料自身的小尺寸、高比表面积效应,有利于控制材料的降解速率,得到高载药率,植入后与体内组织有高反应活性,同时亦具有高渗透性和高活动性,这类具有环境敏感特性的微球材料可作为生物因子或化学成分的载体,从而在外界的刺激下实现靶向释放。
明胶微球是一种多功能载体系统,用于将治疗活性剂输送到感染部位,因为它具有如生物相容性、生物降解性、将药物靶向所需部位、提供控释、提高局部给药的生物利用度、输送各种药物,此外提高病人的依从性等固有属性。将明胶微球使用核酸适配体修饰后能够进一步提高核酸适配体的稳定性并且提高明胶微球的功能化。
明胶按照生产方式分为碱法明胶(又称B型明胶)、酸法明胶(又称A型明胶),制备方法的不同可导致明胶分别带有大量的氨基和羧基,A型明胶分子中的自由的氨基数量较羧基更高,因此发明人在现有核酸适配体的基础上设计了新的核酸适配体,该Apt能够与明胶材料的氨基发生酰胺化反应,从而将羧基修饰的Apt接枝到明胶上。该方法可以将对金黄色葡萄球菌具有超高亲和力的核酸适配体和特拉万星结合到明胶微球上,以便更加有效快速地靶向杀死金黄色葡萄球菌,消除骨感染。
发明内容
为了增加明胶微球的靶向抗菌能力,发明人在微球表面接枝了靶向金黄色葡萄球菌的Apt。另外特拉万星的引入能够快速杀灭金黄色葡萄球菌,消除骨感染;最后纳米羟基磷灰石的释放能够进一步促进成骨,有利于骨修复。
第一方面,本发明提供了一种特异性核酸适配体,该核酸适配体为羧基修饰的Apt,在5'端用羧基修饰。
具体的,所述羧基修饰的Apt,其组成为:
5’-COOH-GCA ATG GTA CGG TAC TTC CTC GGC ACG TTC TCA GTA GCG CTC GCTGGT CAT CCC ACA GCT ACG TCA AAA GTG CAC GCT ACT TTG CTA A-3′。
所述羧基修饰的Apt的制备和纯化由上海生工生物有限公司合成。
第二方面,本发明还提供了一种羧基修饰的Apt修饰的靶向抗菌载药明胶微球,其含有以下原料:明胶微球、羧基修饰的Apt、交联剂、特拉万星、含EDC和NHS的乙醇/水溶液(1:1)和核酸适配体Apt。
具体的,所述羧基修饰的Apt修饰的靶向抗菌载药明胶微球原料的配比关系为:10~20mg明胶微球、2~3ml浓度为10μM羧基修饰Apt、1~5ml交联剂、16~24mg特拉万星、2~3ml含100μM EDC和100μMNHS的乙醇/水溶液。
上述原料中:
所述交联剂为香草醛,其由以下方法制备:香草醛溶液的制备方法为:将香兰素溶于无水乙醇得到浓度为8~12w/v%的香草醛溶液;
所述含EDC和NHS的乙醇/水溶液的制备方法:100ml体积比为1:1的乙醇/水溶液,含100μmol EDC和100μmol NHS组成;
其中EDC为1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐;NHS为N-羟基琥珀酰亚胺。
10μM羧基修饰的Apt的制备方法:将制备纯化好的1OD(约33μg)Apt加入到122μL乙醇水(乙醇和水的体积比为9:1)溶液中。
所述明胶微球为明胶/纳米羟基磷灰石微球,可以市售购买,也可以通过以下方法制备:
1)明胶溶液:通过将明胶溶解在蒸馏水中制备成浓度为10~20w/v%,将明胶溶液与纳米羟基磷灰石混合,得到明胶/纳米羟基磷灰石溶液,纳米羟基磷灰石的含量为10~20w/v%;
2)向温度为40~50℃的橄榄油中缓慢滴入明胶/纳米羟基磷灰石溶液,保温搅拌,然后降温到0~5℃,加入溶剂,搅拌,过滤,丙酮洗涤,干燥,即得明胶微球。
上述明胶微球的制备过程中:
步骤1)中:
纳米羟基磷灰石制备成浆料,其质量百分比为0.265g/ml。
所述明胶与纳米羟基磷灰石的重量比为1:2~8。
步骤2)中:
所述橄榄油的体积重量比150~250ml:0.5~1.5g;
所述溶剂为丙酮,其与明胶的体积重量比为100~150ml:0.5~1.5g。
保温搅拌时搅拌速度为600~800rpm,搅拌时间是10~20分钟;
降温到0~5℃时,20~40分钟后加入部分丙酮,继续搅拌,丙酮用量为80~110ml,搅拌速度为900~1200rpm,搅拌时间为10~20分钟;
过滤前加入剩余丙酮,溶解后,过滤;
过滤方法是离心过滤;
干燥为烘干。
第三方面,本发明还提供了上述Apt修饰的靶向抗菌载药明胶微球的制备方法,该方法包括以下步骤:
1)将明胶微球加入到香草醛溶液中交联,然后用丙酮清洗过滤,然后浸泡于特拉万星溶液中,时间是10~15小时,得到负载特拉万星的明胶微球;
2)将负载特拉万星的明胶微球加入到含EDC和NHS的乙醇/水溶液中,震荡孵育,得到羧基激活的明胶微球;
3)将羧基末端金黄色葡萄球菌核酸适配体Apt加入到激活的明胶微球中,震荡孵育,过滤。
上述方法中:
步骤1)中,
香草醛溶液的制备方法为:将香兰素溶于无水乙醇得到浓度为8~12w/v%的香草醛溶液;
特拉万星溶液的制备:将盐酸特拉万星溶于去离子水中,超声,得到浓度为6~10mg/ml的特拉万星溶液。
步骤2)中,
震荡孵育条件是35~39℃孵育0.5~1.5小时。
步骤3)中,
震荡孵育条件是35~39℃孵育5~8小时。
孵育后还包括,离心,用乙醇溶液洗涤,烘干。
本发明提供的方案具有以下优点:
1、本发明设计的核酸适配体是在现有核酸适配体基础上,在5'端用羧基修饰,相较于现有技术来说:羧基修饰的Apt通过酰胺键反应接枝在明胶微球表面;在细菌感染部位,该微球表面修饰的Apt可靶向作用于金黄色葡萄球菌,通过微球与细菌之间的趋向作用实现微球对金葡菌的捕获,随后微球进一步释放抗生素杀死细菌,可实现抗生素的按需释放,有效减少现有抗生素的使用剂量,提高抗菌活性。
2、本发明提供的羧基修饰的Apt修饰的靶向抗菌载药明胶微球:
1)明胶微球为成骨细胞的生长、增殖提供了粘附位点,随着微球的降解,微球内部的纳米羟基磷灰石释放出来进一步诱导细胞的分化,有利于骨感染缺损区域的骨重建。
2)糖肽类抗生素能够通过阻止细胞壁合成或阻断转录/翻译过程来抑制细菌增殖,其中特拉万星通过氢键网络和疏水堆积相互作用与细胞壁前体的酰基-D-丙氨酰-D-丙氨酸(D-Ala-D-Ala)末端高亲和力结合,这些相互作用阻止了前体聚合成肽聚糖和随后的交联事件,同时特拉万星还结合细菌膜,引起膜去极化和增加膜通透性,能有效地抑制耐甲氧西林金黄色葡萄球菌等细菌引起的严重感染和对常规抗生素的耐药性。
3)本发明所制备的羧基修饰的Apt可以在催化剂EDC/NHS的作用下与明胶微球表面的氨基进行反应,从而将Apt牢牢接枝在明胶微球上。
3、与传统的骨髓炎治疗方法相比,本申请提供的用羧基修饰的Apt修饰的明胶微球系统能够实现细菌感染微环境的靶向治疗和感染性骨缺损的骨修复作用。
所设计的Apt对金黄色葡萄球菌具有高亲和力和特异性识别作用,植入到感染微环境中的明胶微球能够在Apt的作用下快速与细菌牢牢结合,微球中的抗生素特拉万星随后释放出来,从而实现抗生素在感染细菌周围的富集,实现抗生素的高效率释放和靶向抗菌。随后的骨重建过程中,可降解的明胶微球能够为成骨细胞的粘附和增殖提供作用位点,微球中的纳米羟基磷灰石释放出来进一步促进骨修复。综上所诉,该创新系统在抑制细菌生长或抗感染的同时,能够有效促进骨组织的再生重建,适用于细菌感染性骨缺损的修复治疗,在临床上对于骨髓炎的治疗具有良好的应用前景。
附图说明
图1:靶向抗菌载药明胶微球GM@Te-Apt的制备过程;
图2:GM-Apt靶向微球对金黄色葡萄球菌的特异性捕获能力:两组细菌捕获情况及效率;
图3:GM-Apt靶向微球捕获金黄色葡萄球菌后的SEM图;
图4:GM@Te-Apt复合微球对细菌混合液中金黄色葡萄球菌的特异性抓取和抗菌效果SEM图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
各原料来源:
1、明胶,A型(阿拉丁,美国);
2、纳米羟基磷灰石的浆料由实验室自己合成。
实施例1:羧基末端金黄色葡萄球菌特异识别核酸适配体及其制备方法
1、羧基末端金黄色葡萄球菌特异识别核酸适配体的碱基序列为:5'-COOH-GCAATG GTACGG TAC TTC CTC GGCACG TTC TCAGTAGCG CAT CCCACAGCTACG TCAAAAGTG CACGCTACTTTG CTAA-3'
2、制备方法:羧基末端金黄色葡萄球菌特异识别核酸适配体由上海生工生物有限公司合成并纯化,批号:112369141
实施例2:明胶微球的制备:
1、明胶/纳米羟基磷灰石溶液的制备
1)各材料的准备:
明胶溶液(15%,w/v):通过将明胶(1.5g)溶解在蒸馏水(10mL,45℃)中制备;
纳米羟基磷灰石浆料的制备:可直接购买,或是采用湿化学方法合成的,制备过程如下:将Na3PO4水溶液以1.67的Ca/P摩尔比滴入Ca(NO3)2水溶液中,两者在70℃下持续搅拌2小时,随后用NaOH溶液将pH值调节至约10。室温陈化,不断用去离子水反复洗涤沉淀,至pH约为7,离心收集磷灰石浆料。经冷冻干燥后得到磷灰石浆料的质量分数为0.265g/ml。
2)明胶/纳米羟基磷灰石溶液的制备
向10ml明胶溶液中加入997μL纳米羟基磷灰石浆料(264mg纳米羟基磷灰石),得到明胶/纳米羟基磷灰石溶液(纳米羟基磷灰石的含量为15wt%,明胶含量为85%)
2、明胶/纳米羟基磷灰石微球的制备:
将200ml橄榄油加入圆底三颈瓶中,加热到45℃,然后向其中用注射器缓慢滴入10ml步骤1制备的明胶/纳米羟基磷灰石混合溶液,保持温度并以700rpm的搅拌速度搅拌15分钟后;
在保持该搅拌速度的情况下,将整个反应体系放入冰浴中,使整个体系冷却到4℃,保温30分钟后;
加入100ml丙酮,并保持在低温环境下以1000rpm/min的搅拌速度搅拌15分钟;再往整个体系中加入15ml丙酮,然后用离心管对乳液进行分装后离心过滤,采用上述方法用丙酮多次洗涤后,再离心过滤,将下层的微球在50℃烘箱中烘干,干燥后,得到产物即为明胶/纳米羟基磷灰石微球(以下简称明胶微球)。
实施例3:载特拉万星的明胶微球的制备
1、材料的准备:
1)将10g香兰素溶于100ml无水乙醇得到10w/v%的香草醛溶液;
2)称取80mg盐酸特拉万星溶于10ml去离子水中,超声10min,制得8mg/ml的特拉万星溶液;
2、明胶微球的交联:称取实施例2制备的10mg明胶微球到1ml香草醛溶液中交联10h,然后用丙酮反复清洗离心过滤,放置50℃烘箱内烘干,得到交联后的明胶微球;
3、称取1g步骤2得到交联后的明胶微球,在室温下,浸泡于2~3mL浓度为8mg/ml特拉万星溶液中12h后冻干,得到负载特拉万星的明胶微球。
实施例4:羧基修饰的Apt修饰的明胶微球和载特拉万星明胶微球的制备:
羧基修饰的Apt,其碱基序列为:5'-COOH-GCAATG GTA CGG TAC TTC CTC GGC ACGTTC TCA GTA GCG CAT CCC ACA GCT ACG TCA AAA GTG CAC GCT ACT TTG CTAA-3'。
1、分别称取10mg未载特拉万星的明胶微球和负载特拉万星的明胶微球各加入2~3ml含100μM EDC(1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐)和100μM NHS(N-羟基琥珀酰亚胺)的乙醇/水溶液(乙醇与水的体积比为1:1)中,在37℃的往复振荡器中孵育1h,得到羧基激活的两种明胶微球;
所述含100μM EDC和100μMNHS的乙醇/水溶液,现用现配,其具体的制备方法是:100ml乙醇/水溶液、100μmol EDC和100μmol NHS组成,其中乙醇和水的体积比为1:1。
2、将2~3ml浓度为10μM羧基修饰的Apt加入步骤1制备得到的10mg激活的两种明胶微球中,在37℃的往复振荡器中孵育6h。将孵育得到的溶液快速转移到离心过滤装置中,离心(8000rpm),并用PBS缓冲液(pH=7.4)洗涤三次,分别获得羧基修饰的Apt修饰的明胶微球(GM-Apt)和羧基修饰的Apt修饰的载特拉万星明胶微球(简称为GM-Apt靶向微球)。
10μM羧基修饰的Apt的制备方法:将制备纯化好的1OD(约33μg)Apt加入到122μL乙醇水(乙醇:水=9:1)溶液中。
上述实施例的制备过程流程图见图1(靶向抗菌载药明胶微球GM@Te-Apt的制备过程)。
实验例1:GM-Apt靶向微球对金黄色葡萄球菌的特异性捕获能力
1.实验菌株:
革兰氏阳性菌金黄色葡萄球菌(S.aureus,CMCC26003),大肠杆菌(E.coli,CMCC(B)44102),均采购于上海保藏生物技术中心(批号:112369141)。
2、实验方法:
将6g蛋白胨置于锥形瓶中,加入200mL蒸馏水,超声至完全溶解后,制得液体培养基,压胶塞,高压灭菌(表压0.7kg/cm2,121℃,30min),取出放凉,备用。
用无菌接种环分别蘸取革兰氏阳性菌金黄色葡萄球菌菌液和革兰氏阴性菌大肠杆菌于液体培养基中37℃培养24h,分别得到金黄色葡萄球菌培养基和大肠杆菌培养基,备用。取1mL菌液置于1.5mL离心管中,8500rpm离心2min后,弃去上清液,用1mL灭菌PBS重悬菌体沉淀,然后再次离心弃上清,重复洗涤两次后,使用灭菌的蛋白胨培养基将该菌液稀释至原浓度的10-5倍后待用。
取上步所得的两种细菌稀释液各10μL,分别加入到不同的无菌离心管内,随后取GM-Apt复合微球分别加入到各组细菌稀释液中;振荡充分混合均匀后,将离心管置于摇床上旋转混合30min;孵育结束后,1000rpm离心2min后,弃去上清液,加入无菌生理盐水重悬,洗去微球表面未特异性粘附的细菌,重复洗涤三次。
清洗完后,将与细菌孵育后的复合微球涂布于固体琼脂培养基上,37℃培养24h,以未处理的相同浓度的两种菌液作为对照组进行涂布培养,将处理组与非处理组菌板进行对比,观察GM-Apt对两种细菌的捕获效果;并对各培养皿进行活菌计数,计算捕获效率,每种细菌重复实验三次,最终结果取平均值。捕获效率计算公式如下:
ˉˉ
捕获效率(%)=(实验组捕获菌落数X1/对照组菌落数X2)×100%
同时取与金黄色葡萄球菌孵育后的GM-Apt复合微球进行扫描电子显微镜表征,观察复合微球与金葡菌结合情况。
3、实验结果:见图2
两组细菌捕获情况及效率:将与两种细菌分别孵育后的GM-Apt微球进行平板培养后,与对应的对照组细菌对比,可以直观证明GM-Apt微球的特异性捕获能力,金葡菌(A,B),大肠杆菌(C,D);柱状图为微球对金黄色葡萄球菌和大肠杆菌的捕获效率。与对照组相比,两组细菌中,只有金黄色葡萄球菌处理组的捕获微球培养后有细菌生长,且进行活菌计数后,捕获效率较高,可以达到40%以上;大肠杆菌有极个别细菌生长外,无过多细菌生长。这一结果充分说明了我们所制备的GM-Apt复合微球对金黄色葡萄球菌的特异性捕获能力,对大肠杆菌几乎没有非特异性吸附。
另外扫描电镜图(图3)可以发现,该复合微球表面牢固结合了大量的光滑球状的金葡菌菌体,从而证明了GM-Apt对金葡菌的特异性捕获能力。
实验例2:GM@Te-Apt复合微球对细菌混合液中金黄色葡萄球菌的特异性抓取和抗菌效果
1.实验菌株:
试验菌株革兰氏阳性菌金黄色葡萄球菌(S.aureus,CMCC26003),大肠杆菌(E.coli,CMCC(B)44102)采购于上海保藏生物技术中心。
2、实验方法:
为了进一步验证载药复合微球对金黄色葡萄球菌的特异性捕获能力,选择将等量的金黄色葡萄球菌与大肠杆菌混合后,再用GM@Te-Apt复合微球与上述混合菌液进行培养,将捕获后的细菌与微球离心下来进行扫描电子显微镜表征,观察复合微球与金葡菌特异性结合情况。
3、实验结果:见图4(扫描电镜观察GM@Te-Apt微球捕获细菌之后的照片)。
从图A可以看出经过混合菌液培养后的载药微球表面只有金葡菌存在(白色箭头),未发现大肠杆菌粘附,进一步说明了微球对金葡菌的特异性捕获。
另外,图B可以看出在微球周围发现了大量呈现溶解坍塌状态的金葡菌,菌体呈现不规则的形状,表面结构完全破坏,而大肠杆菌菌体表面完整光滑,呈杆状,形态完整。表明了载特拉万星的明胶微球对金葡菌的特异性抗菌作用。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之前作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.一种特异性核酸适配体,该核酸适配体为羧基修饰的Apt,在5'端用羧基修饰。
2.根据权利要求1所述的特异性核酸适配体,其特征在于,羧基修饰的Apt如下:
5’-COOH-GCAATGGTACGGTACTTCCTCGGCACGTTCTCAGTAGCG CTCGCTGGTCATCCCACAGCTACGTCAAAAGTGCACGCTACTTTGCTA A-3′。
3.一种羧基修饰的Apt修饰的靶向抗菌载药明胶微球,其含有以下原料:明胶微球、羧基修饰的Apt、交联剂、特拉万星、含EDC和NHS的乙醇/水溶液(1:1)和核酸适配体Apt。
4.根据权利要求3所述的靶向抗菌载药明胶微球,其特征在于,其含有以下原料:10~20mg明胶微球、2~3ml浓度为10μM羧基修饰Apt、1~5ml交联剂、16~24mg特拉万星、2~3ml含EDC和NHS的乙醇/水溶液。
5.根据权利要求3或4所述的靶向抗菌载药明胶微球,其特征在于,所述明胶微球为明胶/纳米羟基磷灰石微球,通过以下方法制备:
1)明胶溶液:通过将明胶溶解在蒸馏水中制备成浓度为10~20w/v%,将明胶溶液与纳米羟基磷灰石混合,得到明胶/纳米羟基磷灰石溶液,纳米羟基磷灰石的含量为10~20w/v%;
2)向温度为40~50℃的橄榄油中缓慢滴入明胶/纳米羟基磷灰石溶液,保温搅拌,然后降温到0~5℃,加入溶剂,搅拌,过滤,丙酮洗涤,干燥,即得明胶微球。
6.根据权利要求5所述的靶向抗菌载药明胶微球,其特征在于,所述步骤1)中,所述明胶与纳米羟基磷灰石的重量比为1:2~8。
7.根据权利要求1所述的靶向抗菌载药明胶微球,其特征在于,所述步骤2)中:
所述橄榄油的体积重量比150~250ml:0.5~1.5g;
所述溶剂为丙酮,其与明胶的体积重量比为100~150ml:0.5~1.5g。
保温搅拌时搅拌速度为600~800rpm,搅拌时间是10~20分钟;
降温到0~5℃时,20~40分钟后加入部分丙酮,继续搅拌,丙酮用量为80~110ml,搅拌速度为900~1200rpm,搅拌时间为10~20分钟。
8.权利要求3~7任一项所述的靶向抗菌载药明胶微球的制备方法,其特征在于,该方法包括以下步骤:
1)将明胶微球加入到香草醛溶液中交联,然后用丙酮清洗过滤,然后浸泡于特拉万星溶液中,时间是10~15小时,得到负载特拉万星的明胶微球;
2)将负载特拉万星的明胶微球加入到含EDC和NHS的乙醇/水溶液中,震荡孵育,得到羧基激活的明胶微球;
3)将羧基末端金黄色葡萄球菌核酸适配体Apt加入到激活的明胶微球中,震荡孵育,过滤。
9.根据权利要求8所述的制备方法,其特征在于,所述步骤1)中,
香草醛溶液的制备方法为:将香兰素溶于无水乙醇得到浓度为8~12w/v%的香草醛溶液;
特拉万星溶液的制备:将盐酸特拉万星溶于去离子水中,超声,得到浓度为6~10mg/ml的特拉万星溶液。
10.根据权利要求8所述的制备方法,其特征在于,所述步骤3)中,震荡孵育条件是35~39℃孵育5~8小时。
CN202310867193.XA 2023-07-14 2023-07-14 一种特异性核酸适配体及其修饰的靶向抗菌载药明胶微球和应用 Pending CN116891852A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310867193.XA CN116891852A (zh) 2023-07-14 2023-07-14 一种特异性核酸适配体及其修饰的靶向抗菌载药明胶微球和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310867193.XA CN116891852A (zh) 2023-07-14 2023-07-14 一种特异性核酸适配体及其修饰的靶向抗菌载药明胶微球和应用

Publications (1)

Publication Number Publication Date
CN116891852A true CN116891852A (zh) 2023-10-17

Family

ID=88313245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310867193.XA Pending CN116891852A (zh) 2023-07-14 2023-07-14 一种特异性核酸适配体及其修饰的靶向抗菌载药明胶微球和应用

Country Status (1)

Country Link
CN (1) CN116891852A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117530924A (zh) * 2024-01-04 2024-02-09 南京农业大学 一种氧化石墨烯载小檗碱和芦荟大黄素联合靶向纳米药物的制备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101401960A (zh) * 2008-11-07 2009-04-08 东南大学 明胶-羟基磷灰石复合球形颗粒及其制备方法和装置
CN101665821A (zh) * 2008-09-01 2010-03-10 中国人民解放军军事医学科学院基础医学研究所 一组特异识别金黄色葡萄球菌的寡核苷酸适配子及其应用
US20130266721A1 (en) * 2012-04-06 2013-10-10 Tapash Ranjan Rautray Preparation of controlled drug release porous hydroxyapatite microspheres with interconnected pore channels
CN110787148A (zh) * 2019-11-13 2020-02-14 湖北大学 一种具有抗蛋白质吸附和适体修饰的明胶纳米粒子及其制备方法
CN113304246A (zh) * 2021-06-11 2021-08-27 四川大学 一种负载特拉万星的正电荷明胶微球的制备方法
CN113588758A (zh) * 2021-09-01 2021-11-02 集美大学 一种基于AgBiS2的光电化学传感器检测金黄色葡萄球菌的方法
CN113960128A (zh) * 2020-12-15 2022-01-21 有研工程技术研究院有限公司 基于钾离子适配体修饰的硅纳米线场效应管生物传感器
CN115236057A (zh) * 2022-06-21 2022-10-25 新疆师范大学 一种基于凝集素与适配体双识别同时检测三种致病菌的方法
CN116082453A (zh) * 2023-03-03 2023-05-09 四川大学 一种用于明胶酶酶切响应的多肽及含多肽的骨缺损修复支架
CN116203092A (zh) * 2023-03-07 2023-06-02 常州大学 一种用于检测邻苯二甲酸二(2-乙基己基)酯的电化学发传感器的制备方法和检测方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665821A (zh) * 2008-09-01 2010-03-10 中国人民解放军军事医学科学院基础医学研究所 一组特异识别金黄色葡萄球菌的寡核苷酸适配子及其应用
CN101401960A (zh) * 2008-11-07 2009-04-08 东南大学 明胶-羟基磷灰石复合球形颗粒及其制备方法和装置
US20130266721A1 (en) * 2012-04-06 2013-10-10 Tapash Ranjan Rautray Preparation of controlled drug release porous hydroxyapatite microspheres with interconnected pore channels
CN110787148A (zh) * 2019-11-13 2020-02-14 湖北大学 一种具有抗蛋白质吸附和适体修饰的明胶纳米粒子及其制备方法
CN113960128A (zh) * 2020-12-15 2022-01-21 有研工程技术研究院有限公司 基于钾离子适配体修饰的硅纳米线场效应管生物传感器
CN113304246A (zh) * 2021-06-11 2021-08-27 四川大学 一种负载特拉万星的正电荷明胶微球的制备方法
CN113588758A (zh) * 2021-09-01 2021-11-02 集美大学 一种基于AgBiS2的光电化学传感器检测金黄色葡萄球菌的方法
CN115236057A (zh) * 2022-06-21 2022-10-25 新疆师范大学 一种基于凝集素与适配体双识别同时检测三种致病菌的方法
CN116082453A (zh) * 2023-03-03 2023-05-09 四川大学 一种用于明胶酶酶切响应的多肽及含多肽的骨缺损修复支架
CN116203092A (zh) * 2023-03-07 2023-06-02 常州大学 一种用于检测邻苯二甲酸二(2-乙基己基)酯的电化学发传感器的制备方法和检测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117530924A (zh) * 2024-01-04 2024-02-09 南京农业大学 一种氧化石墨烯载小檗碱和芦荟大黄素联合靶向纳米药物的制备

Similar Documents

Publication Publication Date Title
Khor et al. Implantable applications of chitin and chitosan
Chen et al. Enhancement in sustained release of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration
Xu et al. Polymer–mesoporous silica nanoparticle core–shell nanofibers as a dual-drug-delivery system for guided tissue regeneration
US20170119892A1 (en) Refillable drug delivery devices and methods of use thereof
Zhang et al. An ionically crosslinked hydrogel containing vancomycin coating on a porous scaffold for drug delivery and cell culture
CN116891852A (zh) 一种特异性核酸适配体及其修饰的靶向抗菌载药明胶微球和应用
US20220096706A1 (en) Electrospun nanofiber-based dressings and methods of manufacture and use thereof
CN110152055B (zh) 海藻酸胺化衍生物/细菌纤维素纳米晶复合凝胶构筑的功能性药物缓释医用敷料
Fan et al. Biomaterial-based scaffolds as antibacterial suture materials
Fu et al. Mussel-inspired gold nanoparticle and PLGA/L-lysine-g-graphene oxide composite scaffolds for bone defect repair
Onat et al. Multifunctional layer-by-layer modified chitosan/poly (ethylene glycol) hydrogels
Li et al. Fabrication and evaluation of bone morphogenetic protein-2 microspheres coated black phosphorus nanosheets@ polylactic-glycolic acid copolymers scaffold: A multifunctional antibacterial photothermal scaffold for bone regeneration
Jou et al. Biofunctional properties of polyester fibers grafted with chitosan and collagen
Xu et al. Charge-mediated co-assembly of amphiphilic peptide and antibiotics into supramolecular hydrogel with antibacterial activity
CN114432276A (zh) 一种细菌响应性微针贴片及其制备方法和应用
Mahmoud et al. Rapid release polymeric fibers for inhibition of Porphyromonas gingivalis adherence to Streptococcus gordonii
US20100098738A1 (en) Surface bound actives
Padmanabhan et al. Chitosan hydrogels for regenerative engineering
CN115518195A (zh) 一种长效抗菌复合微球及其制备方法和应用
Pang et al. Gallic acid-grafted chitosan antibacterial hydrogel incorporated with polydopamine-modified hydroxyapatite for enhancing bone healing
Pebdeni et al. Synthesis of chitosan/peo/silica nanofiber coating for controlled release of cefepime from implants
Zhang et al. RETRACTED ARTICLE: Degradable poly-L-lysine-modified PLGA cell microcarriers with excellent antibacterial and osteogenic activity
e Silva et al. Nanofibers in the treatment of osteomyelitis and bone regeneration
Guo et al. Biodegradable antibacterial branched glycerol-polypeptide with efficient in vitro/in vitro miRNA-29b delivery for promoting osteogenic differentiation of stem cells and bone regeneration
US20240173370A1 (en) Controlled release of bacteriophage to treat implant infections

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination