CN116880036A - 超薄反射镜的面形控制方法 - Google Patents

超薄反射镜的面形控制方法 Download PDF

Info

Publication number
CN116880036A
CN116880036A CN202311140735.XA CN202311140735A CN116880036A CN 116880036 A CN116880036 A CN 116880036A CN 202311140735 A CN202311140735 A CN 202311140735A CN 116880036 A CN116880036 A CN 116880036A
Authority
CN
China
Prior art keywords
surface shape
ultrathin
reflecting mirror
target surface
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311140735.XA
Other languages
English (en)
Other versions
CN116880036B (zh
Inventor
郭疆
李奕博
张学军
薛栋林
刘礽枞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN202311140735.XA priority Critical patent/CN116880036B/zh
Publication of CN116880036A publication Critical patent/CN116880036A/zh
Application granted granted Critical
Publication of CN116880036B publication Critical patent/CN116880036B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0825Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a flexible sheet or membrane, e.g. for varying the focus

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本发明涉及光学薄膜技术领域,尤其涉及一种超薄反射镜的面形控制方法,包括:S1、将超薄反射镜的中心通过法兰固定在旋转轴上;S2、驱动旋转轴进行高速自转,超薄反射镜在离心力的作用下向四周伸展,直至超薄反射镜展开为平面面形;S3、旋转轴的旋转速度保持不变,根据超薄反射镜的目标面形的曲率半径、圆锥系数和RMS,计算施加在旋转轴上的激励和目标面形的工作时间;S4、沿旋转轴的轴向施加激励,超薄反射镜在目标面形的工作时间内保持面形不变。本发明提出的超薄反射镜的面形控制方法的结构简单,能够将超薄反射镜的面形控制为球面或其他二次曲面。

Description

超薄反射镜的面形控制方法
技术领域
本发明涉及光学薄膜技术领域,尤其涉及一种超薄反射镜的面形控制方法。
背景技术
空间薄膜反射镜是一种以柔性聚合物薄膜为基坯、用外力控制面形的反射镜,它具有成本低、收藏体积小、质量轻等优点,能够满足空间反射镜超大超轻量化的需求。该类型反射镜的技术难点在于镜面展开与面形控制。
空间薄膜反射镜可用于辅助在轨高光谱成像卫星的成像工作,轨高光谱成像卫星的工作波段基本覆盖了400~2500nm波段,部分载荷还覆盖了8~12μm波段,在光线充足的情况下,曝光时间约为2ms。当前所使用的空间薄膜反射镜主要有静电拉伸式和充气式两种。充气式薄膜反射镜通常由两块薄膜组成,在边缘处由拉伸圈固定,利用气压充气使薄膜拉伸产生所需要的弯曲面形,但充气式薄膜在镜面发生变形时无法进行实时调整,且面形rms仅可达到1-3μm,因此不适用于高成像质量系统。
静电拉伸式薄膜反射镜通过利用静电场中存在的库仑力,对薄膜施加侧向载荷,通过控制电压实现对面形的控制。但是电极数量的增加在提高控制精度的同时,也会引起电极放电、击穿等负面影响,电荷排布与控制对控制算法的影响极大,并且高压电源的增加也会增加反射镜的质量,另外,静电拉伸式薄膜反射镜在加工的过程中还需配合加持机构和边缘矫正器,加持结构力度的偏差会影响反射镜的精度,而边缘矫正器的使用会增加反射镜的质量,且静电拉伸式薄膜反射镜在200mm口径范围内面形rms仅可达到亚波长精度。
发明内容
本发明为解决薄膜反射镜的面形无法实时调整,且由于在面形控制的过程中需配合夹持机构和边缘矫正器,导致超薄反射镜的精度较低,质量较低,提供一种超薄反射镜的面形控制方法,具有面形控制方法的结构简单的特点,能够将超薄反射镜的面形控制为球面或其他二次曲面。
本发明提供超薄反射镜的面形控制方法,具体包括如下步骤:
S1、将超薄反射镜的中心通过法兰固定在旋转轴上。
S2、驱动旋转轴进行高速自转,超薄反射镜在离心力的作用下向四周伸展,直至超薄反射镜展开为平面面形。
S3、旋转轴的旋转速度保持不变,根据超薄反射镜的目标面形的曲率半径、圆锥系数和RMS,计算施加在旋转轴上的激励和目标面形的工作时间。
S4、沿旋转轴的轴向施加激励,超薄反射镜在目标面形的工作时间内保持面形不变。
优选地,在步骤S3中,具体包括如下步骤:
S31、计算超薄反射镜的目标面形:
(1);
其中,z为目标面形的矢高,x为目标面形上的一点距目标面形中心的水平距离,R为目标面形的曲率半径,k为目标面形的圆锥系数。
S32、根据步骤S31的计算结果和目标面形的RMS,计算目标面形的工作时间:
(2);
其中,a为目标面形的RMS,r为旋转轴的半径,z(x, t)为超薄反射镜在生成过程中的变化面形,[,/>]为目标面形的工作时间。
S33、计算施加在旋转轴上的激励:
(3);
其中,h(t)为激励。
优选地,在步骤S4中,沿旋转轴的轴向施加激励后,旋转轴沿轴向移动。
与现有技术相比,本发明能够取得如下有益效果:
本发明提出的超薄反射镜的面形控制方法的结构简单,能够将超薄反射镜的面形控制为球面或其他二次曲面,在高速旋转的状态下,超薄反射镜的镜面受力均匀,且面形精度较高,能够避免电极放电、电磁击穿和镜面褶皱等负面影响。
附图说明
图1是根据本发明实施例提供的超薄反射镜的面形控制方法的流程图;
图2是根据本发明实施例提供的超薄反射镜的面形控制方法的结构示意图;
图3是根据本发明实施例提供的超薄反射镜的面形控制方法的施加激励示意图;
图4是根据本发明实施例提供的超薄反射镜的面形控制方法的激励传播示意图。
附图标记包括:超薄反射镜1,旋转轴2和法兰3。
具体实施方式
在下文中,将参考附图描述本发明的实施例。在下面的描述中,相同的模块使用相同的附图标记表示。在相同的附图标记的情况下,它们的名称和功能也相同。因此,将不重复其详细描述。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,而不构成对本发明的限制。
图1示出了根据本发明实施例提供的超薄反射镜的面形控制方法的流程;图2示出了根据本发明实施例提供的超薄反射镜的面形控制方法的结构;图3示出了根据本发明实施例提供的超薄反射镜的面形控制方法的施加激励;图4示出了根据本发明实施例提供的超薄反射镜的面形控制方法的激励传播。
如图1-图4所示,本发明实施例提供的超薄反射镜的面形控制方法,具体包括如下步骤:
S1、将超薄反射镜1的中心通过法兰3固定在旋转轴2上。
S2、驱动旋转轴2进行高速自转,超薄反射镜1在离心力的作用下向四周伸展,直至超薄反射镜1展开为平面面形。
S3、旋转轴2的旋转速度保持不变,根据超薄反射镜1的目标面形的曲率半径、圆锥系数和RMS,计算施加在旋转轴2上的激励和目标面形的工作时间。
在步骤S3中,具体包括如下步骤:
S31、计算超薄反射镜1的目标面形:
(1);
其中,z为目标面形的矢高,x为目标面形上的一点距目标面形中心的水平距离,R为目标面形的曲率半径,k为目标面形的圆锥系数。
S32、根据步骤S31的计算结果和目标面形的RMS,计算目标面形的工作时间:
(2);
a为目标面形的RMS,r为旋转轴2的半径,z(x, t)为超薄反射镜1在生成过程中的变化面形,[,/>]为目标面形的工作时间。
S33、计算施加在旋转轴2上的激励:
(3);
其中, h(t)为激励。
S4、沿旋转轴2的轴向施加激励,超薄反射镜1在目标面形的工作时间内保持面形不变。
在步骤S4中,沿旋转轴2的轴向施加激励后,旋转轴2沿轴向移动。
旋转轴2的旋转角速度ω影响着超薄反射镜1的刚度,角速度ω越大,超薄反射镜1的刚度越强,激励h(t)在超薄反射镜1中的横向传播速度越快。通过对激励h(t)和旋转角速度ω进行调整可实现对超薄反射镜的面形的实时控制。
当形成直径20m、F数为50、激励横向传播速度为1m/s的目标面形时,可在10s内成形,并在一定时间内维持面形精度如下表:
完成一次成像工作后,不再施加轴向激励h(t),在绕轴旋转的作用下,超薄反射镜1于10s内重新拉伸为平面状态。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发明公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。

Claims (3)

1.一种超薄反射镜的面形控制方法,其特征在于,具体包括如下步骤:
S1、将超薄反射镜的中心通过法兰固定在旋转轴上;
S2、驱动所述旋转轴进行高速自转,所述超薄反射镜在离心力的作用下向四周伸展,直至所述超薄反射镜展开为平面面形;
S3、所述旋转轴的旋转速度保持不变,根据所述超薄反射镜的目标面形的曲率半径、圆锥系数和RMS,计算施加在所述旋转轴上的激励和所述目标面形的工作时间;
S4、沿所述旋转轴的轴向施加所述激励,所述超薄反射镜在所述目标面形的工作时间内保持面形不变。
2.根据权利要求1所述的超薄反射镜的面形控制方法,其特征在于,在所述步骤S3中,具体包括如下步骤:
S31、计算所述超薄反射镜的目标面形:
(1);
其中,z为目标面形的矢高,x为目标面形上的一点距目标面形中心的水平距离,R为目标面形的曲率半径,k为目标面形的圆锥系数;
S32、根据所述步骤S31的计算结果和所述目标面形的RMS,计算所述目标面形的工作时间:
(2);
其中,a为所述目标面形的RMS,r为旋转轴的半径,z(x, t)为所述超薄反射镜在生成过程中的变化面形,[, />]为所述目标面形的工作时间;
S33、计算施加在所述旋转轴上的激励:
(3);
其中,h(t)为激励。
3.根据权利要求1所述的超薄反射镜的面形控制方法,其特征在于,在所述步骤S4中,沿所述旋转轴的轴向施加所述激励后,所述旋转轴沿轴向移动。
CN202311140735.XA 2023-09-06 2023-09-06 超薄反射镜的面形控制方法 Active CN116880036B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311140735.XA CN116880036B (zh) 2023-09-06 2023-09-06 超薄反射镜的面形控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311140735.XA CN116880036B (zh) 2023-09-06 2023-09-06 超薄反射镜的面形控制方法

Publications (2)

Publication Number Publication Date
CN116880036A true CN116880036A (zh) 2023-10-13
CN116880036B CN116880036B (zh) 2023-11-21

Family

ID=88260843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311140735.XA Active CN116880036B (zh) 2023-09-06 2023-09-06 超薄反射镜的面形控制方法

Country Status (1)

Country Link
CN (1) CN116880036B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114918A (ja) * 1997-06-23 1999-01-22 Toshiba Corp 焦点制御装置およびこれを用いた光ディスク装置
US20030144650A1 (en) * 2002-01-29 2003-07-31 Smith Robert F. Integrated wavefront-directed topography-controlled photoablation
KR20060087282A (ko) * 2005-01-28 2006-08-02 엘지전자 주식회사 가변 초점 미러 및 이를 응용한 카메라 모듈
US20070258158A1 (en) * 2006-05-08 2007-11-08 Sony Corporation Deformable mirror device
US20100078543A1 (en) * 2008-09-30 2010-04-01 Winker Bruce K Compact high-speed thin micromachined membrane deformable mirror
CN103348495A (zh) * 2010-08-16 2013-10-09 理查德·诺曼 对经济高效的太阳能汇聚和利用系统的改进
CN103472567A (zh) * 2013-09-26 2013-12-25 北京空间机电研究所 一种光致异构反射镜系统
CN103576282A (zh) * 2013-11-13 2014-02-12 苏州大学 一种静电拉伸薄膜反射镜的制备方法
CN103575232A (zh) * 2013-11-13 2014-02-12 长春理工大学 光致变形薄膜反射镜的面形控制及测量装置
CN105137593A (zh) * 2015-10-27 2015-12-09 中国工程物理研究院激光聚变研究中心 一种波前校正器及其校正方法
CN205193335U (zh) * 2015-08-18 2016-04-27 中国科学院西安光学精密机械研究所 变曲率反射镜装置
US20170123113A1 (en) * 2009-09-15 2017-05-04 Webster Capital Llc Optical device with a piezoelectrically actuated deformable membrane shaped as a continuous crown
DE102021102096A1 (de) * 2021-01-29 2022-08-04 Robust AO GmbH Adaptiver Spiegel mit in zwei orthogonalen Achsen unterschiedlichen Krümmungsradien

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114918A (ja) * 1997-06-23 1999-01-22 Toshiba Corp 焦点制御装置およびこれを用いた光ディスク装置
US20030144650A1 (en) * 2002-01-29 2003-07-31 Smith Robert F. Integrated wavefront-directed topography-controlled photoablation
KR20060087282A (ko) * 2005-01-28 2006-08-02 엘지전자 주식회사 가변 초점 미러 및 이를 응용한 카메라 모듈
US20070258158A1 (en) * 2006-05-08 2007-11-08 Sony Corporation Deformable mirror device
US20100078543A1 (en) * 2008-09-30 2010-04-01 Winker Bruce K Compact high-speed thin micromachined membrane deformable mirror
US20170123113A1 (en) * 2009-09-15 2017-05-04 Webster Capital Llc Optical device with a piezoelectrically actuated deformable membrane shaped as a continuous crown
CN103348495A (zh) * 2010-08-16 2013-10-09 理查德·诺曼 对经济高效的太阳能汇聚和利用系统的改进
CN103472567A (zh) * 2013-09-26 2013-12-25 北京空间机电研究所 一种光致异构反射镜系统
CN103575232A (zh) * 2013-11-13 2014-02-12 长春理工大学 光致变形薄膜反射镜的面形控制及测量装置
CN103576282A (zh) * 2013-11-13 2014-02-12 苏州大学 一种静电拉伸薄膜反射镜的制备方法
CN205193335U (zh) * 2015-08-18 2016-04-27 中国科学院西安光学精密机械研究所 变曲率反射镜装置
CN105137593A (zh) * 2015-10-27 2015-12-09 中国工程物理研究院激光聚变研究中心 一种波前校正器及其校正方法
DE102021102096A1 (de) * 2021-01-29 2022-08-04 Robust AO GmbH Adaptiver Spiegel mit in zwei orthogonalen Achsen unterschiedlichen Krümmungsradien

Also Published As

Publication number Publication date
CN116880036B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
EP0660152B1 (en) Dynamic aberration corrector for conformal windows
CN109163814B (zh) 一种提高波前测量和校正精度的装置及其使用方法
EP0941498A1 (en) Optical system with two-stage aberration correction
CN113495348B (zh) 远心光学系统和远心镜头
CN116880036B (zh) 超薄反射镜的面形控制方法
US6313951B1 (en) Optical system with zernike-shaped corrector
US6356396B1 (en) Optical system having a generalized torus optical corrector
EP0848273A2 (en) Conformal window design with static and dynamic aberration correction
US6752502B2 (en) Parabolic membrane mirror having a shape-restorative force
CN111796347B (zh) 一种基于压电致动的液体可变焦透镜及驱动方法
CN112526747A (zh) 一种共形光学系统两维运动的像差校正成像透镜组件
CN107797218A (zh) 物镜像差校正镜及像差校正方法和光学系统、光刻机
CN112882224B (zh) 一种波前控制方法
Martin et al. Manufacture of a 1.7 m prototype of the GMT primary mirror segments
CN112363315B (zh) 基于泽尼克模型系数优化的非球面窗口光学像差校正方法
CN113020820B (zh) 一种分段式回转扫描微孔阵列加工方法
CN211602166U (zh) 一种基于dmd的孔径编码光谱成像仪前置斜像光学系统
US2401315A (en) Correction for spherical and chromatic aberrations in electron lenses
US4520264A (en) Electron microscope
RU2638870C1 (ru) Способ изготовления ротора электростатического гироскопа и устройство для осуществления этого способа
Ju et al. Geometric characteristics and aberration characteristics of conformal dome based on von Karman surface
RU2793080C1 (ru) Способ осесимметричной коррекции оптических деталей произвольной формы
Dimakov et al. Electrically controlled preshaped membrane mirror for systems with wavefront correction
US5131969A (en) Method of making a thin film optical quality aspheric surface generation using x-rays
CN109856788B (zh) 可变焦式光学成像系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant